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Abstract

A mathematical model is developed to analyse the hydrodynamics of a novel
oscillating water column (OWC) in a hybrid wind-wave energy system. The
OWC has a coaxial cylindrical structure in which the internal cylinder rep-
resents the mono-pile of an offshore wind turbine while the external cylinder
has a skirt whose scope is to guide the wave energy flux inside the cham-
ber. This layout is not casual, but consistent with the current approach to
harnessing wave energy through hybrid systems. The device shape is rather
complex and the boundary value problem is solved by applying the matching-
method of eigenfunctions. Within the framework of a linearised theory, we
model the turbine damping effects by assuming the airflow to be proportional
to the air chamber pressure. Consequently, the velocity potential can be de-
composed into radiation and diffraction problems. We study the effects of
both skirt and internal radius dimensions on the power extraction efficiency
for monochromatic and random waves. We show that the skirt has strong
effects on the global behaviour, while the internal cylinder affects the values
of the sloshing eigenfrequencies. Finally, we validate the analytical model
with laboratory data and show a good agreement between analytical and
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experimental results.
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1. Introduction

The oscillating water column (OWC) is one of the most studied devices to
extract energy from water waves. For an extensive review concerning related
theories and experiments we refer to the works of McCormick (1981), Falnes
(2002), Babarit et al. (2012) and Babarit (2018). Substantially, the OWC
is a partially-immersed structure open at its bottom that confines air above
the internal fluid free-surface. Incident waves induce oscillations inside the
chamber, thus the airflow is forced to pass through a turbine usually located
at the top of the OWC. The turbine is coupled to a generator to produce
electricity. In this paper we perform a novel analysis of a coaxial cylindrical
OWC in a hybrid wind-wave energy system.

Analytical theories concerning immersed floating structures open at one
end have been applied in several contexts. One of the main contributions is
due to Garrett (1970), who examined cylindrical bottomless harbours. Other
authors such as Mavrakos (1985) analysed the effects of the wall thickness
of a floating cylindrical body on the diffracted wave field. Extension of
hydrodynamical theories to OWC devices includes the analysis of both bi-
dimensional (Evans, 1982; Sarmento and Falcao, 1985) and three-dimensional
configurations. For example, Evans and Porter (1997) were the first to solve
the case of a partially immersed cylindrical OWC in open sea by applying
the Galerkin method to integral equations.

Several recent studies consider the OWC to be installed in fixed structures
for coastal protection. This is mainly due to economical reasons and difficul-
ties in developing wave energy absorbers on their own. Concerning analytical
models for OWCs combined with external structures, Martin-Rivas and Mei
(2009a) and Martin-Rivas and Mei (2009b) solved the linearised problem
of an OWC at the tip of a breakwater and the case of an OWC installed
on a straight coast. More recently, Lovas et al. (2010) extended the theory
of Martin-Rivas and Mei (2009b) to examine the hydrodynamic wave field
when the OWC is installed in correspondence of convex or concave corners,
Deng et al. (2013) and Deng et al. (2014) took into account the presence
of a coaxial supporting structure to examine possible benefits on the energy
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conversion efficiency, while Zhou et al. (2018) solved the case of a concentric
axisymmetric OWC including an internal mono-pile. Wave-structure inter-
action in hybrid wave farms with OWC devices was investigated by Zheng
et al. (2018), while recently, breakwater-integrated OWCs were studied by
means of a semi-analytical model by Zheng et al. (2019).

Despite the large number of theories developed so far, the wave energy
sector is suffering from slow technological progress combined with difficulties
in attracting funds (Magagna and Uihlein, 2015). This is mainly due to
the large levelised cost of energy (LCOE) (Astariz et al., 2015, 2016). One
way to attract funds and confidence in industry is to combine both wind
and wave energy technologies. This is a recent research effort that aims to
develop a more sustainable and affordable device to extract clean energy
against fossil fuels. We refer to the work of Perez-Collazo et al. (2015) for an
extensive review of alternatives that combine wave and offshore wind energy
technologies.

Motivated by this recent technology concept, Perez-Collazo et al. (2018a)
and Perez-Collazo et al. (2018b) tested a 1:50 novel hybrid wind-wave system
that integrates a skirt, a cylindrical OWC and an offshore wind turbine on
a jacket frame structure. The Authors investigated experimentally the hy-
drodynamic response of the device to monochromatic and random waves for
different orifice diameters simulating different air turbines. Promising results
were obtained; however further analytical work is needed to understand the
influence of the device parameters on the global hydrodynamic behaviour of
the system.

For all these reasons, in this paper we develop a mathematical model for
the OWC designed by Perez-Collazo et al. (2018b) by adding a concentric
cylinder that represents a wind turbine installed on a mono-pile. This system
appears similar to the theoretical models already solved by the Authors pre-
viously mentioned. However, the skirt connected to the OWC removes any
axial symmetry and the boundary value problem increases in complexity.

Here we apply an eigenfunction expansion method and solve the corre-
sponding velocity potentials in terms of Bessel functions and modified Bessel
functions of the first and second kind, respectively (Linton and Mclver, 2001;
Mei et al., 2005). First, we analyse the case of monochromatic waves and
derive several integral relations based on the Green’s theorem which can be
useful to check the numerical computations of the radiation and diffraction
velocity potentials. Then we show that both the skirt and the internal cylin-
der play an important role in the power extraction and the sloshing dynamics
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inside the air chamber.

Next, we extend the theory to the case of random waves described by the
JONSWAP spectrum (Goda, 2000) and characterise the power extraction
efficiency by applying the superposition principle to the different incident
wave frequency components. We find that the resonant peaks related to
the Helmholtz and sloshing modes decrease in intensity with respect to the
monochromatic case, and that the the random waves have a broadening effect
on the capture factor curve. Interestingly, similar results were also found
in the context of oscillating wave surge converters (Michele et al., 2016a,b;
Sarkar et al., 2014).

Laboratory experimental models usually simulate the damping effects of
a turbine by means of an orifice of a certain diameter connecting the air
chamber with the atmosphere (Perez-Collazo et al., 2018b). In this case,
the air turbine is of the impulse type; therefore, a quadratic relation exists
between the airflow through the orifice and the pressure head between the
air chamber and the atmosphere, thus the boundary condition on the free
surface becomes nonlinear (Pereiras et al., 2015; Lépez et al., 2016, 2014).
We then non-dimensionalise the corresponding equation by using adequate
scales (Michele et al., 2018, 2019a; Michele and Renzi, 2019; Sammarco et
al., 1997a,b) and apply a perturbation technique to the velocity potential.
We show that if the ratio between the orifice and OWC diameter is not very
small, the air pressure inside the chamber and the corresponding airflow
through the orifice are governed by the diffraction potential at the leading
order. Finally, we compare our analytical model with the 1:50 scale model
in Perez-Collazo et al. (2018b) and show good matching of the theoretical
results with those evaluated experimentally.

2. Governing Equations

With reference to figure 1, consider an OWC device embedded in a hybrid
wave-wind energy extraction system. Let us define a Cartesian reference
system with the z and y-axes coincident with the undisturbed free-surface
level and the z-axis pointing vertically upward. The concentric cylindrical
structure of the OWC has inner radius equal to R;, while the external radius
corresponds to R.. The internal cylinder spans the entire water depth and
is fixed with the horizontal bottom at z = —h. The external cylinder does
not have constant draught in water but includes a skirt of height A, and
corresponding arc-length R, (6 — 01) with 63 > 6;. The remaining part of

4
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Figure 1: Three-dimensional representation and horizontal cross-section of the hybrid
wind-wave energy converter.

the external structure has draught equal to h.. The chamber is open at
its base, while at the top an energy conversion system transforms the airflow
through it in electricity (Falnes, 2002). Let us define the solid wetted surfaces
of the OWC

Sg, ={r=R;,0 €[0,21 ),z € [-h,0]}, (1)
Sgp.={r=R.,0€[0,21 ),z € [~h,0]}
U{r =R, 0€[bh,05],z € [—h.— hs,—h]}, (2)

and the fluid surface Sy representing the gap under the OWC,
Sy={r=R.,0€[0,2n ),z € [=h,0]}\ Sk, (3)

where r = /22 + y? represents the radial coordinate and 6 is the angu-
lar coordinate positive anticlockwise. Moreover, let us define the following
surfaces

S;i={re[Ri,R,,0€[0,2r),z2=0}, (4)
Se={re[R.,>),0e€[0,2r),z2=0}, (5)

where S; denotes the free surface inside the chamber, while S, is the external
free surface in contact with air at constant atmospheric pressure. The fluid

5
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is inviscid and incompressible, while the fluid flow can be assumed to be irro-
tational. Then the governing equation for the velocity potential ® (x,y, z,t)
satisfies the Laplace equation in the fluid domain 2 (z,y,z). On the free
surfaces S, and S; we have the linearised kinematic condition

=, z=0, (6)
and the linearised mixed boundary conditions (Mei et al., 2005)

q)tt + gq)z - 07 on S€7 (7>

at

P
Oy + 9P, = — , on.S;, (8)
p

where ( represents the free-surface elevation, ¢ is the acceleration due to
gravity, P, denotes the oscillating pressure of the air inside the chamber
depending on time ¢ and p is the water density. We further require tangential
fluid velocity at the bottom and on the solid surfaces, hence

®, =0, on solid boundaries, (9)

where n denotes the normal derivative to the relevant surface. The problem is
forced by monochromatic incident waves of frequency w, hence let us assume
harmonic motion

{®,(, P}t = Re{ ¢,1,Pa) € lwt} (10)

with i being the imaginary unit. We shall now write the Laplace equation
and the boundary conditions (6)-(9) in terms of the spatial variables (¢, 7, p,)
only. Thus we get

V3¢ =0, in 0, (11)

—iwn = ¢, z =0, (12)

—w*¢ +g¢, =0, on Se, (13)

—wp+ gp. = M& on S;, (14)
p

On =0, on solid boundaries . (15)

Finally we require that the velocity potential ¢ be outgoing for r — co.
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Following the method of Evans and Porter (1997) we decompose the ve-
locity potential in two parts, i.e.

6= ¢" + 0%, (16)

where ¢ is the diffraction potential satisfying the boundary conditions (12)-
(15) with p, = 0 and ¢ is the radiation potential that satisfies the same
conditions with the unknown forcing pressure p, # 0. Let us decompose
the fluid domain €2 by defining Q; and €)., respectively, as the internal and
external fluid subdomains:

Qy={re(R,R.),0€[0,21m),z€ (—h,0)}, (17)

Q. ={r € (Re,00),0€[0,2r ),z € (—h,0)}, (18)

and let ¢P (¢) be the diffraction (radiation) potential in (r,6,2) € €; and
P (o) the diffraction (radiation) potentials in (r,0,2) € Q.
The boundary value problem for the external velocity potentials ¢2% is

V2gPR =, in €., (19)
2o+ go "t =0, on Se, (20)
Q,R — 0, on Sg,, (21)

DR ), z=—h (22)

@PR = DR on Sy, (23)

g’,R _ @{?R’ r= R, (24)

where the conditions (23)-(24) represent respectively continuity of the po-
tential (pressure) and of the velocity field between the external velocity po-
tentials ¢2>f' and the internal velocity potentials (Z)ZD . The boundary value
problem for the internal velocity potentials gzﬁlp s governed by

V2Pt =, in Q, (25)
—w?¢r + gpP =0, on S;, (26)
—wW?oF + gcﬁi = iw%, on S;, (27)

gbg’R =0, on Sg,, (28)
gbg’R =0, on Sg., (29)
¢ =0, z=—h, (30)



1o and the coupling matching conditions (23)-(24).
150 In the following sections we solve the diffraction and radiation potential in
51 () and €2; by integrating the matching conditions on the common boundaries.

12 2.1. Diffraction potential solution

153 Let us assume for simplicity incident waves with direction parallel to the
s r-axis and amplitude A. The generalized angles 6; and 6, can be properly
155 modified in order to investigate the effects of oblique incident waves. For the
156 sake of example, a skirt described by the angles 0, =0, +aand 0y = 05 + «
157 simulates the effects of incoming waves with angle of incidence m — « on the
s same OWC.

159 Use of cylindrical coordinates yields the following general solution for the
o diffraction potential in (r, 0, 2) € Q.

o0

Z coshkg (h+2) ) psin nfHY (kor)
cosh koh n0 HT(LU (kor)

D

e

_idg
w

r=Re

HY (kor)

+cosnb | ei"J, (kor) + ALy +
HY (ko)
r=Re
i (Af?l cosnf + BD sin n@) K, (Eﬂ“) cosh k; (h + z) 31)
= K,, (Elr) ‘T:R cosh k;h 7

161 while the diffraction potential in (7,0, z) € Q; can be written as
iAg
o -

cosh ko (h + 2) p  JIn(kor) p Y (kor)
o|lC ———m——"t—+D
x Z { cosh ko {CO S [ no JnT (korr)|r R; no an (kor)‘r R;

. J (k’(ﬂ”) D Y (k?o?") ‘| }
4+ sin n9 gnD — ‘Fn P
|i 0 Jnr (/{707’)|r R; 0 an (kor>|7’ R;

N Z cosh k; (h + 2) {COS » [CT?Z - Z_(k:n“) Y Kn_(kzr) ]

~  coshkh kyr) ‘T:Ri nt K, (k) |r7R

+ sinnfd [5 Iﬁrﬂ + Fb Kn_(Elr) ] }} . (32)

(k’ﬂ’) ‘rzRi " K"T (]{Zﬂ“) ‘T:Ri
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In the latter expressions, A denotes the amplitude of the incident waves, €,
is the Jacobi symbol defined as

=1 €,=2 n=1,...,00, (33)
the terms k;’s are the roots of the dispersion relation (Mei et al., 2005)

w? = gko tanh koh,

, e _ , (34)
w” = —gktankh, k =ik, [(=1,...,0

J, and Y,, are the Bessel functions of order n, Hr(bl) is the Hankel function

of the first kind and order n, I, and K, are the modified Bessel functions

of order n and finally Aﬁ,Bﬁ,Cﬁ,Dﬁ,gg , FD are complex constants yet

unknown. The no-flux condition (28) yields

Cnl - Di;? gnl - fnl’ (35)
thus expression (32) reads now
iA h
PP = et Z {COSCO]Z%: +2) (cosndDLy + sinnbF.) Ty,
oh
hk; (h+ .
N Z coscoszh(klh z) (cosndD)) + sinnd.F.)) Z/Inl} : (36)
I=1
where
o Yalk) B (kor) . Ko (k) Lo (k)

Vo o) I o)’ 0 T, ()], Lo ()],
(37)
Substituting expressions (36) and (31) in the matching condition (24) and

integrating over Sy U Sg,, gives
Enin Jn'r (kor)|r:Re + A??O = D7’?0 7;7’7"|7":Re 9 B'I?O = ‘Fn% ,7;L7"|7":]{e 9 (38>

AZ = DT?Z unlr|r:Re ) Bﬁ = "F;g L{nlr |7‘:Re . (39>



s The external diffraction potential can be written in terms of the coefficients
175 DD and F D

iAg & h ko (h HY (k
p_ 179 Z cosh ko (h + 2) cosnb |e,i"J, (kor) + (kor)
cosh koh Hy(i) (kor)

n=
r=Re.

sinn@H" (kor)
;) (kor)

X (Dfo 7;lr|7’=Re — €nl" Jn, (k07)|r:Re)} + ]:7% 771r|r:Re

r=R.
00

N Z coshky (h+2) K, (ki)
— coshkh K, (Elr) |T:Re

Z/[nlr

r—R. (DL cosnb + FL sinnb) } .
(40)

e For the sake of brevity, we introduce the following integrals for the vertical
w7 eigenfunctions

IS) _ /_hc_hs coshk; (b + z) cosh kg (h + 2) dz, (41)

h cosh k;h cosh kqh

178

—he
hk; (h hk, (h
IS) _ / cosh k; (h + z) cosh ks (h + 2) dz, (49)
—he—hs cosh k;h cosh kgh
179
0 hk; (h+ z)cosh kg (h + 2)
ﬂaz/ cos T s d 43
st _he cosh k;h cosh kgh . (43)
1o and the following integrals involving the angular eigenfunctions
91 01
CCpn, = / cosnf cospf df, ss,, = / sin nf sin pd d, (44)
92 92
181
91 91
SCpn, = / sinnf cosph df, csp, = / cos nf sin pd dé, (45)
02 92

122 whose values can be found straightforwardly.

10



183 Multiplying the condition (23) by cosh ks (h + 2) cos pf/ cosh ksh and in-
1.+ tegrating over the fluid surface Sy, yields

4I§é)eni”+15pn i 2(:(31,,,1I£%))emim+1 B QD%IS))CSWWT,Z
¢,Re HYY (kor) w20 Romr HY (kor) €p

r=R.

r=Ile

DDI 2T Vn
+ Z IS0 T (DR ocCmn + Fhgscpm) + Z Opn ™Yl

+221807ml D cCom + FiosCpm) s §=0,1,..., p=0,1,..., (46)

m=0 [=1

185 where 0y, is the Kronecker delta, while 7,,, and ~,,; have the following expres-
186 sions

HY (kor)

H) (kor)

= T l—g, (47)
r=R.
K, (El"’) |T=Re
Ko, (ki) ,_p,

s Multiplying again the condition (23) by cosh kg (h + z) sin pf/ cosh ksh and
180 integrating over the fluid surface Sy gives now

Tm — 7_"rn|,r,:]%e -

187

Tml = uml|r:RE - Umlr|r:Re ’ <48>

n() sO OpnTn + E Iso Tm mocspm + £ osspn)

+ Z w.F, Sl OpnYri + Z Z Isl Vit (DhycSpm + FmySSpm ) = 0. (49)

m=0 [=1

10 An addltlonal condition for the internal diffraction potential can be obtained
o by multiplying ¢, = 0 respectively by cosh k, (h + z) cos pf/ cosh ksh and
102 cosh ks (h + z)sinpf/ cosh ksh.  Integrating over the relevant domain Sg,
103 gives us

20 DO 8, Ui,

z : nl*sl
€

+ Z Z 1(2) mlr r=Re (Dmlccpm + F, lSCpm)

=1 p m=0 I=1
2775pnIODD07; R, nd
+ 50 Dno el + D10 T b=, (Pro@om + FgSCpm) = 0,
. 318 ol (PR + )

(50)



194

195

196

197

198

200

201

202

7T5pn1g:())] ‘Fn% 7:W r=Re + Z 1(2) mr|r Re (,Dgoﬁpm + }—rgoﬁpm)

m=0
S AR5 U |+ 3 S 1D U | (D28 FOS) = 0.
=1 m=0 [=1
(51)
where €¢, 88, ¢S, SC are defined as follows
92 02
CCpp, = / cosnf cosph db, SS,, = / sin nf sin pf d6, (52)
91 91
92 92
SCpn, = / sinnf cosph df, TSy, = / cos nf sin pd db. (53)
01 01

Summation of (46) and (50) plus summation of (49) and (51) gives an
inhomogeneous linear system in the unknown coefficients D” and FP. Once
they are known, the coefficients A” and BP can be obtained through (38)-
(39), while CP and £P are given by (35).

2.2. Radiation potential solution

The problem is linear, hence the radiation velocity potential outside and
inside the OWC can be assumed proportional to the pressure acting on the
free surface S;. The general solutions are similar to (31)-(32):

. o (1)
R ipa Z coshko(h+2) Hy’ (kor)

cosh koh Hr(zl) (kor) (AnO cosnb + B, sinn )

o) cosh kl (h + Z) K, (EZT)
+ Z cosh l{ilh Knr (Eﬂ“) ’T‘:Re

(AL cosnf + B sinnb) } . (54)

oF = _Pa Z {COSh o (h + 2)7; (DL, cosnd + FL sinnb)

’ pw = cosh koh
2. cosh k; (h + 2) R ip,
_ D, 7 0) p — —
+ lz:; cosh ol Uy, (DL cosnb + Flsinn ) o (55)

12



204 except for the forcing term that takes into account for the pressure p, on S;.
205 Continuity of the fluid velocity across the cylindrical surface r = R, yields

“A’III%O = D’I-’FLEO 7:11“7‘:R5 ? B’I]}O = ‘Fé{o 7:7/7“7":R6 ) (56>
206
’A’V}jl = Drll%l z/{nlr|7‘=R5 ’ Bnl fnl nlr‘?":Re ’ (57)

207 while multiplying the condition (23) by cosh kg (h + 2) cos pd/ cosh ksh and
208 integrating over Sy gives
sinh ks (h — he — hy) sinh ks (h — h.) —sinh kg (h — he — hy)

o0 cosh Kk €Cpo k. cosh k.l

opR1Ws rr & 2DE1W G, 77,
n0~-s0 7p + Z Ig%)Tm (Dﬁoccpm + F Oscpm —|— Z O™

€
p m=0

+ Z Z Igo Yot (D cCom + Fscpm) - (58)

m=0 [=1

200 Similarly, multiplying continuity condition (23) by cosh k4 (h + 2) sin pf/ cosh ksh
20 and integrating over the surface Sy yields

TFab150 Gy + Z 150 T (Do + Frigsom)

+ Z Z IS)%U (Dﬁlcspm + F n}ElSSpm) + Z 7, wﬁlg)épn%l
=1

m=0 [=1

_ (cospby — cos pb) [sinh ks (b — h.) — sinh kg (h — he — hy)] (59)
N pk cosh ksh '

au Finally the condition ¢ff =0 on Sg, allows to obtain

R
27T(5pn180 Dy Ta | — R

€

2 _ _
Z I( )T, Tonely— R. Dﬁoccpm + fﬁoscpm)

p

onDRI®) s

Z nl=sl “pn u”lr r=Re + io: ilg) u

=1 m=0 [=1

R — R —
lrlr=R, (Dmlccpm + ‘lescpm) = O’

(60)

13
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219

220

221

222

223

224

225

226

227

7Tépnlso R T =R. +ZI(2) |z Re (Dﬁoﬁpm‘i‘frgoﬁpm)

+ Z W‘F;L{IIS) 613” unlr |7":R5 + Z Z IS) umlr |7“:Re (Dﬁlﬁpm + Fﬂilﬁpm) =0.
=1

m=0 [=1

(61)

As in the case of the diffraction potential, summation of equation (58) and
(60) and summation of (59) and (61) yield an inhomogeneous linear system
in D and F®. The remaining constants for the external velocity potential
AE B can be evaluated by applying (56)-(57).

3. Power extraction efficiency in regular waves and integral rela-
tions

Within the framework of a linear theory, the relation between the flux
rate () through the turbine and the air pressure inside the chamber P, can
be defined as follows (Martin-Rivas and Mei, 2009b)

KD iwV,
- - o 62
I (N Pa  C2pq > P (62)

where K is an empirical coefficient depending on the turbine characteristics,
D is the outer diameter of the turbine rotor, p, the air density, Vj the volume
of air in the chamber when n = 0, ¢, the speed of sound in air, while ¢
represents the complex part of () independent on time, i.e.

Q =Re{ge ™'} =Re {e_iwt g—(de } (63)

The flux ¢ can be further decomposed into radiation and diffraction compo-
nents

q=q" +q", qD—/a¢Z dS; = T'A, qR—/a(bZdS——(B—iC)pa,
S, 82 S; 82’
(64)

14
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with T being the complex exciting force, while the real quantities B and C
represent respectively the radiation damping and the added mass due to the
radiation wave field. The averaged power output over a wave period is

KD naf? = A2[TP KD
out — 2Npa Pa -

e [(§_£+B>2+ (4 +C)T o)

hence the corresponding capture factor can be defined as the ratio between
the generated power (65) and the energy influx of incident waves with am-
plitude A per OWC width 2R, (Michele et al., 2016b)

IT)* KD

Cr = 5
2pgR.CyNp, [(ﬁ—/ﬁ +B> + (on +C> }

, (66)

where C, is the group velocity (Mei et al., 2005). Maximum efficiency of
the capture factor (66) can be achieved if both the resonance condition, i.e.
(C —wVo/c2ps) = 0, and the identity B = KD/Np, are satisfied. However,
resonance is not always possible, mainly because of the difficulty in changing
the structural parameter Vy/c2p,. In any case, if (C —wVp/c2p,) # 0, the
optimal damping force exerted by the turbine can be chosen such that the
derivative of Cr (66) with respect to K D/Np, is zero. This condition holds

if
KD wV 2
_ 2
Now \/B + (Cgpa +C) : (67)
(

Substitution of the latter expression in

factor Cropt
I B+ (5 +)

Aty (\/B2 (ghre) + 5’>2 (g2 re)

If also resonance occurs, expression (68) yields the the maximum value of the
capture factor Crpaz

66) yields the optimized capture

(68)

C’Fopt =

e L\ (69)
Fmar — 8pgRngB
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Note that in the case of axisymmetric bodies, i.e. without the skirt, the
latter relation yields after some algebra

Crma = — (70)

Fmaxr — 2k0R€7

i.e. two times smaller than the maximum that can be reached by an oscil-
lating flap-type wave surge converter in open sea having width equal to 2R,
(Michele et al., 2016b). Now we derive several integral relations to perform a
numerical check of the hydrodynamic quantities I' and B. Applying Green’s
theorem to ¢ and its complex conjugate over the entire fluid domain €

yields
1 *
p—wRe {/S p*gbZR dSZ} = Re {/ _1¢5¢§ dSoo} ) (71)

where (-)* denotes the complex conjugate of (-) and S, is a vertical cylinder
of large radius r — oo and height h. The radiation potential ¢ in the far
field can be approximated by
A0) |
R ikor
~ ——=2e"" cosh kg (h + 2), 72
¢e \/W 0 ( ) ( )
in which A (0) represents the angular variation of the radiated waves at large
distances. From (54) we get

A() = — ipg 2 i ei(m/4tnm/2) (AL cos nf + BE sinnb) (73)
pw cosh koh \ m < A (kor) '

Substitution of (64), (72) and (73) into the integrals (71) yields after some
algebra

C 2
B:T: |2°/ A (0)] do

0
R 12 o | 4R |2 R 12
_ 2Dy 2 ’Aoo |“’4n0‘ + |Bn0
_ el s +) 0 , (74)
pw COS o Hp,” (kor) _ n=1 Hp,’ (kor) e
where 0 " -
2 inh 2
Co = / cosh® ko (b + z) dz = =2 —|—4sk1:n L (75)
—h 0
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Expression (74) relates the radiation damping and the amplitude of the radi-
ated waves at large distances and can be used for numerical check purposes.
Similarly, applying Green’s theorem to the radiation and diffraction velocity
potentials gives

1p D IR I
L] gPas, = - ~ 6o01) S,
v | enasi=— [ (of ~auel)as (76)

where ¢! is the velocity potential of the incident waves with amplitude A
and frequency w directed along the z-axis
iAg cosh ko (h + z)
w cosh kgh

¢I — eikor COSG. (77)

By the method of the stationary phase, after a long but straightforward
algebra we obtain

Fi

= 78
w cosh? kg o HS) (kor) (78)

49Cy i AR e=inm/2 cognr
; .

r=Re

This is the Haskind-Hanaoka formula for the OWC in open sea and relates the
exciting force I' with the amplitude of the radiated waves in the direction
opposite to the incoming waves 6§ = mw. The latter relation is used in the
next section to check numerical evaluations for the radiation and diffraction
velocity potentials.

3.1. Results and discussion

In this section we examine the effects of the OWC geometry and tur-
bine characteristics on the hydrodynamic behaviour and energy extraction
efficiency. For the sake of example, let us consider the following fixed param-
eters: A=1m, h=10m, p = 1000 kg m~3, p, = 1 kg m~2 and ¢, = 340 m
s71. Since in the expressions for the velocity potentials (31)-(32)-(54)-(55)
there are infinite terms, we need to truncate the summations up to a limiting
value n = N and [ = L for practical computations. In this work we use
N = L =100 to achieve a precision of 2 decimal places (Deng et al., 2013).

3.1.1. Effects of the skirt height

Here we examine the effects of the skirt height h, on the exciting force I,
radiation damping B and added mass C. Let us fix the following parameters
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R. = h/2, 0, = /4 rad, 05 = 37/4 rad and h. = 0.2 x h. The latter
numerical values are the same adopted in Deng et al. (2013), thus we can
perform several validations of our numerical results. As in Deng et al. (2013),
let us define the non-dimensional hydrodynamic quantities

f:r\/gih/_h B:B@ ézc@, (79)

Y Y

and take as a first case R; = 0. Figures 2(a)-2(c) shows the behaviour of T,
B and C versus the non-dimensional frequency of the incident waves w?h/g
for five different configurations. Each configuration has a specific value of
the skirt height, that varies from h — h. to zero. The limiting value in which
hs = h — h,, corresponds to the case of an OWC supported by a coaxial
tube-sector-shaped structure analysed by Deng et al. (2013), while the case
hs = 0 corresponds to the model developed by Evans and Porter (1997).
Excellent agreement with the numerical results of Deng et al. (2013) (Fig. 4
and Fig. 5, case d/h = 0.2) is obtained. This test validates the effectiveness
of the method of solution adopted in this work for the novel device.

As in Garrett (1970), Evans and Porter (1997) and Deng et al. (2013),
resonant interactions of the heave and sloshing modes inside the chamber
occur. This is the reason why each peak for each hydrodynamic parameter
is localized at the same frequency. Since R; = 0, the resonances appear ap-
proximately at zeros of the Bessel function J), (ko R.) satisfying the boundary
condition for the sloshing modes inside a vertical cylinder of radius R, and
height h.

Note that the OWC without the skirt does not excite the sloshing modes
proportional to cos § or sin 6. In this case, the first sloshing resonance satisfies
the second zero of Jj (koR.) which occurs for kgR. ~ 3.831. Similar results
are obtained in Evans and Porter (1997). On the contrary, if hy # 0, we
obtain two additional peaks between the Helmholtz mode and the frequency
corresponding to kg R, ~ 3.831. These peaks are related to the firsts roots of
J] (koR.) and J} (koR.).

As the height h increases, the first resonant peak of I, B and C related
to the Helmholtz mode moves towards small frequencies. In particular, in
the case of I shown in figure 2(a), the first peak tends to become higher and
sharper as well. On the other hand, the peaks related to the sloshing modes
seem to be unaffected by hs.

The optimal capture factor Cryy (68) is shown in figure 2(d). Within
this range of w, except for the case without the skirt, four modes are excited
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Figure 2: The effects of the skirt height hs on the hydrodynamic behaviour. 2(a) non-

dimensional exciting force

2(b) non-dimensional radiation damping B, 2(c) non-

dimensional added mass C and 2(d) optimal capture factor Crop: of each configuration
versus non-dimensional incident wave frequency w?h/g.
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hence four maxima occur for Cp,y. The same figure shows that the first
resonant peak is the widest and sometimes, depending on hg, the largest.
Values of Cpgp can be larger than 1, ie. larger than the maximum of a
bi-dimensional absorber in a channel flume (Mei et al., 2005). Note that the
most efficient configuration corresponds to the case of a skirt extending to
the bottom. Next, let the internal radius be R; = 0.75 x R, and evaluate
T, B, C and Crpopt for the same configurations analysed before. Now the
internal radius differs from zero, thus the resonant peaks are associated with
the sloshing modes of an isolated annular cylinder with fluid occupying the
volume €2;. Since the general solution of the velocity potential includes both
Jn, and Y,, the corresponding wave-number ky for each sloshing mode must
satisfy the following eigenvalue condition

Jn (koR;) Yo (KoRe) — Jn (KoRe) Ya (Ko R;) = 0. (80)

Figure 3 shows that four peaks are present in the computed range of fre-
quencies. Maxima of all the resonant peaks are almost unaffected, while the
peaks corresponding to the sloshing modes tend to move towards smaller fre-
quencies. Note also that the second and third peaks for Cp,,: increase their
width, hence in this case the presence of an internal radius has benefits in
terms of power extraction efficiency.

3.1.2. Elffects of the skirt opening

Now we analyse the effects of the skirt opening #, — #; on the same
hydrodynamic parameters analysed in the previous section I'; B and C. Let
the external radius be R, = h/2 and fix both skirt height hs = 0.5 x (h — h,)
and internal radius R; = 0. Five skirt opening angles have been analysed,
respectively described by 0; = 6, = 7, 6, = 57 /4 and 0y = 37/4, 6, = 37w /2
and 0y = 7/2, 0, = Tr/4 and 0, = w/4, 6, = 27 and 0, = 0 rad.

Figure 4 shows the effects of the opening angle for different incident wave
non-dimensional frequencies on the hydrodynamic parameters I, B and C
and the optimal capture factor Croy. As shown by figures 4(a)-4(c), when
the opening increases, the Helmholtz mode resonant peaks decrease while
the corresponding resonant frequencies increase. This is less visible for the
sloshing modes whose position is almost unvaried. We shall point out that
similar results are obtained by Deng et al. (2013) for a skirt extending from
the OWC to the sea bottom.

Figure 4(d) shows the behaviour of the optimal capture factor Cpp. The
best configuration with larger and wider peaks corresponds to the symmetric
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Figure 3: The effects of skirt height iy and internal radius R; on the hydrodynamic be-
12
haviour. 3(a) non-dimensional exciting force ‘1" , 3(b) non-dimensional radiation damping

B, 3(c) non-dimensional added mass C and 3(d) capture factor Cpop of each configuration
versus non-dimensional incident wave frequency w?h/g. The value of the internal radius

corresponds to R; = 0.75 X R..
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case 01 = 37/2 and 0, = 7/2 with opening angle equal to m rad. This
result suggests that the skirt plays an important role on the power extraction
efficiency, however one should take care of its effects on the OWC structural
resistance that could penalise the overall behaviour and durability in real
seas. Now we change the internal radius to R; = 0.75 x R.. Figures 5(a)-
5(d) show [, B, C and Cropt versus w?h/g. The same considerations of
the previous section can be extended here, i.e. the maximum values of the
resonant peaks almost preserve their values, while the peaks of the sloshing
modes become wider.

4. Power extraction efficiency in random waves

In this section we investigate the effects of random waves on the generated
power. Without loss of generality, we can adopt the JONSWAP spectrum
S¢ to describe the incident wave field (Goda, 2000)

Se(w) = aHSQ (—p) exp {—1, 25 (%)4] 'yeXp[_(”/wP_l)2/(2")], (81)

w w

in which H; is the significant wave height, w, denotes the peak frequency
and

_0.0624(1.094 — 0.019151n ) 007 w<w,
~0.23+0.03367 — 0.185(1,9 +~)~1" ~ 10.09 : w > w,

(82)
Because of linearity, the pressure oscillation inside the OWC can be written

as
w (t, wp) Z \/25¢ (wy) AwRAO (wy,) cos (wyt + 6,,) , (83)
n=1

where w,, is the nth component of the discretised spectrum, Aw is the fre-
quency step, J, is a random phase related to w, while the term RAO is the
response amplitude operator for the air pressure p,, i.e.

RAO (w,) = (84)

(ﬁ_/i 1B (wn>) <°;§jl +C (wn))
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Figure 4: The effects of the skirt opening #s — 6;. 4(a) non-dimensional exciting force

~ 12 ~ ~
‘F‘ , 4(b) non-dimensional radiation damping B, 4(c) non-dimensional added mass C and

4(d) optimized capture factor Cpop: of each configuration versus non-dimensional incident

wave frequency w?h/g.
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Figure 5: The effects of the skirt opening 3 — #; and internal radius R; on the hydrody-

2
namic behaviour. 5(a) non-dimensional exciting force ‘I‘ , 5(b) non-dimensional radiation

damping B, 5(c) non-dimensional added mass C and 5(d) optimized capture factor Cropt
of each configuration versus non-dimensional incident wave frequency w?h/g. The value
of the internal radius corresponds to R; = 0.75 X R..
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Then, the instantaneous generated power is

2
KD |
P (t,w,) = A [Z 1/ 25¢ (wn) AwRAO (wy,) cos (wyt + dy,)
n=1
V oo
— 22 /2S¢ (wn) AwRAO (wy,) cos (w,t + 6,)
@ n=1
X Z /2S¢ (wn) AwRAO (wy,) wy, sin (wpt + dy,) - (85)
n=1

From the foregoing expression we obtain the averaged generated power (Michele
et al., 2016D)

KD &

_ 1 [7
P, (wp) = lim — P, dt = Z Se (wn) AwRAO? (wn) (86)
n=1

=00 T g N

whose expression in the limit Aw — 0 becomes

KD [~
Py (wp) = T/ Se (w)RAO? (w) dw. (87)
0
Defining P as the total incident wave power per unit crest width

Pt = [ p9C,y @) 5c(w) do (58)
0
the capture width ratio in random seas Cp¢ can then be written as

P,
Cr¢ (wp) = 2R (89)

Let us compare a fixed configuration when excited by random and monochro-
matic waves. Here we assume A =1m, h = 10 m, p = 1000 kg m~3, p, = 1
kg m™3, ¢, = 340 m s~!, the external radius R, = h/2 and two values of
the internal radius, R; = 0 and R; = 0.75 x R,, respectively. Let us fix
the optimal value of KD /N p, that maximizes power extraction for the fixed
frequency w = 1 rad s ~! and assume the symmetric configuration 6; = 37 /2
and 0y = 7/2 rad maximizing power extraction efficiency. In other words, we
have fixed both OWC geometry and turbine characteristics and optimized
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them for a frequency representing the wave climate of a particular area.
This situation can be of practical interest because of the difficulty in tuning
the turbine speed/geometry with a wide range of incident wave frequencies
(Lépez et al., 2014).

Figure 6(a) shows the behaviour of Cr, and Cr for the case with null
internal radius R; = 0. The abscissa for Cr¢ refers to the peak frequency w,
of the JONSWAP spectrum, while the abscissa for Cr refers to the frequency
of the monochromatic incident waves. In both cases the maxima of Cg,
are smaller than the resonant peaks of Cr, while the system becomes more
efficient outside the resonant frequencies. Furthermore, the narrow peak
related to the resonance of the first sloshing mode decreases significantly
and reduces to a small hump. This fact is consistent with the bad coupling
between the incident wave spectrum and the natural modes characterized
by small radiation damping. Similar results are obtained in the context of
flap-type oscillating wave surge converters by Michele et al. (2016a), Michele
et al. (2016b) and Sarkar et al. (2014).

Figure 6(b) shows Cp¢ and C respectively versus w, and w for the second
configuration with R; = 0.75 x R.. As before, we optimize K D/Np, for the
fixed frequency w = 1 rad s ~*. Also in this case the maxima of Cp; are
smaller than those of Cr and the spreading effect of the spectrum is evident.
Differently, in the case shown in figure 6(a) the sloshing mode has a significant
contribution because of the small sharpness of the resonant peak in Cg.

5. Theoretical and experimental comparisons

The damping force exerted by the turbine is usually modelled by an orifice
above the OWC (Perez-Collazo et al., 2018b). In this case, in which an
impulse turbine is used, the relation between the airflow () through the orifice
and the air pressure P inside the OWC chamber is quadratic (Lépez et al.,
2016), hence the linear relation used to model Wells turbines (62) fails and
cannot be used here. Applying Bernoulli’s theorem in correspondence of the
orifice cross section we obtain

s (90)

Pa:pa

where C; ~ 0.6 is the dimensionless coefficient of discharge depending on the
orifice geometry and €, is the area of the orifice. Substitution of the latter
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Figure 6: Comparison between the capture factor in random waves C'r¢ and the capture
factor for monochromatic incident waves C'r respectively versus peak spectral frequency wy,
and incident frequency w. Figure 6(a) refers to the configuration with null internal radius
R; while figure 6(b) is related to the case with R; = 0.75 x R;. The turbine characteristics
are optimized for the frequency w = 1 rad s ~!.

expression in the nonlinear mixed boundary condition on the free surface
yields (Mei et al., 2005):

1 paC
o S; Si t
(91)

Now, by introducing the following non-dimensional quantities denoted by
primes (Michele et al., 2018, 2019a; Michele and Renzi, 2019; Sammarco et
al., 1997ab):

(@, ) = (x,y,2) /N, @ =]/ (AwN), ' =tw,

G =g/ (W), e=A/\ (92)
expression (91) becomes
D, + G, = €|V} + EZ%V’@’ V|V
pvaQ |:/ / / / }
QpQg Si Si ! ( )

thus, if the wave steepness is small, i.e. € < 1, and the ratio between the area
S; and the area of the orifice €, is of order O(1/€?), the nonlinear terms on
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the right hand side of (93) become small and weak if compared to the linear
part on the left hand side. Applying the standard perturbation expansion
technique to the velocity potential

P = @) +edy+ O (%), (94)
gives the condition (93) homogeneous and unforced at the leading order O (1):

®),, +GP, =0, onS; (95)
If we now return in physical variables and assume both harmonic motion and
incident waves at O (1), equation (95) becomes identical to the boundary
condition on S; for ¢P (26), hence the solution of the velocity potential ®,
corresponds to the diffraction velocity potential already found in Section 2.1.
As a consequence, the air pressure inside the chamber at the leading order
can be approximated by the following expression

Re {qDe—iwt} |Re {qDe—iwt} ‘
202 '

P, = pva2 (96>

The latter expression yields the averaged rate of work done by the air pressure
inside the chamber

- Vi
Pout = 2p,C; porE (97)
and the corresponding capture factor
2|,D|3
20.C; |q”| (98)

C exp — .
Ferr = 3n (2R, A?pgC,

In order to validate the theory, comparisons are made with the experimental
results of Perez-Collazo et al. (2018b). Channel flume and OWC character-
istics are fixed and listed in Table 1.

5.1. Monochromatic waves

Figure 7 shows the values of the capture factor Cp.,, versus the wave
period T' in prototype values for both the analytical (expression (98)) and
experimental model (see figure 10 in Perez-Collazo et al. (2018b)). In par-
ticular, figure 7(a) and figure 7(b) refer to the different orifice diameters
dy = 0.015 m and dy = 0.019 m, respectively. The amplitude of the incident
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Table 1: Channel and OWC characteristics

Parameters Symbol Dimensions
Depth h 1m
External radius R, 0.08 m
Internal radius R; 0 m

OWC draft he 0.076 m
Skirt height hs 0.04 m
Skirt angle 1 61 37 /2 rad
Skirt angle 2 ) /2 rad

regular waves is A = 1 m. The agreement between both models is good at
large periods, however, for the case shown in figure 7(a) the theoretical cap-
ture factor is clearly overestimated when T" € [7,8] s. This is a consequence
of the Helmholtz-mode resonance around 7' = 5.5 s. In this range of periods,
nonlinearities, viscous dissipation and effects due to vortex shedding at the
lower edges (Xu et al., 2016; Xu and Huang, 2019) are not weak anymore
and become important. Moreover, the smaller the value of dy, the greater
the differences between the models. This is because the ratio S; /€2, increases
and strengthens the order of magnitude of the last term on the right-hand
side of (93).

5.2. Random waves

In this section we analyse the amplitude response of the free surface el-
evation inside the air chamber in irregular wave conditions. Within the
framework of a linearised theory we can write the spectrum of the averaged
amplitude response as (Michele et al., 2016a):

Sy = /27> ScAw, (99)

where 7) represents the averaged free-surface amplitude response inside the
OWC chamber in monochromatic waves with A =1 m.

For the sake of example, let us consider the configuration with orifice
diameter dy = 0.015 m, significant wave height H, = 3.5 m and peak period
T, = 13.3 s in prototype values (Series C07 in Perez-Collazo et al. (2018b)).
Figure 8 shows the theoretical and experimental spectra of the averaged am-
plitude response Sy versus the period T;, of each nth wave component. The
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Figure 7: Behaviour of the capture factor C'reyyp versus incident wave period T in prototype
values for two orifice diameters. 7(a) do = 0.015 m, 7(b) dy = 0.019 m. The solid line
indicates the analytical results given by expression (98), while the triangular markers
correspond to the experimental results of Perez-Collazo et al. (2018b).

theory predicts one peak around 7,, = 5.5 s, while the experimental response
spectrum tends to decay towards small periods. As in the case of regular
waves, this discrepancy is due to the linearised theory that tends to overes-
timate the amplitude response in resonance conditions. Indeed, the peak is
located in correspondence of the Helmholtz pumping mode eigenfrequency.
Beyond T,, = 5.5 s we stay in the range of validity of the scales (92) and good
matching between theory and experiment is obtained.

6. Conclusions

We developed a linearised theory for a cylindrical OWC installed in hybrid
wind-wave energy systems. The novel OWC model presented here has a skirt
structure integral with the OWC whose task is to increase power extraction
efficiency.

We evaluated the dependence of the hydrodynamic quantities such as
added inertia, radiation damping and exciting force on the incident wave fre-
quency. Our results show that large resonant peaks occur in correspondence
of the frequencies very close to the eigenfrequencies of a cylindrical tank hav-
ing depth equal to h. Furthermore, we performed a numerical check of the
latter quantities and therefore of the accuracy of the results by deriving some
useful integral identities based on Green’s theorem.
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Figure 8: Behaviour of the response amplitude spectrum Sz versus the nth wave com-
ponent period 7), in prototype values for Hy; = 3.5 m and peak period 7T, = 13.3 s.
The dashed line represents the analytical results given by (99), while the continuous line
corresponds to the spectrum of the time series obtained by Perez-Collazo et al. (2018b).

Then we investigated the effects of the skirt height and opening angle on
the hydrodynamic behaviour and efficiency. We found that the greater the
skirt height, the greater the efficiency when the Helmholtz pumping resonates
while the narrow sloshing resonant peaks are almost unaffected and maintain
their shape. This means that the sloshing dynamics depend mainly on the
internal and external OWC radius. Indeed, we showed that when an internal
cylinder is present, wide peaks on the capture factor behaviour can be ob-
tained at large frequencies. Concerning the skirt opening angle, we obtained
that the optimal configuration maximizing power extraction corresponds to
the symmetric case ¢, = 27/3; 05 = 7/2 rad.

We also investigated the OWC response to random incident waves de-
scribed by the JONSWAP spectrum. We showed that the presence of a
broad range of wave frequencies does not couple well with the narrow res-
onant peaks of some sloshing modes. This is less true for the broad band
Helmholtz-mode at low frequencies. In this case we have large radiation
damping and the resonant peak almost keeps its shape. Outside resonance
the efficiency is larger or comparable to that for the monochromatic case and
the benefits of random waves are evident. Similar results are already well
known for flap-type OWSCs in open sea.

Subsequently, we validated the analytical model with the experimental
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set-up developed by Perez-Collazo et al. (2018b). First, we derived the non-
linear boundary condition on the free surface inside the air chamber. This
condition is completely generalised and therefore valid for any OWC labo-
ratory model that uses orifices to simulate the presence of a turbine. We
solved the problem by applying the perturbation expansion to the velocity
potential and showed that the air pressure and the corresponding airflow
through the orifice depend mainly on the diffraction potential at the leading
order. We evaluated the corresponding theoretical capture factor and com-
pared it with that obtained experimentally by Perez-Collazo et al. (2018b).
Good agreement between both models was found especially for large incident
wave periods and large orifice diameters. Finally, we compared theory and
experiments by analysing the response spectra of the free-surface amplitude
inside the OWC chamber in irregular waves. Good matching was obtained
for frequencies not close to the resonant Helmholtz pumping mode.
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