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Abstract

A mathematical model is developed to analyse the hydrodynamics of a novel
oscillating water column (OWC) in a hybrid wind-wave energy system. The
OWC has a coaxial cylindrical structure in which the internal cylinder rep-
resents the mono-pile of an offshore wind turbine while the external cylinder
has a skirt whose scope is to guide the wave energy flux inside the cham-
ber. This layout is not casual, but consistent with the current approach to
harnessing wave energy through hybrid systems. The device shape is rather
complex and the boundary value problem is solved by applying the matching-
method of eigenfunctions. Within the framework of a linearised theory, we
model the turbine damping effects by assuming the airflow to be proportional
to the air chamber pressure. Consequently, the velocity potential can be de-
composed into radiation and diffraction problems. We study the effects of
both skirt and internal radius dimensions on the power extraction efficiency
for monochromatic and random waves. We show that the skirt has strong
effects on the global behaviour, while the internal cylinder affects the values
of the sloshing eigenfrequencies. Finally, we validate the analytical model
with laboratory data and show a good agreement between analytical and
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experimental results.

Keywords: Wave energy, Wave-structure interactions, Oscillating water
column

1. Introduction1

The oscillating water column (OWC) is one of the most studied devices to2

extract energy from water waves. For an extensive review concerning related3

theories and experiments we refer to the works of McCormick (1981), Falnes4

(2002), Babarit et al. (2012) and Babarit (2018). Substantially, the OWC5

is a partially-immersed structure open at its bottom that confines air above6

the internal fluid free-surface. Incident waves induce oscillations inside the7

chamber, thus the airflow is forced to pass through a turbine usually located8

at the top of the OWC. The turbine is coupled to a generator to produce9

electricity. In this paper we perform a novel analysis of a coaxial cylindrical10

OWC in a hybrid wind-wave energy system.11

Analytical theories concerning immersed floating structures open at one12

end have been applied in several contexts. One of the main contributions is13

due to Garrett (1970), who examined cylindrical bottomless harbours. Other14

authors such as Mavrakos (1985) analysed the effects of the wall thickness15

of a floating cylindrical body on the diffracted wave field. Extension of16

hydrodynamical theories to OWC devices includes the analysis of both bi-17

dimensional (Evans, 1982; Sarmento and Falcão, 1985) and three-dimensional18

configurations. For example, Evans and Porter (1997) were the first to solve19

the case of a partially immersed cylindrical OWC in open sea by applying20

the Galerkin method to integral equations.21

Several recent studies consider the OWC to be installed in fixed structures22

for coastal protection. This is mainly due to economical reasons and difficul-23

ties in developing wave energy absorbers on their own. Concerning analytical24

models for OWCs combined with external structures, Martin-Rivas and Mei25

(2009a) and Martin-Rivas and Mei (2009b) solved the linearised problem26

of an OWC at the tip of a breakwater and the case of an OWC installed27

on a straight coast. More recently, Lovas et al. (2010) extended the theory28

of Martin-Rivas and Mei (2009b) to examine the hydrodynamic wave field29

when the OWC is installed in correspondence of convex or concave corners,30

Deng et al. (2013) and Deng et al. (2014) took into account the presence31

of a coaxial supporting structure to examine possible benefits on the energy32

2



conversion efficiency, while Zhou et al. (2018) solved the case of a concentric33

axisymmetric OWC including an internal mono-pile. Wave-structure inter-34

action in hybrid wave farms with OWC devices was investigated by Zheng35

et al. (2018), while recently, breakwater-integrated OWCs were studied by36

means of a semi-analytical model by Zheng et al. (2019).37

Despite the large number of theories developed so far, the wave energy38

sector is suffering from slow technological progress combined with difficulties39

in attracting funds (Magagna and Uihlein, 2015). This is mainly due to40

the large levelised cost of energy (LCOE) (Astariz et al., 2015, 2016). One41

way to attract funds and confidence in industry is to combine both wind42

and wave energy technologies. This is a recent research effort that aims to43

develop a more sustainable and affordable device to extract clean energy44

against fossil fuels. We refer to the work of Perez-Collazo et al. (2015) for an45

extensive review of alternatives that combine wave and offshore wind energy46

technologies.47

Motivated by this recent technology concept, Perez-Collazo et al. (2018a)48

and Perez-Collazo et al. (2018b) tested a 1:50 novel hybrid wind-wave system49

that integrates a skirt, a cylindrical OWC and an offshore wind turbine on50

a jacket frame structure. The Authors investigated experimentally the hy-51

drodynamic response of the device to monochromatic and random waves for52

different orifice diameters simulating different air turbines. Promising results53

were obtained; however further analytical work is needed to understand the54

influence of the device parameters on the global hydrodynamic behaviour of55

the system.56

For all these reasons, in this paper we develop a mathematical model for57

the OWC designed by Perez-Collazo et al. (2018b) by adding a concentric58

cylinder that represents a wind turbine installed on a mono-pile. This system59

appears similar to the theoretical models already solved by the Authors pre-60

viously mentioned. However, the skirt connected to the OWC removes any61

axial symmetry and the boundary value problem increases in complexity.62

Here we apply an eigenfunction expansion method and solve the corre-63

sponding velocity potentials in terms of Bessel functions and modified Bessel64

functions of the first and second kind, respectively (Linton and McIver, 2001;65

Mei et al., 2005). First, we analyse the case of monochromatic waves and66

derive several integral relations based on the Green’s theorem which can be67

useful to check the numerical computations of the radiation and diffraction68

velocity potentials. Then we show that both the skirt and the internal cylin-69

der play an important role in the power extraction and the sloshing dynamics70
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inside the air chamber.71

Next, we extend the theory to the case of random waves described by the72

JONSWAP spectrum (Goda, 2000) and characterise the power extraction73

efficiency by applying the superposition principle to the different incident74

wave frequency components. We find that the resonant peaks related to75

the Helmholtz and sloshing modes decrease in intensity with respect to the76

monochromatic case, and that the the random waves have a broadening effect77

on the capture factor curve. Interestingly, similar results were also found78

in the context of oscillating wave surge converters (Michele et al., 2016a,b;79

Sarkar et al., 2014).80

Laboratory experimental models usually simulate the damping effects of81

a turbine by means of an orifice of a certain diameter connecting the air82

chamber with the atmosphere (Perez-Collazo et al., 2018b). In this case,83

the air turbine is of the impulse type; therefore, a quadratic relation exists84

between the airflow through the orifice and the pressure head between the85

air chamber and the atmosphere, thus the boundary condition on the free86

surface becomes nonlinear (Pereiras et al., 2015; López et al., 2016, 2014).87

We then non-dimensionalise the corresponding equation by using adequate88

scales (Michele et al., 2018, 2019a; Michele and Renzi, 2019; Sammarco et89

al., 1997a,b) and apply a perturbation technique to the velocity potential.90

We show that if the ratio between the orifice and OWC diameter is not very91

small, the air pressure inside the chamber and the corresponding airflow92

through the orifice are governed by the diffraction potential at the leading93

order. Finally, we compare our analytical model with the 1:50 scale model94

in Perez-Collazo et al. (2018b) and show good matching of the theoretical95

results with those evaluated experimentally.96

2. Governing Equations97

With reference to figure 1, consider an OWC device embedded in a hybrid98

wave-wind energy extraction system. Let us define a Cartesian reference99

system with the x and y-axes coincident with the undisturbed free-surface100

level and the z-axis pointing vertically upward. The concentric cylindrical101

structure of the OWC has inner radius equal to Ri, while the external radius102

corresponds to Re. The internal cylinder spans the entire water depth and103

is fixed with the horizontal bottom at z = −h. The external cylinder does104

not have constant draught in water but includes a skirt of height hs and105

corresponding arc-length Re (θ2 − θ1) with θ2 > θ1. The remaining part of106
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Figure 1: Three-dimensional representation and horizontal cross-section of the hybrid
wind-wave energy converter.

the external structure has draught equal to hc. The chamber is open at107

its base, while at the top an energy conversion system transforms the airflow108

through it in electricity (Falnes, 2002). Let us define the solid wetted surfaces109

of the OWC110

SRi
= {r = Ri, θ ∈ [ 0, 2π ) , z ∈ [−h, 0]} , (1)

SRe = {r = Re, θ ∈ [ 0, 2π ) , z ∈ [−hc, 0]}
∪ {r = Re, θ ∈ [θ1, θ2] , z ∈ [−hc − hs,−hc]} , (2)

and the fluid surface Sf representing the gap under the OWC,111

Sf = {r = Re, θ ∈ [ 0, 2π ) , z ∈ [−h, 0]} \ SRe , (3)

where r =
√
x2 + y2 represents the radial coordinate and θ is the angu-112

lar coordinate positive anticlockwise. Moreover, let us define the following113

surfaces114

Si = {r ∈ [Ri, Re] , θ ∈ [ 0, 2π ) , z = 0} , (4)
115

Se = {r ∈ [Re ,∞) , θ ∈ [ 0, 2π ) , z = 0} , (5)

where Si denotes the free surface inside the chamber, while Se is the external116

free surface in contact with air at constant atmospheric pressure. The fluid117
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is inviscid and incompressible, while the fluid flow can be assumed to be irro-118

tational. Then the governing equation for the velocity potential Φ (x, y, z, t)119

satisfies the Laplace equation in the fluid domain Ω (x, y, z). On the free120

surfaces Se and Si we have the linearised kinematic condition121

ζt = Φz, z = 0, (6)

and the linearised mixed boundary conditions (Mei et al., 2005)122

Φtt + gΦz = 0, on Se, (7)

Φtt + gΦz = −Pat
ρ
, on Si, (8)

where ζ represents the free-surface elevation, g is the acceleration due to123

gravity, Pa denotes the oscillating pressure of the air inside the chamber124

depending on time t and ρ is the water density. We further require tangential125

fluid velocity at the bottom and on the solid surfaces, hence126

Φn = 0, on solid boundaries, (9)

where n denotes the normal derivative to the relevant surface. The problem is127

forced by monochromatic incident waves of frequency ω, hence let us assume128

harmonic motion129

{Φ, ζ, Pa} = Re
{

(φ, η, pa) e
−iωt} , (10)

with i being the imaginary unit. We shall now write the Laplace equation130

and the boundary conditions (6)-(9) in terms of the spatial variables (φ, η, pa)131

only. Thus we get132

∇2φ = 0, in Ω, (11)

−iωη = φz, z = 0, (12)

−ω2φ+ gφz = 0, on Se, (13)

−ω2φ+ gφz = iω
pa
ρ
, on Si, (14)

φn = 0, on solid boundaries . (15)

Finally we require that the velocity potential φ be outgoing for r →∞.133
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Following the method of Evans and Porter (1997) we decompose the ve-134

locity potential in two parts, i.e.135

φ = φD + φR, (16)

where φD is the diffraction potential satisfying the boundary conditions (12)-136

(15) with pa = 0 and φR is the radiation potential that satisfies the same137

conditions with the unknown forcing pressure pa 6= 0. Let us decompose138

the fluid domain Ω by defining Ωi and Ωe, respectively, as the internal and139

external fluid subdomains:140

Ωi = {r ∈ (Ri, Re) , θ ∈ [ 0, 2π ) , z ∈ (−h, 0)} , (17)
141

Ωe = {r ∈ (Re,∞) , θ ∈ [ 0, 2π ) , z ∈ (−h, 0)} , (18)

and let φDi (φRi ) be the diffraction (radiation) potential in (r, θ, z) ∈ Ωi and142

φDe (φRe ) the diffraction (radiation) potentials in (r, θ, z) ∈ Ωe.143

The boundary value problem for the external velocity potentials φD,Re is144

∇2φD,Re = 0, in Ωe, (19)

−ω2φD,Re + gφD,Rez = 0, on Se, (20)

φD,Rer = 0, on SRe , (21)

φD,Rez = 0, z = −h (22)

φD,Re = φD,Ri , on Sf , (23)

φD,Rer = φD,Rir
, r = Re, (24)

where the conditions (23)-(24) represent respectively continuity of the po-145

tential (pressure) and of the velocity field between the external velocity po-146

tentials φD,Re and the internal velocity potentials φD,Ri . The boundary value147

problem for the internal velocity potentials φD,Ri is governed by148

∇2φD,Ri = 0, in Ωi, (25)

−ω2φDi + gφDiz = 0, on Si, (26)

−ω2φRi + gφRiz = iω
pa
ρ
, on Si, (27)

φD,Rir
= 0, on SRi

, (28)

φD,Rir
= 0, on SRe , (29)

φD,Riz
= 0, z = −h, (30)
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and the coupling matching conditions (23)-(24).149

In the following sections we solve the diffraction and radiation potential in150

Ωe and Ωi by integrating the matching conditions on the common boundaries.151

2.1. Diffraction potential solution152

Let us assume for simplicity incident waves with direction parallel to the153

x-axis and amplitude A. The generalized angles θ1 and θ2 can be properly154

modified in order to investigate the effects of oblique incident waves. For the155

sake of example, a skirt described by the angles θ1 = θ1 + α and θ2 = θ2 + α156

simulates the effects of incoming waves with angle of incidence π − α on the157

same OWC.158

Use of cylindrical coordinates yields the following general solution for the159

diffraction potential in (r, θ, z) ∈ Ωe160

φDe = − iAg

ω

∞∑
n=0

cosh k0 (h+ z)

cosh k0h

BDn0 sinnθH
(1)
n (k0r)

H
(1)
nr (k0r)

∣∣∣
r=Re

+ cosnθ

εninJn (k0r) +ADn0
H

(1)
n (k0r)

H
(1)
nr (k0r)

∣∣∣
r=Re


+

∞∑
l=1

(
ADnl cosnθ + BDnl sinnθ

)
Kn

(
klr
)

cosh kl (h+ z)

Knr

(
klr
)∣∣
r=Re

cosh klh

}
, (31)

while the diffraction potential in (r, θ, z) ∈ Ωi can be written as161

φDi = − iAg

ω

×
∞∑
n=0

{
cosh k0 (h+ z)

cosh k0h

{
cosnθ

[
CDn0

Jn (k0r)

Jnr (k0r)|r=Ri

+DDn0
Yn (k0r)

Ynr (k0r)|r=Ri

]
+ sinnθ

[
EDn0

Jn (k0r)

Jnr (k0r)|r=Ri

+ FDn0
Yn (k0r)

Ynr (k0r)|r=Ri

]}
+
∞∑
l=1

cosh kl (h+ z)

cosh klh

{
cosnθ

[
CDnl

In
(
klr
)

Inr

(
klr
)∣∣
r=Ri

+DDnl
Kn

(
klr
)

Knr

(
klr
)∣∣
r=Ri

]

+ sinnθ

[
EDnl

In
(
klr
)

Inr

(
klr
)∣∣
r=Ri

+ FDnl
Kn

(
klr
)

Knr

(
klr
)∣∣
r=Ri

]}}
. (32)
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In the latter expressions, A denotes the amplitude of the incident waves, εn162

is the Jacobi symbol defined as163

ε0 = 1, εn = 2 n = 1, . . . ,∞, (33)

the terms kl’s are the roots of the dispersion relation (Mei et al., 2005)164

ω2 = gk0 tanh k0h,

ω2 = −gkl tan klh, kl = ikl, l = 1, . . . ,∞

}
, (34)

Jn and Yn are the Bessel functions of order n, H
(1)
n is the Hankel function165

of the first kind and order n, In and Kn are the modified Bessel functions166

of order n and finally ADnl,BDnl, CDnl,DDnl, EDnl ,FDnl are complex constants yet167

unknown. The no-flux condition (28) yields168

CDnl = −DDnl, EDnl = −FDnl , (35)

thus expression (32) reads now169

φDi = − iAg

ω

∞∑
n=0

{
cosh k0 (h+ z)

cosh k0h

(
cosnθDDn0 + sinnθFDn0

)
Tn

+
∞∑
l=1

cosh kl (h+ z)

cosh klh

(
cosnθDDnl + sinnθFDnl

)
Unl

}
, (36)

where170

Tn =
Yn (k0r)

Ynr (k0r)|r=Ri

− J
(1)
n (k0r)

Jnr (k0r)|r=Ri

, Unl =
Kn

(
klr
)

Knr

(
klr
)∣∣
r=Ri

−
In
(
klr
)

Inr

(
klr
)∣∣
r=Ri

.

(37)
Substituting expressions (36) and (31) in the matching condition (24) and171

integrating over Sf ∪ SRe , gives172

εnin Jnr (k0r)|r=Re
+ADn0 = DDn0 Tnr |r=Re

, BDn0 = FDn0 Tnr |r=Re
, (38)

173

ADnl = DDnl Unlr |r=Re
, BDnl = FDnl Unlr |r=Re

. (39)
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The external diffraction potential can be written in terms of the coefficients174

DD and FD175

φDe = − iAg

ω

∞∑
n=0

cosh k0 (h+ z)

cosh k0h

cosnθ

εninJn (k0r) +
H

(1)
n (k0r)

H
(1)
nr (k0r)

∣∣∣
r=Re

×
(
DDn0 Tnr |r=Re

− εnin Jnr (k0r)|r=Re

)]
+ FDn0 Tnr |r=Re

sinnθH
(1)
n (k0r)

H
(1)
nr (k0r)

∣∣∣
r=Re


+
∞∑
l=1

cosh kl (h+ z)

cosh klh

Kn

(
klr
)

Knr

(
klr
)∣∣
r=Re

Unlr |r=Re

(
DDnl cosnθ + FDnl sinnθ

)}
.

(40)

For the sake of brevity, we introduce the following integrals for the vertical176

eigenfunctions177

I
(1)
sl =

∫ −hc−hs
−h

cosh kl (h+ z) cosh ks (h+ z)

cosh klh cosh ksh
dz, (41)

178

I
(2)
sl =

∫ −hc
−hc−hs

cosh kl (h+ z) cosh ks (h+ z)

cosh klh cosh ksh
dz, (42)

179

I
(3)
sl =

∫ 0

−hc

cosh kl (h+ z) cosh ks (h+ z)

cosh klh cosh ksh
dz, (43)

and the following integrals involving the angular eigenfunctions180

ccpn =

∫ θ1

θ2

cosnθ cos pθ dθ, sspn =

∫ θ1

θ2

sinnθ sin pθ dθ, (44)

181

scpn =

∫ θ1

θ2

sinnθ cos pθ dθ, cspn =

∫ θ1

θ2

cosnθ sin pθ dθ, (45)

whose values can be found straightforwardly.182
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Multiplying the condition (23) by cosh ks (h+ z) cos pθ/ cosh ksh and in-183

tegrating over the fluid surface Sf , yields184

4I
(1)
s0 εnin+1δpn

εpRe H
(1)
nr (k0r)

∣∣∣
r=Re

+
∞∑
m=0

2ccpmI
(2)
s0 εmim+1

Reπ H
(1)
mr (k0r)

∣∣∣
r=Re

=
2DDn0I

(1)
s0 δpnπτn
εp

+
∞∑
m=0

I
(2)
s0 τm

(
DDm0ccmn + FDm0scpm

)
+
∞∑
l=1

2DDnlI
(1)
sl δpnπγnl
εp

+
∞∑
m=0

∞∑
l=1

I
(2)
s0 γml

(
DDmlccpm + FDmlscpm

)
, s = 0, 1, . . . , p = 0, 1, . . . , (46)

where δpn is the Kronecker delta, while τm and γml have the following expres-185

sions186

τm = Tm|r=Re
−
H

(1)
m (k0r)

∣∣∣
r=Re

H
(1)
mr (k0r)

∣∣∣
r=Re

Tmr |r=Re
, (47)

187

γml = Uml|r=Re
−

Km

(
klr
)∣∣
r=Re

Kmr

(
klr
)∣∣
r=Re

Umlr |r=Re
. (48)

Multiplying again the condition (23) by cosh ks (h+ z) sin pθ/ cosh ksh and188

integrating over the fluid surface Sf gives now189

πFDn0I
(1)
s0 δpnτn +

∞∑
m=0

I
(2)
s0 τm

(
DDm0cspm + FDm0sspn

)
+
∞∑
l=1

πFDnlI
(1)
sl δpnγnl +

∞∑
m=0

∞∑
l=1

I
(2)
sl γml

(
DDmlcspm + FDmlsspm

)
= 0. (49)

An additional condition for the internal diffraction potential can be obtained190

by multiplying φDi,r = 0 respectively by cosh ks (h+ z) cos pθ/ cosh ksh and191

cosh ks (h+ z) sin pθ/ cosh ksh. Integrating over the relevant domain SRe192

gives us193

∞∑
l=1

2πDDnlI
(3)
sl δpn Unlr |r=Re

εp
+
∞∑
m=0

∞∑
l=1

I
(2)
sl Umlr |r=Re

(
DDmlccpm + FDmlscpm

)
+

2πδpnI
(3)
s0 DDn0 Tnr |r=Re

εp
+
∞∑
m=0

I
(2)
s0 Tmr |r=Re

(
DDm0ccpm + FDm0scpm

)
= 0,

(50)
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πδpnI
(3)
s0 FDn0 Tnr |r=Re

+
∞∑
m=0

I
(2)
s0 Tmr |r=Re

(
DDm0cspm + FDm0sspm

)
+
∞∑
l=1

πFDnlI
(3)
sl δpn Unlr |r=Re

+
∞∑
m=0

∞∑
l=1

I
(2)
sl Umlr |r=Re

(
DDmlcspm + FDmlsspm

)
= 0,

(51)

where cc, ss, cs, sc are defined as follows194

ccpn =

∫ θ2

θ1

cosnθ cos pθ dθ, sspn =

∫ θ2

θ1

sinnθ sin pθ dθ, (52)

195

scpn =

∫ θ2

θ1

sinnθ cos pθ dθ, cspn =

∫ θ2

θ1

cosnθ sin pθ dθ. (53)

Summation of (46) and (50) plus summation of (49) and (51) gives an196

inhomogeneous linear system in the unknown coefficients DD and FD. Once197

they are known, the coefficients AD and BD can be obtained through (38)-198

(39), while CD and ED are given by (35).199

2.2. Radiation potential solution200

The problem is linear, hence the radiation velocity potential outside and201

inside the OWC can be assumed proportional to the pressure acting on the202

free surface Si. The general solutions are similar to (31)-(32):203

φRe = − ipa
ρω

∞∑
n=0

cosh k0 (h+ z)

cosh k0h

H
(1)
n (k0r)

H
(1)
nr (k0r)

∣∣∣
r=Re

(
ARn0 cosnθ + BRn0 sinnθ

)

+
∞∑
l=1

cosh kl (h+ z)

cosh klh

Kn

(
klr
)

Knr

(
klr
)∣∣
r=Re

(
ARnl cosnθ + BRnl sinnθ

)}
, (54)

φRi = − ipa
ρω

∞∑
n=0

{
cosh k0 (h+ z)

cosh k0h
Tn
(
DRn0 cosnθ + FRn0 sinnθ

)
+
∞∑
l=1

cosh kl (h+ z)

cosh klh
Unl
(
DRnl cosnθ + FRnl sinnθ

)}
− ipa
ρω
, (55)
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except for the forcing term that takes into account for the pressure pa on Si.204

Continuity of the fluid velocity across the cylindrical surface r = Re yields205

ARn0 = DRn0 Tnr |r=Re
, BRn0 = FRn0 Tnr |r=Re

, (56)

206

ARnl = DRnl Unlr |r=Re
, BRnl = FRnl Unlr |r=Re

, (57)

while multiplying the condition (23) by cosh ks (h+ z) cos pθ/ cosh ksh and207

integrating over Sf gives208

− 2πδp0
sinh ks (h− hc − hs)

ks cosh ksh
− ccp0

sinh ks (h− hc)− sinh ks (h− hc − hs)
ks cosh ksh

=

2DRn0I
(1)
s0 δpnπτn
εp

+
∞∑
m=0

I
(2)
s0 τm

(
DRm0ccpm + FRm0scpm

)
+
∞∑
l=1

2DRnlI
(1)
sl δpnπγnl
εp

+
∞∑
m=0

∞∑
l=1

I
(2)
s0 γml

(
DRmlccpm + FRmlscpm

)
. (58)

Similarly, multiplying continuity condition (23) by cosh ks (h+ z) sin pθ/ cosh ksh209

and integrating over the surface Sf yields210

πFRn0I
(1)
s0 δpnτn +

∞∑
m=0

I
(2)
s0 τm

(
DRm0cspm + FRm0sspm

)
+
∞∑
m=0

∞∑
l=1

I
(2)
sl γml

(
DRmlcspm + FRmlsspm

)
+
∞∑
l=1

πFRnlI
(1)
sl δpnγnl

=
(cos pθ2 − cos pθ1) [sinh ks (h− hc)− sinh ks (h− hc − hs)]

pks cosh ksh
. (59)

Finally the condition φRir = 0 on SRe allows to obtain211

2πδpnI
(3)
s0 DRn0 Tnr |r=Re

εp
+
∞∑
m=0

I
(2)
s0 Tmr |r=Re

(
DRm0ccpm + FRm0scpm

)
+
∞∑
l=1

2πDRnlI
(3)
sl δpn Unlr |r=Re

εp
+
∞∑
m=0

∞∑
l=1

I
(2)
sl Umlr |r=Re

(
DRmlccpm + FRmlscpm

)
= 0,

(60)
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212

πδpnI
(3)
s0 FRn0 Tnr |r=Re

+
∞∑
m=0

I
(2)
s0 Tmr |r=Re

(
DRm0cspm + FRm0sspm

)
+
∞∑
l=1

πFRnlI
(3)
sl δpn Unlr |r=Re

+
∞∑
m=0

∞∑
l=1

I
(2)
sl Umlr |r=Re

(
DRmlcspm + FRmlsspm

)
= 0.

(61)

As in the case of the diffraction potential, summation of equation (58) and213

(60) and summation of (59) and (61) yield an inhomogeneous linear system214

in DR and FR. The remaining constants for the external velocity potential215

AR,BR can be evaluated by applying (56)-(57).216

3. Power extraction efficiency in regular waves and integral rela-217

tions218

Within the framework of a linear theory, the relation between the flux219

rate Q through the turbine and the air pressure inside the chamber Pa can220

be defined as follows (Martin-Rivas and Mei, 2009b)221

q =

(
KD

Nρa
− iωV0
c2aρa

)
pa, (62)

where K is an empirical coefficient depending on the turbine characteristics,222

D is the outer diameter of the turbine rotor, ρa the air density, V0 the volume223

of air in the chamber when η = 0, ca the speed of sound in air, while q224

represents the complex part of Q independent on time, i.e.225

Q = Re
{
qe−iωt

}
= Re

{
e−iωt

∫
Si

∂Φ

∂z
dSi

}
. (63)

The flux q can be further decomposed into radiation and diffraction compo-226

nents227

q = qD + qR, qD =

∫
Si

∂φDi
∂z

dSi = ΓA, qR =

∫
Si

∂φRi
∂z

dSi = − (B − iC) pa,

(64)
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with Γ being the complex exciting force, while the real quantities B and C228

represent respectively the radiation damping and the added mass due to the229

radiation wave field. The averaged power output over a wave period is230

P out =
KD

2Nρa
|pa|2 =

A2 |Γ|2KD

2Nρa

[(
KD
Nρa

+ B
)2

+
(
ωV0
c2aρa

+ C
)2] , (65)

hence the corresponding capture factor can be defined as the ratio between231

the generated power (65) and the energy influx of incident waves with am-232

plitude A per OWC width 2Re (Michele et al., 2016b)233

CF =
|Γ|2KD

2ρgReCgNρa

[(
KD
Nρa

+ B
)2

+
(
ωV0
c2aρa

+ C
)2] , (66)

where Cg is the group velocity (Mei et al., 2005). Maximum efficiency of234

the capture factor (66) can be achieved if both the resonance condition, i.e.235

(C − ωV0/c2aρa) = 0, and the identity B = KD/Nρa are satisfied. However,236

resonance is not always possible, mainly because of the difficulty in changing237

the structural parameter V0/c
2
aρa. In any case, if (C − ωV0/c2aρa) 6= 0, the238

optimal damping force exerted by the turbine can be chosen such that the239

derivative of CF (66) with respect to KD/Nρa is zero. This condition holds240

if241

KD

Nρa
=

√
B2 +

(
ωV0
c2aρa

+ C
)2

. (67)

Substitution of the latter expression in (66) yields the optimized capture242

factor CFopt243

CFopt =
|Γ|2

√
B2 +

(
ωV0
c2aρa

+ C
)2

2ρgReCg

(√B2 +
(
ωV0
c2aρa

+ C
)2

+ B

)2

+
(
ωV0
c2aρa

+ C
)2 . (68)

If also resonance occurs, expression (68) yields the the maximum value of the244

capture factor CFmax245

CFmax =
|Γ|2

8ρgReCgB
. (69)
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Note that in the case of axisymmetric bodies, i.e. without the skirt, the246

latter relation yields after some algebra247

CFmax =
1

2k0Re

, (70)

i.e. two times smaller than the maximum that can be reached by an oscil-248

lating flap-type wave surge converter in open sea having width equal to 2Re249

(Michele et al., 2016b). Now we derive several integral relations to perform a250

numerical check of the hydrodynamic quantities Γ and B. Applying Green’s251

theorem to φR and its complex conjugate over the entire fluid domain Ω252

yields253

1

ρω
Re

{∫
Si

p∗φRi dSi

}
= Re

{∫
S∞

−iφRe φ
R∗

e dS∞

}
, (71)

where (·)∗ denotes the complex conjugate of (·) and S∞ is a vertical cylinder254

of large radius r → ∞ and height h. The radiation potential φRe in the far255

field can be approximated by256

φRe ∼
A (θ)√
k0r

eik0r cosh k0 (h+ z) , (72)

in which A (θ) represents the angular variation of the radiated waves at large257

distances. From (54) we get258

A (θ) = − ipa
ρω cosh k0h

√
2

π

∞∑
n=0

e−i(π/4+nπ/2)
(
ARn0 cosnθ + BRn0 sinnθ

)
H

(1)
nr (k0r)

∣∣∣
r=Re

. (73)

Substitution of (64), (72) and (73) into the integrals (71) yields after some259

algebra260

B =
ρωC0

|pa|2
∫ 2π

0

|A (θ)|2 dθ

=
2D0

ρω cosh2 k0h

 2
∣∣AR00∣∣2

H
(1)
0r (k0r)

∣∣∣
r=Re

+
∞∑
n=1

∣∣ARn0∣∣2 +
∣∣BRn0∣∣2

H
(1)
nr (k0r)

∣∣∣
r=Re

 , (74)

where261

C0 =

∫ 0

−h
cosh2 k0 (h+ z) dz =

2k0h+ sinh 2k0h

4k0
. (75)
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Expression (74) relates the radiation damping and the amplitude of the radi-262

ated waves at large distances and can be used for numerical check purposes.263

Similarly, applying Green’s theorem to the radiation and diffraction velocity264

potentials gives265

ip

ρω

∫
Si

φDiz dSi = −
∫
S∞

(
φIφRer − φeφ

I
r

)
dS∞, (76)

where φI is the velocity potential of the incident waves with amplitude A266

and frequency ω directed along the x-axis267

φI = − iAg

ω

cosh k0 (h+ z)

cosh k0h
eik0r cos θ. (77)

By the method of the stationary phase, after a long but straightforward268

algebra we obtain269

Γ =
4gC0

ω cosh2 k0h

∞∑
n=0

ARn0e−inπ/2 cosnπ

H
(1)
nr (k0r)

∣∣∣
r=Re

. (78)

This is the Haskind-Hanaoka formula for the OWC in open sea and relates the270

exciting force Γ with the amplitude of the radiated waves in the direction271

opposite to the incoming waves θ = π. The latter relation is used in the272

next section to check numerical evaluations for the radiation and diffraction273

velocity potentials.274

3.1. Results and discussion275

In this section we examine the effects of the OWC geometry and tur-276

bine characteristics on the hydrodynamic behaviour and energy extraction277

efficiency. For the sake of example, let us consider the following fixed param-278

eters: A = 1 m, h = 10 m, ρ = 1000 kg m−3, ρa = 1 kg m−3 and ca = 340 m279

s−1. Since in the expressions for the velocity potentials (31)-(32)-(54)-(55)280

there are infinite terms, we need to truncate the summations up to a limiting281

value n = N and l = L for practical computations. In this work we use282

N = L = 100 to achieve a precision of 2 decimal places (Deng et al., 2013).283

3.1.1. Effects of the skirt height284

Here we examine the effects of the skirt height hs on the exciting force Γ,285

radiation damping B and added mass C. Let us fix the following parameters286
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Re = h/2, θ1 = 5π/4 rad, θ2 = 3π/4 rad and hc = 0.2 × h. The latter287

numerical values are the same adopted in Deng et al. (2013), thus we can288

perform several validations of our numerical results. As in Deng et al. (2013),289

let us define the non-dimensional hydrodynamic quantities290

Γ̃ = Γ

√
g/h

gh
, B̃ = B

ρ
√
g/h

g
, C̃ = C

ρ
√
g/h

g
, (79)

and take as a first case Ri = 0. Figures 2(a)-2(c) shows the behaviour of Γ̃,291

B̃ and C̃ versus the non-dimensional frequency of the incident waves ω2h/g292

for five different configurations. Each configuration has a specific value of293

the skirt height, that varies from h− hc to zero. The limiting value in which294

hs = h − hc, corresponds to the case of an OWC supported by a coaxial295

tube-sector-shaped structure analysed by Deng et al. (2013), while the case296

hs = 0 corresponds to the model developed by Evans and Porter (1997).297

Excellent agreement with the numerical results of Deng et al. (2013) (Fig. 4298

and Fig. 5, case d/h = 0.2) is obtained. This test validates the effectiveness299

of the method of solution adopted in this work for the novel device.300

As in Garrett (1970), Evans and Porter (1997) and Deng et al. (2013),301

resonant interactions of the heave and sloshing modes inside the chamber302

occur. This is the reason why each peak for each hydrodynamic parameter303

is localized at the same frequency. Since Ri = 0, the resonances appear ap-304

proximately at zeros of the Bessel function J ′n (k0Re) satisfying the boundary305

condition for the sloshing modes inside a vertical cylinder of radius Re and306

height h.307

Note that the OWC without the skirt does not excite the sloshing modes308

proportional to cos θ or sin θ. In this case, the first sloshing resonance satisfies309

the second zero of J ′0 (k0Re) which occurs for k0Re ' 3.831. Similar results310

are obtained in Evans and Porter (1997). On the contrary, if hs 6= 0, we311

obtain two additional peaks between the Helmholtz mode and the frequency312

corresponding to k0Re ' 3.831. These peaks are related to the firsts roots of313

J ′1 (k0Re) and J ′2 (k0Re).314

As the height hs increases, the first resonant peak of Γ̃, B̃ and C̃ related315

to the Helmholtz mode moves towards small frequencies. In particular, in316

the case of Γ̃ shown in figure 2(a), the first peak tends to become higher and317

sharper as well. On the other hand, the peaks related to the sloshing modes318

seem to be unaffected by hs.319

The optimal capture factor CFopt (68) is shown in figure 2(d). Within320

this range of ω, except for the case without the skirt, four modes are excited321
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Figure 2: The effects of the skirt height hs on the hydrodynamic behaviour. 2(a) non-

dimensional exciting force
∣∣∣Γ̃∣∣∣2, 2(b) non-dimensional radiation damping B̃, 2(c) non-

dimensional added mass C̃ and 2(d) optimal capture factor CFopt of each configuration
versus non-dimensional incident wave frequency ω2h/g.
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hence four maxima occur for CFopt. The same figure shows that the first322

resonant peak is the widest and sometimes, depending on hs, the largest.323

Values of CFopt can be larger than 1, i.e. larger than the maximum of a324

bi-dimensional absorber in a channel flume (Mei et al., 2005). Note that the325

most efficient configuration corresponds to the case of a skirt extending to326

the bottom. Next, let the internal radius be Ri = 0.75 × Re and evaluate327

Γ̃, B̃, C̃ and CFopt for the same configurations analysed before. Now the328

internal radius differs from zero, thus the resonant peaks are associated with329

the sloshing modes of an isolated annular cylinder with fluid occupying the330

volume Ωi. Since the general solution of the velocity potential includes both331

Jn and Yn the corresponding wave-number k0 for each sloshing mode must332

satisfy the following eigenvalue condition333

Jn (k0Ri)Yn (k0Re)− Jn (k0Re)Yn (k0Ri) = 0. (80)

Figure 3 shows that four peaks are present in the computed range of fre-334

quencies. Maxima of all the resonant peaks are almost unaffected, while the335

peaks corresponding to the sloshing modes tend to move towards smaller fre-336

quencies. Note also that the second and third peaks for CFopt increase their337

width, hence in this case the presence of an internal radius has benefits in338

terms of power extraction efficiency.339

3.1.2. Effects of the skirt opening340

Now we analyse the effects of the skirt opening θ2 − θ1 on the same341

hydrodynamic parameters analysed in the previous section Γ, B and C. Let342

the external radius be Re = h/2 and fix both skirt height hs = 0.5× (h− hc)343

and internal radius Ri = 0. Five skirt opening angles have been analysed,344

respectively described by θ1 = θ2 = π, θ1 = 5π/4 and θ2 = 3π/4, θ1 = 3π/2345

and θ2 = π/2, θ1 = 7π/4 and θ2 = π/4, θ1 = 2π and θ2 = 0 rad.346

Figure 4 shows the effects of the opening angle for different incident wave347

non-dimensional frequencies on the hydrodynamic parameters Γ, B and C348

and the optimal capture factor CFopt. As shown by figures 4(a)-4(c), when349

the opening increases, the Helmholtz mode resonant peaks decrease while350

the corresponding resonant frequencies increase. This is less visible for the351

sloshing modes whose position is almost unvaried. We shall point out that352

similar results are obtained by Deng et al. (2013) for a skirt extending from353

the OWC to the sea bottom.354

Figure 4(d) shows the behaviour of the optimal capture factor CFopt. The355

best configuration with larger and wider peaks corresponds to the symmetric356
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Figure 3: The effects of skirt height hs and internal radius Ri on the hydrodynamic be-

haviour. 3(a) non-dimensional exciting force
∣∣∣Γ̃∣∣∣2, 3(b) non-dimensional radiation damping

B̃, 3(c) non-dimensional added mass C̃ and 3(d) capture factor CFopt of each configuration
versus non-dimensional incident wave frequency ω2h/g. The value of the internal radius
corresponds to Ri = 0.75×Re.
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case θ1 = 3π/2 and θ2 = π/2 with opening angle equal to π rad. This357

result suggests that the skirt plays an important role on the power extraction358

efficiency, however one should take care of its effects on the OWC structural359

resistance that could penalise the overall behaviour and durability in real360

seas. Now we change the internal radius to Ri = 0.75 × Re. Figures 5(a)-361

5(d) show Γ̃, B̃, C̃ and CFopt versus ω2h/g. The same considerations of362

the previous section can be extended here, i.e. the maximum values of the363

resonant peaks almost preserve their values, while the peaks of the sloshing364

modes become wider.365

4. Power extraction efficiency in random waves366

In this section we investigate the effects of random waves on the generated367

power. Without loss of generality, we can adopt the JONSWAP spectrum368

Sζ to describe the incident wave field (Goda, 2000)369

Sζ(ω) =
αH2

s

ω

(ωp
ω

)4
exp

[
−1, 25

(ωp
ω

)4]
γexp[−(ω/ωp−1)2/(2σ)], (81)

in which Hs is the significant wave height, ωp denotes the peak frequency370

and371

α =
0.0624(1.094− 0.01915 ln γ)

0.23 + 0.0336γ − 0.185(1, 9 + γ)−1
, σ =

{
0.07 : ω ≤ ωp

0.09 : ω > ωp
, γ = 3.3.

(82)
Because of linearity, the pressure oscillation inside the OWC can be written372

as373

Pa (t, ωp) =
∞∑
n=1

√
2Sζ (ωn) ∆ωRAO (ωn) cos (ωnt+ δn) , (83)

where ωn is the nth component of the discretised spectrum, ∆ω is the fre-374

quency step, δn is a random phase related to ωn while the term RAO is the375

response amplitude operator for the air pressure pa, i.e.376

RAO (ωn) =

∣∣∣∣∣∣ Γ (ωn)(
KD
Nρa

+ B (ωn)
)
− i
(
ωnV0
c2aρa

+ C (ωn)
)
∣∣∣∣∣∣ . (84)
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Figure 4: The effects of the skirt opening θ2 − θ1. 4(a) non-dimensional exciting force∣∣∣Γ̃∣∣∣2, 4(b) non-dimensional radiation damping B̃, 4(c) non-dimensional added mass C̃ and

4(d) optimized capture factor CFopt of each configuration versus non-dimensional incident
wave frequency ω2h/g.
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Figure 5: The effects of the skirt opening θ2 − θ1 and internal radius Ri on the hydrody-

namic behaviour. 5(a) non-dimensional exciting force
∣∣∣Γ̃∣∣∣2, 5(b) non-dimensional radiation

damping B̃, 5(c) non-dimensional added mass C̃ and 5(d) optimized capture factor CFopt
of each configuration versus non-dimensional incident wave frequency ω2h/g. The value
of the internal radius corresponds to Ri = 0.75×Re.
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Then, the instantaneous generated power is377

Ps (t, ωp) =
KD

N

[
∞∑
n=1

√
2Sζ (ωn) ∆ωRAO (ωn) cos (ωnt+ δn)

]2

− V

c2a

∞∑
n=1

√
2Sζ (ωn) ∆ωRAO (ωn) cos (ωnt+ δn)

×
∞∑
n=1

√
2Sζ (ωn) ∆ωRAO (ωn)ωn sin (ωnt+ δn) . (85)

From the foregoing expression we obtain the averaged generated power (Michele378

et al., 2016b)379

P s (ωp) = lim
τ→∞

1

τ

∫ τ

0

Ps dt =
KD

N

∞∑
n=1

Sζ (ωn) ∆ωRAO2 (ωn) , (86)

whose expression in the limit ∆ω → 0 becomes380

P s (ωp) =
KD

N

∫ ∞
0

Sζ (ω) RAO2 (ω) dω. (87)

Defining Pζ as the total incident wave power per unit crest width381

Pζ (ωp) =

∫ ∞
0

ρgCg (ω)Sζ (ω) dω, (88)

the capture width ratio in random seas CFζ can then be written as382

CFζ (ωp) =
P̄s

2RePζ
. (89)

Let us compare a fixed configuration when excited by random and monochro-383

matic waves. Here we assume A = 1 m, h = 10 m, ρ = 1000 kg m−3, ρa = 1384

kg m−3, ca = 340 m s−1, the external radius Re = h/2 and two values of385

the internal radius, Ri = 0 and Ri = 0.75 × Re, respectively. Let us fix386

the optimal value of KD/Nρa that maximizes power extraction for the fixed387

frequency ω = 1 rad s −1 and assume the symmetric configuration θ1 = 3π/2388

and θ2 = π/2 rad maximizing power extraction efficiency. In other words, we389

have fixed both OWC geometry and turbine characteristics and optimized390
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them for a frequency representing the wave climate of a particular area.391

This situation can be of practical interest because of the difficulty in tuning392

the turbine speed/geometry with a wide range of incident wave frequencies393

(López et al., 2014).394

Figure 6(a) shows the behaviour of CFζ and CF for the case with null395

internal radius Ri = 0. The abscissa for CFζ refers to the peak frequency ωp396

of the JONSWAP spectrum, while the abscissa for CF refers to the frequency397

of the monochromatic incident waves. In both cases the maxima of CFζ398

are smaller than the resonant peaks of CF , while the system becomes more399

efficient outside the resonant frequencies. Furthermore, the narrow peak400

related to the resonance of the first sloshing mode decreases significantly401

and reduces to a small hump. This fact is consistent with the bad coupling402

between the incident wave spectrum and the natural modes characterized403

by small radiation damping. Similar results are obtained in the context of404

flap-type oscillating wave surge converters by Michele et al. (2016a), Michele405

et al. (2016b) and Sarkar et al. (2014).406

Figure 6(b) shows CFζ and CF respectively versus ωp and ω for the second407

configuration with Ri = 0.75×Re. As before, we optimize KD/Nρa for the408

fixed frequency ω = 1 rad s −1. Also in this case the maxima of CFζ are409

smaller than those of CF and the spreading effect of the spectrum is evident.410

Differently, in the case shown in figure 6(a) the sloshing mode has a significant411

contribution because of the small sharpness of the resonant peak in CF .412

5. Theoretical and experimental comparisons413

The damping force exerted by the turbine is usually modelled by an orifice414

above the OWC (Perez-Collazo et al., 2018b). In this case, in which an415

impulse turbine is used, the relation between the airflow Q through the orifice416

and the air pressure P inside the OWC chamber is quadratic (López et al.,417

2016), hence the linear relation used to model Wells turbines (62) fails and418

cannot be used here. Applying Bernoulli’s theorem in correspondence of the419

orifice cross section we obtain420

Pa = ρaC
2
q

Q |Q|
2Ωo

, (90)

where Cq ' 0.6 is the dimensionless coefficient of discharge depending on the421

orifice geometry and Ωo is the area of the orifice. Substitution of the latter422
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Figure 6: Comparison between the capture factor in random waves CFζ and the capture
factor for monochromatic incident waves CF respectively versus peak spectral frequency ωp
and incident frequency ω. Figure 6(a) refers to the configuration with null internal radius
Ri while figure 6(b) is related to the case with Ri = 0.75×Ri. The turbine characteristics
are optimized for the frequency ω = 1 rad s −1.

expression in the nonlinear mixed boundary condition on the free surface423

yields (Mei et al., 2005):424

Φtt+gΦz+|∇Φ|2t+
1

2
∇Φ·∇ |∇Φ|2 = −

ρaC
2
q

2ρΩ2
o

[∫
Si

Φz dSi

∣∣∣∣∫
Si

Φz dSi

∣∣∣∣]
t

, on Si.

(91)
Now, by introducing the following non-dimensional quantities denoted by425

primes (Michele et al., 2018, 2019a; Michele and Renzi, 2019; Sammarco et426

al., 1997a,b):427

(x′, y′, z′) = (x, y, z) /λ, Φ′ = Φ/ (Aωλ) , t′ = tω,

G = g/
(
ω2λ

)
, ε = A/λ, (92)

expression (91) becomes428

Φ′t′t′ +GΦ′z′ = ε |∇′Φ′|2t′ + ε2
1

2
∇′Φ′ · ∇′ |∇′Φ′|2

− ε
ρaC

2
q

2ρΩ2
o

[∫
Si

Φ′z′ dSi

∣∣∣∣∫
Si

Φ′z′ dSi

∣∣∣∣]
t′

, on Si, (93)

thus, if the wave steepness is small, i.e. ε� 1, and the ratio between the area429

Si and the area of the orifice Ωo is of order O (1/ε2), the nonlinear terms on430
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the right hand side of (93) become small and weak if compared to the linear431

part on the left hand side. Applying the standard perturbation expansion432

technique to the velocity potential433

Φ′ = Φ′1 + εΦ′2 + O
(
ε2
)
, (94)

gives the condition (93) homogeneous and unforced at the leading order O (1):434

Φ′1t′t′ +GΦ′1z′ = 0, on Si. (95)

If we now return in physical variables and assume both harmonic motion and435

incident waves at O (1), equation (95) becomes identical to the boundary436

condition on Si for φDi (26), hence the solution of the velocity potential Φ1437

corresponds to the diffraction velocity potential already found in Section 2.1.438

As a consequence, the air pressure inside the chamber at the leading order439

can be approximated by the following expression440

Pa = ρaC
2
q

Re
{
qDe−iωt

} ∣∣Re
{
qDe−iωt

}∣∣
2Ω2

o

. (96)

The latter expression yields the averaged rate of work done by the air pressure441

inside the chamber442

P out = 2ρaC
2
q

∣∣qD∣∣3
3πΩ2

o

, (97)

and the corresponding capture factor443

CFexp =
2ρaC

2
q

∣∣qD∣∣3
3πΩ2

oReA2ρgCg
. (98)

In order to validate the theory, comparisons are made with the experimental444

results of Perez-Collazo et al. (2018b). Channel flume and OWC character-445

istics are fixed and listed in Table 1.446

5.1. Monochromatic waves447

Figure 7 shows the values of the capture factor CFexp versus the wave448

period T in prototype values for both the analytical (expression (98)) and449

experimental model (see figure 10 in Perez-Collazo et al. (2018b)). In par-450

ticular, figure 7(a) and figure 7(b) refer to the different orifice diameters451

d0 = 0.015 m and d0 = 0.019 m, respectively. The amplitude of the incident452
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Table 1: Channel and OWC characteristics

Parameters Symbol Dimensions

Depth h 1 m
External radius Re 0.08 m
Internal radius Ri 0 m
OWC draft hc 0.076 m
Skirt height hs 0.04 m
Skirt angle 1 θ1 3π/2 rad
Skirt angle 2 θ2 π/2 rad

regular waves is A = 1 m. The agreement between both models is good at453

large periods, however, for the case shown in figure 7(a) the theoretical cap-454

ture factor is clearly overestimated when T ∈ [7, 8] s. This is a consequence455

of the Helmholtz-mode resonance around T = 5.5 s. In this range of periods,456

nonlinearities, viscous dissipation and effects due to vortex shedding at the457

lower edges (Xu et al., 2016; Xu and Huang, 2019) are not weak anymore458

and become important. Moreover, the smaller the value of d0, the greater459

the differences between the models. This is because the ratio Si/Ωo increases460

and strengthens the order of magnitude of the last term on the right-hand461

side of (93).462

5.2. Random waves463

In this section we analyse the amplitude response of the free surface el-464

evation inside the air chamber in irregular wave conditions. Within the465

framework of a linearised theory we can write the spectrum of the averaged466

amplitude response as (Michele et al., 2016a):467

Sη =

√
2 |η|2 Sζ∆ω, (99)

where η represents the averaged free-surface amplitude response inside the468

OWC chamber in monochromatic waves with A = 1 m.469

For the sake of example, let us consider the configuration with orifice470

diameter d0 = 0.015 m, significant wave height Hs = 3.5 m and peak period471

Tp = 13.3 s in prototype values (Series C07 in Perez-Collazo et al. (2018b)).472

Figure 8 shows the theoretical and experimental spectra of the averaged am-473

plitude response Sη versus the period Tn of each nth wave component. The474
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Figure 7: Behaviour of the capture factor CFexp versus incident wave period T in prototype
values for two orifice diameters. 7(a) d0 = 0.015 m, 7(b) d0 = 0.019 m. The solid line
indicates the analytical results given by expression (98), while the triangular markers
correspond to the experimental results of Perez-Collazo et al. (2018b).

theory predicts one peak around Tn = 5.5 s, while the experimental response475

spectrum tends to decay towards small periods. As in the case of regular476

waves, this discrepancy is due to the linearised theory that tends to overes-477

timate the amplitude response in resonance conditions. Indeed, the peak is478

located in correspondence of the Helmholtz pumping mode eigenfrequency.479

Beyond Tn = 5.5 s we stay in the range of validity of the scales (92) and good480

matching between theory and experiment is obtained.481

6. Conclusions482

We developed a linearised theory for a cylindrical OWC installed in hybrid483

wind-wave energy systems. The novel OWC model presented here has a skirt484

structure integral with the OWC whose task is to increase power extraction485

efficiency.486

We evaluated the dependence of the hydrodynamic quantities such as487

added inertia, radiation damping and exciting force on the incident wave fre-488

quency. Our results show that large resonant peaks occur in correspondence489

of the frequencies very close to the eigenfrequencies of a cylindrical tank hav-490

ing depth equal to h. Furthermore, we performed a numerical check of the491

latter quantities and therefore of the accuracy of the results by deriving some492

useful integral identities based on Green’s theorem.493
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Figure 8: Behaviour of the response amplitude spectrum Sη versus the nth wave com-
ponent period Tn in prototype values for Hs = 3.5 m and peak period Tp = 13.3 s.
The dashed line represents the analytical results given by (99), while the continuous line
corresponds to the spectrum of the time series obtained by Perez-Collazo et al. (2018b).

Then we investigated the effects of the skirt height and opening angle on494

the hydrodynamic behaviour and efficiency. We found that the greater the495

skirt height, the greater the efficiency when the Helmholtz pumping resonates496

while the narrow sloshing resonant peaks are almost unaffected and maintain497

their shape. This means that the sloshing dynamics depend mainly on the498

internal and external OWC radius. Indeed, we showed that when an internal499

cylinder is present, wide peaks on the capture factor behaviour can be ob-500

tained at large frequencies. Concerning the skirt opening angle, we obtained501

that the optimal configuration maximizing power extraction corresponds to502

the symmetric case θ1 = 2π/3; θ2 = π/2 rad.503

We also investigated the OWC response to random incident waves de-504

scribed by the JONSWAP spectrum. We showed that the presence of a505

broad range of wave frequencies does not couple well with the narrow res-506

onant peaks of some sloshing modes. This is less true for the broad band507

Helmholtz-mode at low frequencies. In this case we have large radiation508

damping and the resonant peak almost keeps its shape. Outside resonance509

the efficiency is larger or comparable to that for the monochromatic case and510

the benefits of random waves are evident. Similar results are already well511

known for flap-type OWSCs in open sea.512

Subsequently, we validated the analytical model with the experimental513
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set-up developed by Perez-Collazo et al. (2018b). First, we derived the non-514

linear boundary condition on the free surface inside the air chamber. This515

condition is completely generalised and therefore valid for any OWC labo-516

ratory model that uses orifices to simulate the presence of a turbine. We517

solved the problem by applying the perturbation expansion to the velocity518

potential and showed that the air pressure and the corresponding airflow519

through the orifice depend mainly on the diffraction potential at the leading520

order. We evaluated the corresponding theoretical capture factor and com-521

pared it with that obtained experimentally by Perez-Collazo et al. (2018b).522

Good agreement between both models was found especially for large incident523

wave periods and large orifice diameters. Finally, we compared theory and524

experiments by analysing the response spectra of the free-surface amplitude525

inside the OWC chamber in irregular waves. Good matching was obtained526

for frequencies not close to the resonant Helmholtz pumping mode.527
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