
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2023

Optimizing Flow Routing Using Network

Performance Analysis

AL-SAADI, MUNA

https://pearl.plymouth.ac.uk/handle/10026.1/20996

http://dx.doi.org/10.24382/5051

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it

is understood to recognise that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without the author's prior consent.

OPTIMIZING FLOW ROUTING USING NETWORK PERFORMANCE

ANALYSIS

by

MUNA AL-SAADI

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Engineering, Computing and Mathematics

June 2023

Acknowledgement

First of all, I would like to thank Allah Almighty for giving me health and the

ability to go on this long and difficult path to the end and complete it with patience

and wisdom to finish my PhD and perseverance in completing it satisfactorily. I thank

him very much for his countless blessings and without his help; this work would not

have been possible.

I would like to extend my heartfelt thanks to Director of Studies Dr. Asiya Khan

for her prompt and supportive guidance that inspired me with her passion and

willingness really to continue with this research. I would also like to extend my sincere

thanks to Dr. Vasilios Kelefouras, the second supervisor, for his assistance, patience,

and support throughout the duration of the study. I must also thank my third

supervisor, Dr. David Walker, who provided helpful and valuable advice throughout

my study.

I owe a debt of gratitude to my beloved sister (Bushra) and my brothers

(Deyaa), (Taha) and (Asaad) for their constant love, encouragement, and support.

Any success that can be achieved, with optimism, should help me make them proud

and happy.

 I should not forget to thank my family who has been supportive without any

hesitation, a big thank to all of them.

My infinite love and appreciation should go to my best friends as I wish the

potential success of this study would make up for some of what they missed.

I thank my colleagues in the College of Engineering, Computer and

Mathematics (College of Science and Engineering) for their encouragement and

friendship throughout the duration of the research.

Finally, I would like to express my honest thanks to the Republic of Iraq and in

particular, the Ministry of Higher Education and Scientific Research and the University

of Information and Communication Technology (UoITC) for granting me a scholarship

and sponsoring a PhD study.

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has

the Author been registered for any other University award without prior agreement

of the Doctoral College Quality Sub-Committee.

Work submitted for this research degree at the University of Plymouth has not

formed part of any other degree either at the University of Plymouth or at another

establishment.

This study was financed with the aid of a scholarship from the Ministry of Higher

Education and Scientific Research and the University of Information and

Communication Technology (UoITC) in the Republic of Iraq.

Relevant conferences were attended at which work was often presented and

several papers were published in the course of this project.

• Muna Al-Saadi, Bogdan V Ghita, Stavros Shiaeles, Panagiotis

Sarigiannidis. A novel approach for performance-based clustering and

management of network traffic flows, IWCMC, ©2019 IEEE.

• M. Al-Saadi, A. Khan, V. Kelefouras, D. J. Walker, and B. Al-Saadi:

Unsupervised Machine Learning-Based Elephant and Mice Flow

Identification, Computing Conference 2021.

• M. Al-Saadi, A. Khan, V. Kelefouras, D. J. Walker, and B. Al-Saadi: SDN-

Based Routing Framework for Elephant and Mice Flows Using

Unsupervised Machine Learning, Network, 3(1), pp.218-238, 2023.

Word count of main body of thesis: 37,561 words

Signed: Muna Yousif Saghir

Date: 14/06/2023

Abstract

Optimizing Flow Routing Using Network Performance Analysis

MUNA AL-SAADI

The main task of a network is to hold and transfer data between its nodes. To

achieve this task, the network needs to find the optimal route for data to travel by

employing a particular routing system. This system has a specific job that examines

each possible path for data and chooses the suitable one and transmit the data

packets where it needs to go as fast as possible. In addition, it contributes to enhance

the performance of network as optimal routing algorithm helps to run network

efficiently. The clear performance advantage that provides by routing procedures is

the faster data access. For example, the routing algorithm take a decision that

determine the best route based on the location where the data is stored and the

destination device that is asking for it. On the other hand, a network can handle many

types of traffic simultaneously, but it cannot exceed the bandwidth allowed as the

maximum data rate that the network can transmit. However, the overloading

problem are real and still exist. To avoid this problem, the network chooses the route

based on the available bandwidth space. One serious problem in the network is

network link congestion and disparate load caused by elephant flows. Through

forwarding elephant flows, network links will be congested with data packets causing

transmission collision, congestion network, and delay in transmission. Consequently,

there is not enough bandwidth for mice flows, which causes the problem of

transmission delay.

Traffic engineering (TE) is a network application that concerns with measuring

and managing network traffic and designing feasible routing mechanisms to guide

the traffic of the network for improving the utilization of network resources. The main

function of traffic engineering is finding an obvious route to achieve the bandwidth

requirements of the network consequently optimizing the network performance [1].

Routing optimization has a key role in traffic engineering by finding efficient routes

to achieve the desired performance of the network [2]. Furthermore, routing

optimization can be considered as one of the primary goals in the field of networks.

In particular, this goal is directly related to traffic engineering, as it is based on one

particular idea: to achieve that traffic is routed according to accurate traffic

requirements [3]. Therefore, we can say that traffic engineering is one of the

applications of multiple improvements to routing; routing can also be optimized

based on other factors (not just on traffic requirements). In addition, these traffic

requirements are variable depending on analyzed dataset that considered if it is data

or traffic control. In this regard, the logical central view of the Software Defined

Network (SDN) controller facilitates many aspects compared to traditional routing.

The main challenge in all network types is performance optimization, but the

situation is different in SDN because the technique is changed from distributed

approach to a centralized one. The characteristics of SDN such as centralized control

and programmability make the possibility of performing not only routing in

traditional distributed manner but also routing in centralized manner. The first

advantage of centralized routing using SDN is the existence of a path to exchange

information between the controller and infrastructure devices. Consequently, the

controller has the information for the entire network, flexible routing can be

achieved. The second advantage is related to dynamical control of routing due to the

capability of each device to change its configuration based on the controller

commands [4].

This thesis begins with a wide review of the importance of network

performance analysis and its role for understanding network behavior, and how it

contributes to improve the performance of the network. Furthermore, it clarifies the

existing solutions of network performance optimization using machine learning (ML)

techniques in traditional networks and SDN environment. In addition, it highlights

recent and ongoing studies of the problem of unfair use of network resources by a

particular flow (elephant flow) and the possible solutions to solve this problem.

Existing solutions are predominantly, flow routing-based and do not consider the

relationship between network performance analysis and flow characterization and

how to take advantage of it to optimize flow routing by finding the convenient path

for each type of flow. Therefore, attention is given to find a method that may describe

the flow based on network performance analysis and how to utilize this method for

managing network performance efficiently and find the possible integration for the

traffic controlling in SDN. To this purpose, characteristics of network flows is

identified as a mechanism which may give insight into the diversity in flow features

based on performance metrics and provide the possibility of traffic engineering

enhancement using SDN environment. Two different feature sets with respect to

network performance metrics are employed to characterize network traffic. Applying

unsupervised machine learning techniques including Principal Component Analysis

(PCA) and k-means cluster analysis to derive a traffic performance-based clustering

model. Afterward, thresholding-based flow identification paradigm has been built

using pre-defined parameters and thresholds. Finally, the resulting data clusters are

integrated within a unified SDN architectural solution, which improves network

management by finding the best flow routing based on the type of flow, to be

evaluated against a number of traffic data sources and different performance

experiments. The validation process of the novel framework performance has been

done by making a performance comparison between SDN-Ryu controller and the

proposed SDN-external application based on three factors: throughput, bandwidth,

and data transfer rate by conducting two experiments. Furthermore, the proposed

method has been validated by using different Data Centre Network (DCN) topologies

to demonstrate the effectiveness of the network traffic management solution. The

overall validation metrics shows real gains, the results show that 70% of the time, it

has high performance with different flows. The proposed routing SDN traffic-

engineering paradigm for a particular flow therefore, dynamically provisions network

resources among different flow types.

i

Contents

Abstract

Contents ... i

List of Figures .. v

List of Tables ... vii

Chapter One: Introduction .. 1

1.1 Introduction .. 1

1.2 Motivations .. 3

1.3 Research Aim and Objectives ... 4

1.4 Thesis Organization .. 5

Chapter Two: Network Performance and Traffic Engineering .. 8

2.1 Introduction .. 8

2.2 Network Traffic Analysis ... 10

2.2.1 Network traffic Characterization .. 13

2.2.1.1 Packet level Characterization ... 14

2.2.1.2 Flow level Characterization .. 14

2.2.2 Network Traffic Classification ... 15

2.2.2.1 Port-based methods ... 15

2.2.2.2 Payload Inspection-based Methods ... 16

2.2.2.3 Flow statistics-based methods ... 17

2.3 ML Classification Techniques .. 18

2.3.1 Supervised ML Classification Technique... 18

2.3.2 Unsupervised ML Classification Techniques ... 19

2.3.3 Deep learning Techniques .. 19

2.4 ML techniques Employments .. 20

2.4.1 Application-based ML Classification Techniques .. 21

2.4.2 User-based ML Classification Techniques .. 21

2.4.3 Security-based ML Classification Techniques ... 22

ii

2.5 Traffic Engineering Development and SDN .. 23

2.6 Software-Defined Networking (SDN) .. 24

2.6.1 SDN Architecture .. 25

2.6.2 Why SDN? ... 27

2.7 Literature Review ... 28

2.7.1 Investigation into Flow Analysis ... 29

2.7.2 Elephant and Mice flows identification .. 32

2.7.3 SDN- based flow routing optimization ... 33

2.8 Conclusion .. 37

Chapter Three: Investigation into Network Performance Analysis 39

3.1 Introduction .. 39

3.2 A Novel Approach for Network Performance Analysis ... 40

3.3 Proposed Methodology .. 41

3.3.1 Data Collection ... 41

3.3.2 Pre-processing and Feature Extraction .. 42

3.3.3 Feature Selection Model .. 43

3.3.4 Data reduction Model .. 44

3.3.5 Clustering traffic Model .. 46

3.3.5.1 Cluster Convergence ... 48

3.3.5.2 Cluster Profiling .. 48

3.4 Experimental Setup and Results ... 49

3.4.1 Data Reduction Implementation .. 50

3.4.2 Feature Selection Implementation ... 52

3.4.3 Clustering Implementation ... 53

3.4.3.1 Analysis of using K-means Clustering Only ... 54

3.4.3.2 Analysis of using K-means clustering with PCA... 55

3.5 Conclusion .. 56

Chapter Four: Traffic Analysis-based Flow Identification ... 57

4.1 Introduction .. 57

4.2 Flow Identification Methodology ... 58

iii

4.2.1 Flow characterization ... 59

4.2.2 Elephant and Mice Flows Identification ... 60

4.3 Experimental Set Up ... 61

4.3.1 The Description and Preprocessing Dataset ... 61

4.3.2 Data Reduction and Data Clustering .. 62

4.3.3 Extracting Flow Type (Elephant and Mice) ... 63

4.4 Results .. 64

4.5 Discussion ... 71

4.6 Conclusion .. 73

Chapter Five: SDN routing framework based on flow identification 74

5.1 Introduction .. 74

5.2 SDN-based Flow Routing Application ... 76

5.2.1 The Proposed Framework .. 77

5.2.2 Framework Implementation... 79

5.2.2.1 Routing rule setting .. 80

5.2.2.2 Cluster vector extraction .. 82

5.2.2.3 Latency and bandwidth measurement ... 83

5.3 Results and Analysis of Experiment .. 85

5.3.1 Experimental Design ... 85

5.3.1.1 Monitoring and Data Collection Phases ... 86

5.3.1.2 Pre-Processing and Feature metric Phase .. 88

5.3.1.3 Flow statistics-based Clustering Phase ... 90

5.3.1.4 Flow Type Identification Phase ... 91

5.3.1.5 Flow Type-based Path Selection Phase .. 91

5.3.1.6 Link-Cost Updating phase ... 92

5.3.2 Results and Evaluation ... 94

5.4 Conclusion .. 106

Chapter Six: Conclusions and Future work ... 108

6.1 Contributions to Knowledge ... 108

6.2 Research challenges ... 109

iv

6.3 Future Work Suggestions ... 111

6.4 Conclusions ... 112

References .. 114

Appendix-1 Table of Features .. 153

Appendix-2 List of publications .. 154

v

List of Figures

Figure 2.1 Traffic Engineering From Past To Future [Modified From[109]] 24

Figure 2.2 Simplified SDN Architecture [Modified From [122]] 26

Figure 3.1 The Proposed Scheme ... 41

Figure 3.2 The Proposed Methodology .. 41

Figure 3.3 Correlation of First 10 Variables ... 50

Figure 3.5 Percentages of Variance in Each Principal Component (Elbow Method) . 52

Figure 3.4 The Explained Variance Ratio and Cumulative Variance Percentage of the

Five Principal Components ... 52

Figure 4.1 Proposed Methodology .. 59

Figure 4.2 Correlation of the First Ten Network Performance Variables 65

Figure 4.3 Percentages of Variance in Each Principal Component 66

Figure 4.4 Relation between Accuracy and Number of PCA Components with

Incremental Number of Clusters .. 68

Figure 4.5 Distribution of Points in Clusters .. 69

Figure 4.6 Elephant and Mice Identification .. 70

Figure 4.7 The Confusion Matrix .. 71

Figure 5.1 Proposed Methodology .. 77

Figure 5.2 The Proposed Framework ... 79

Figure 5.3 Topology No.1 of Network .. 86

Figure 5.4 Topology No.2 of Network .. 86

Figure 5.5 Throughput of the Network during 300 Seconds 88

Figure 5.6 The Steps of Preprocessing Phase .. 90

Figure 5.7 Updating Link-Cost .. 93

Figure 5.8 Flowchart of Updating Cost of Link ... 94

Figure 5.9 An Example of Flow Path's in the Network Using Proposed Approach 97

Figure 5.10 Comparison between the Proposed Approach and RYU-Controller With

Respect To Throughput for Two Types of Flows .. 98

file:///C:/Users/myal-saadi/Desktop/revised%20chapters%20of%20thesis/revised_thessis_new.docx%23_Toc135269616
file:///C:/Users/myal-saadi/Desktop/revised%20chapters%20of%20thesis/revised_thessis_new.docx%23_Toc135269618
file:///C:/Users/myal-saadi/Desktop/revised%20chapters%20of%20thesis/revised_thessis_new.docx%23_Toc135269618

vi

Figure 5.11 Comparison between the Proposed Approach and RYU-Controller With

Respect To Throughput for Elephant Flow .. 99

Figure 5.12 Comparison between the Proposed Approach and RYU-Controller With

Respect To Throughput for Mice Flow ... 100

Figure 5.13 Comparison between the Bandwidth Used In the Proposed Approach and

RYU-Controller for Two Types of Flows ... 100

Figure 5.14 Comparison of Throughput between the Proposed Approach and RYU-

Controller for Two Types of Flows in Two Experiments .. 102

Figure 5.15 Comparison of Bandwidth Usage between the Proposed Approach and

RYU Controller for Two Types of Flows in Two Experiments 103

Figure 5.16 Comparison of Data Transfer Rate between the Proposed Approach and

RYU- Controller for Two Types of Flows in Two Experiments 103

Figure 5.17 Throughput Measurement in Experiment1 and Experiment2 104

Figure 5.18 Bandwidth Usage Measurement in Experiment1 and Experiment2 105

Figure 5.19 Data Transfer Rate Measurement in Experiment1 and Experiment2 .. 106

vii

List of Tables

Table 2.1 Comparison between Active and Passive Measurement 13

Table 3.1 Feature Set 2 ... 44

Table 3.2 Components and Their Associated Eigenvalues 51

Table 3.3 Accuracy of K-Means with Features Sets .. 54

Table 3.4 Accuracy of K-Means with PCA ... 55

Table 4.1 The First 13 PCA Components... 67

Table 5.1 the parameters setting for the SDN network simulation 87

Table 5.2 UDP packets generated during 300 seconds 87

Table 5.3 Traffic Routing Based On Flow Types ... 95

1

Chapter One: Introduction

1.1 Introduction

Network Performance is commonly specified by the speed of the network. It

controls the quality of the service (QoS) provided to the user. In order to make an

estimation of the network performance, it is essential to analyze its behavior. In that

way, the quality of the network link and the data transmission should be determined.

For this reason, there is a group of mechanisms pertaining to managing and insuring

that a network works at its best [5]. This is named Network Performance

Management (NPM). It includes finding a network operations strategy, procedures,

and policies to prevent, and resolve network performance problems. The

performance management of the network comprises improving the functions of the

network by maximizing its capacity, minimizing latency, and raising the reliability of

the network regardless of bandwidth availability and appearance of failure [6]. Many

functions of network performance management such as traffic measurement, traffic

modeling, planning, and network optimization have been used to insure the speed of

transit traffic, required capacity for transition, and high reliability that is expected by

the network applications. An efficient NPM needs to study the network traffic and

choose relevant performance metrics. This can be accomplished by analyzing the

performance metrics of each network component [7]such as Packet Loss, Latency,

and Throughput. To guarantee a good performance of any type of network, a detailed

analysis of the previous parameters is a crucial step.

In view of this, the analysis of network performance is the use of network data

to comprehensively understand trends in network performance. A network

performance analysis has benefits such as baseline establishment and understanding

the limits of the network performance. Further, By conducting the performance

analysis, the long-term problems or emerging issues of network performance can be

exposed [8]–[10].

2

The common types of network traffic analysis are traffic characterization and

traffic classification. Traffic characterization is related to identifying the network

services that are provided to the users such as web browsing, file transfer, sending

and receiving an email, etc. While application classification is interested in identifying

a specific application such as browser, a chat application, etc. [11].

Two major techniques of traffic characterization have been presented for traffic

analysis according to network [12]. The first technique is payload-based which needs

information about the packet or flow and the protocols. The second is a feature-

based technique, which depends on the patterns of network traffic and statistical

analysis of packets. Numerous of the statistical features related to the packets of flow

such as the size of the packet, number of packets, inter-arrival time, duration, and so

on, are gained by statistical analysis of packets. For traffic characterization, machine

learning (ML) techniques are utilized to make use of these features to classify

network traffic. Unsupervised machine learning is the common technique that

creates models to distinguish between patterns in the data without recourse to use

unlabeled training datasets [13].

In datacenter networks (DCNs), which are defined as high-performance

networks, the data flows can be categorized into elephant flows and mice flows based

on different features. Elephant flow is defined as a flow with a large volume, long

duration, and bandwidth-hungry in the network. In contrast, a flow with a small

volume, short life, and latency-sensitive is known as mice flow [14]–[16]. Elephant

flow exhausts the network resources like bandwidth and buffers, which leads to

throughput degradation and delays mice flow. Therefore, the differentiation

between elephant and mice flow needs to be taken into consideration to improve the

performance of the network [17].

Software-Defined Networking (SDN) as a recent network innovation has

contributed to improve the performance significantly. Despite the architecture of

SDN introducing more facilities into a network through its characteristics such as

3

centralized controlling and programmability, the above problem still exists [16].

Additionally, the challenges have increased in terms of network management and

traffic engineering with the ever increasing in data traffic. Therefore, it is necessary

to find an intelligent framework that can propose a strategy for identifying and

forwarding different types of flow [18].

Traffic engineering (TE) is the process that is associated with network traffic

measurement and management. Its main purpose is to design the logical mechanism

for directing traffic in a network, which can be used for improving the employment

of network resources and providing network quality of services (QoS) requirements

[19]. In other terms, the TE aims to optimize the utilization of resources and improve

network performance by diminishing congestion, energy consumption, latency or

delay, and packet loss [20][21]. Multipath routing is a TE approach that deals with

large flows by dividing the load over the available paths. However, the multipath

solutions do not distinguish the flow as elephant or mice and do not take into

consideration the delay of routes [19][22]. Therefore, an efficient TE multipath

routing solution according to flow types and delay of the route needs to be found.

The rest of the chapter is organized as follows. Section 1.2 presents the

motivations behind this project. Section 1.3 highlights the research aims and

objectives. The summary of this thesis is shown in Section 1.4.

1.2 Motivations

Nowadays, the need to find efficient network management has become

imperative because of the increasing complexity in the structure of the network. One

of the essential areas of network management is performance management. It

provides a comprehensive vision and actionable perception and allows proactive

handling of network performance issues. Consequently, analyzing and evaluating the

performance metrics of network infrastructure is a requirement of network

performance management. Moreover, the analysis of network performance is an

4

important aspect to understand the behavior of the network, where network data

can be used to define the network performance tendency. Traffic modeling has an

essential role in the network analysis phase and an accurate traffic modeling

enhances the understanding of complex network behavior and its properties [23].

Furthermore, in order to build an optimal model of network performance,

characterizing network traffic accurately is a critical issue. This is because there is a

possibility to identify traffic wrongly or the estimation of network performance was

unsound [24]. On the other hand, the essential portion in the network management,

which has a real effect on the network performance, is flow routing. The main

purpose of flow routing is to access required data as fast as possible, which is the

obvious advantage that the routing process can provide to improve the performance

of a network [2][3]. In DCN, inefficient routing of flows elephants and mice can cause

degradation of the performance of the network, where the imbalance in network

load leads to network congestion [25]–[28]. Therefore a differentiation between

elephant and mice flow has an important role to improve network performance [23],

[29]–[31]. Accordingly, an effective approach that successfully performs

characterizing, identifying, and routing of the flows need to be designed. This project

includes building a framework that consists of three models: The network

performance parameters-based characterization model that will be built leveraging

unsupervised machine learning (ML) algorithms, thresholding-based elephants and

mice flow identification model, and the developed Dijkstra algorithms-based routing

model. To promote the proposed method, SDN environment has been used for the

implementation of this project[32]–[34].

1.3 Research Aim and Objectives

In this research, the aim is to investigate and evaluate the application of

unsupervised ML in network traffic management and routing. Furthermore, the

research aims to develop a unified architectural flow routing solution that integrates

characterization and identification of flows with SDN to enhance the system of

5

network management by improving bandwidth utilization and reduce congestion

across the network. To achieve this aim, the research work has the objectives as

follows:

1. Undertake a fundamental review of the state-of-the-art in network

performance management and network performance analysis.

2. Investigate the procedures of traffic characterization and classification,

identification and routing of elephants and mice flow.

3. Propose a method for characterizing network traffic flows based on the

performance metrics of the network using unsupervised machine learning

techniques.

4. Design an automated method for identifying the characterized flows as

elephants and mice according to pre-decided thresholds using the

thresholding technique.

5. Design and develop a unified architectural framework to improve network

management by integrating unsupervised machine learning with the SDN.

6. Evaluate the effectiveness of the proposed framework by (i) Different data

sources of traffic. (ii) A comparison between the performance of the

proposed application and the SDN-Ryu controller.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 shows a comprehensive review of

the state of the art in network performance analysis, TE, and SDN. Chapter 3 presents

the experimental study of network performance analysis and traffic clustering. While

Chapter 4 introduces traffic analysis-based flow identification. The proposed traffic

management framework based on SDN is discussed in Chapter 5. Conclusions,

achievements, and limitations of the project will be clarified in Chapter 6. A brief

description of each chapter is summarized below.

6

Chapter 2 gives a background about network performance and all the issues

that affect the network performance level. In addition, the analysis of network

performance and approaches of traffic analysis were explained to determine the

appropriate characterization method for conducting the classification. Reviewing of

challenges and solutions for network performance was briefly introduced to find

useful information that would help to make the analysis process sufficient and to

avoid the uselessness of data. On the other hand, network traffic classification was

summarized to identify its general goal and to know how it is essential for QoS

control. Traffic engineering development was presented to explain the role of this

application to improve network resources employment and provide the

requirements of network quality of services (QoS). A brief background of SDN was

shown to clarify the impact of SDN deployment on the network architecture's

development. A literature review of flow Analysis investigation, elephant and Mice

flow identification, and SDN- based flow routing optimization were placed in this

chapter.

In Chapter 3, a scheme of unsupervised machine learning has been proposed

to investigate into network performance analysis. The k-means clustering algorithm

has been utilized for two purposes: the selection of features and the clustering

process. Two feature sets have been used to clarify the impact of the optimal

selection of feature sets on the clustering process. To improve the set of parameters

and reduce the dimension of the dataset as well as for handling the outliers and the

problem of variables correlation, the PCA analysis technique was applied.

Chapter 4 shows an innovative model design of network performance features-

based flow characterization and then identifies these flows as mice or elephants

based on these features. The model also proved the possibility of clustering network

traffic based on their performance attributes. Consequently, each cluster contains

identical flows regarding throughput, RTT, packet loss, etc. On the other hand,

identifying the flows as long-lived (elephant) and short-lived (mice), which comprises

7

90% of traffic on the network, is still challenging. As a result, the two identified types

of flows, which were characterized with respect to performance features, can be

utilized for optimizing systems of network management in the future and improving

the performance of networks by finding the best path for each flow. This in turn will

contribute to improving the QoS too. The scheme of identifying flows will be applied

as a primary stage in the next part of this project.

Chapter 5 introduces a novel framework for SDN- based flow routing. The

framework introduces a developed Dijkstra algorithm that selects the best route

based on flow type (elephant or mice) and takes advantage of the programmability

offered by SDN/OpenFlow. A recursive update of route costs is performed, which

provides more efficiency and enables consistency with real-time constraints.

Consequently, an efficient and more balanced network will be gained, and higher

throughput will be obtained.

Chapter 6 introduces the research conclusions, achievements, and limitations

of the project. Furthermore, future work is suggested in this chapter.

8

Chapter Two: Network Performance and Traffic Engineering

2.1 Introduction

The network performance aims to define the service quality offered by the

underlying network. One of the significant issues in networking field is network

performance monitoring. It is both a quantitative and qualitative process, and it

defines and measures the performance level. This process guides the administrators

of the network to measure and improve the network services. Furthermore, they

need to assess the performance of the network regularly to guarantee there are no

overloaded devices in the network, and they are capable to leverage monitoring

Measurements prior to congestion[35]. In other terms, the process of evaluating,

analysing, reporting, and tracking the performance of a network is known as network

monitoring. Its objective is to enable those concerned to follow the overall

performance and service quality of the underlying network through the analysis and

review of collective network statistics.

The performance of the network is measured by statistics and metrics drawn

from specific network components, namely:

▪ Network bandwidth or capacity: The network applies bandwidth meters to

limit the maximum Available data transfer to certain flows.

▪ Throughput: The amount of data that is successfully transmitted over the

network in a given time.

▪ Latency: measures the time it takes for data to reach its destination and

ultimately make a roundtrip.

▪ Packet loos: happens when one or more transmitted data packets fail to

reach at their intended destination.

Network technologies and computer systems have undergone rapid

development in the last few decades, therefore, the need to monitor, evaluate and

control network performance precisely has become essential and urgent [36].

9

Consequently, understanding the performance of the network is vital for those

concerned with networking because it helps to develop complex operations and

protocols of a network [37]. Furthermore, it is important to realize that the best

network performance is achieved through acquiring all the information with respect

to the behaviour of the network. Also, precise information is necessary for the

assessment, troubleshooting, and enhancement of the network to attain the

required performance level[38][39]. Beneficiaries of networks, whether they are

users or engineers, have tried to understand the metrics related to network

performance in order to determine the reasons for performance retraction for

optimization [40]. Because, the metrics of network performance depend on the

network’s conditions [41].

Network traffic is also called data traffic, which can be defined as the amount

of data moving across devices at a given time. In addition, it is fragmented into data

packets and sent through a network before being regathered by the receiving device.

Moreover, the characteristics of network traffic require a deep understanding to

obtain a comprehensive view of the possibilities for evaluation. It is important to

specify the requirements for the enhancement of network functionality and

infrastructure development [42]. Thus, it is necessary to discover the factors that

define network performance [36][41]. Network monitoring and management function

depends on an accurate characterization of network traffic, which is produced by diverse

applications and network protocols [43].

Accurate characterization of network traffic is significant for building optimal

models of network performance, and also for avoiding the possibility of inaccurate

traffic or wrong estimation of network performance [24]. Moreover, efficient

management of the network resources can be achieved by precise traffic analysis and

characterization [44]. Traffic classification is one of the approaches in traffic analysis

that aims to classify network traffic into predefined groups [25]. It is noteworthy that

a wide variety of machine learning methods are used to classify network traffic, using

10

statistical analysis. Different statistical features, regarding the flow (packets) like the

size of the packet, number of packets, inter-arrival time, duration, etc. are used by

ML [45][46].

From the aforementioned, it is clear that the use of traffic analysis seems to be

more efficient for network management. Using performance metrics can provide an

accurate characterization of flow with perfect identification for flow types providing

a more effective framework for flow routing. Therefore, as, to introduce an insight

into network performance management and network management, this chapter

explains the network performance analysis, flow characterization, identification of

flow types, traffic engineering, and SDN environment.

The rest of this chapter is organized as follows: Section 2.2 gives an overview of

network traffic analysis. Section 2.3 summarizes ML classification techniques and the

latest developed learning techniques, while the employment of these techniques is

presented in Section 2.4. Section 2.5 shows the development of TE. The background

of SDN is clarified in Section 2.6. Section 2.7 highlight a comprehensive literature

review of flow analysis research, modern studies for elephant and mice identification,

and the proposed mechanisms for flow routing optimization in the SDN environment.

Conclusions were drawn in Section 2.8

2.2 Network Traffic Analysis

Traffic analysis is the vital procedure that involves monitoring the network

activities, revealing particular patterns, and gathering useful information from

network data. One of the factors that has an important role in the stage of analysis is

traffic modelling; accurate modelling of traffic enhances the understanding of

sophisticated network behaviour and its features [37].

There are many types of tools for traffic modelling, such as analytic, testbed,

simulation, and operational analysis. Measurement and estimation of the real system

11

can also be provided by operational analysis. Analytic modelling tools have the

capacity to describe a model in terms of mathematical expressions such as using

Analytic modelling for decomposing the queuing system. Testbed is a platform

created for analysing the behaviour of the system under different conditions to get a

comprehensive image of it, for example, a testbed has been used to compare three

different control models for SDN routing [47].

The simulation tool is used to test the system without any effect on the real

system employing programming language for instance the simulation model was

developed to evaluate the initial experiments for transmitting messages, and those

that resulted from the reduction in quality of service [48].

Many network performance modelling and estimation tools have been

provided, but operational analysis can give a comprehensive overview of actual

performance, as well as a prediction of performance patterns [49]. This kind of tool

can be used when the monitoring of network performance is enabled by compatible

hardware and software equipment, which introduces substantial experimental

outcomes. Consequently, these tools provide the ability to get the information from

the real system whereas analysis of this information can give good insights into the

future of network behaviour. In addition, the results of the analysis play a significant

role in improving network performance [50].

The solutions to network performance problems require improved, effective

monitoring techniques and measurement of network performance which will be used

in operation and communication of network management [37][51][52]. Management

of the Network depends on network traffic analysis, which consequently depends on

monitoring and collected information, to take the required action on the network.

This action is taken according to measurements and metrics of network [53].

Measuring the parameters of network performance, which are packet loss,

delay, and the error rate, can be achieved by using two techniques, active or passive,

12

which provide a possibility to define the distribution of whole end-to-end losses and

delays between network parts as in Table 2.1. In addition, to packet losses and

retransmissions, there is an important performance parameter in client-server

communication, called the server response time. All of these parameters affect

network services, such as emails, transfer data files, web pages, and requests for

domain names from their servers [37]. The availability, loss and error, delay, and

bandwidth are four groups represented by the metrics that have the greatest effect

on the network performance, and are advantageous for estimating the level of

service offered for IP flow forwarded through the network [41]. The availability

metrics are used to estimate the amount of time that the network is operating

without any failure. Loss and error metrics measure the packet loss fraction, which is

caused by the overflow of buffer in a network, or other reasons, or bits error fraction,

or packets. In addition, they indicate the conditions of network congestion and/or

errors of transmission and/or malfunction of equipment. Delay metrics have been

used to define the conditions of network congestion or the changed routing

effectiveness.

The delay of the packets transferred by a network can be measured in two

ways: either a one-way delay or a round-trip time delay (RTT). Jitter, which is a

variation of delay, can be measured by these metrics. Finally, the metrics are used to

measure the amount of data that can be transferred through the network, in a unit

of time called bandwidth metrics. In addition to the network performance metrics

mentioned above, Central Processing Unit (CPU) load, memory depletion, and

hardware temperature in the network are often useful metrics that can explain the

reasons for the degradation of network performance. The process of monitoring may

perceive these metrics and register them as being significant to reveal the

degradation of service levels by their values or may prevent degradation by the

improvement of equipment. Furthermore, these metrics can represent the

monitoring of flow and routing groups [35].

13

In recent years, the growing number of users of the network has increased the

need to convert large files. The use of real video and the demand for multimedia

applications has also increased. All these requirements have led to a need for

increased network productivity, which in turn has increased network congestion.

Slow response time and slow file transfer are the results of congestion, and as a

result, the productivity of the network becomes lower for users. This problem can be

solved by efficient use of the bandwidth that is provided, or by increasing the network

bandwidth [36]. In general, the characterization of traffic is the first significant step

towards understanding and solving the problems related to network performance.

Table 2.1 Comparison between Active and Passive Measurement

Monitoring

method
Description Techniques

Resources

Requirements

Active

- Used to analyses network

performance in particular

aspects.

- Employed to calculate and

present a description of

network such as HTTP response

time, jitter, packet loss, etc.

File Transfer

 Packet Pair

Packet Train

CPU - Low

Memory – small data

Passive

- Produce a comprehensive view

of the performance of the

network.

- Employed to determine the

network component with the

highest consumption of

bandwidth.

Flow level

Packet level

CPU - high

Memory- large Data

2.2.1 Network traffic Characterization

This section clarifies two distinct methods for the characterization of network

traffic.

14

2.2.1.1 Packet level Characterization

In packet-level characterizations, traffic flows can be expressed in terms of

inter-packet time and packet size. This level of characterization can be used for

analysing network traffic. The main advantage of applying packet-level traffic

characterizations is to generate and simulate traffic that allows to measure and study

the parameters of the network [54]. Some of the problems can take advantage of a

finer granularity that is provided by packet-level. This method of analysis is

characterized by flexibility and conciseness. All the packet-level methods for

modelling and predicting are seeking to provide a mechanism that has the ability to

fast response to any rapid change in network conditions in a real-time. Indeed,

packet-level analysis can provide precise traffic characteristics, which might be not

provided by executing analysis in aggregated coarser-grain [55]. For example, packet-

level characterization can be used in the analysis of prediction to assess the

peculiarities of network traffic produced by mobile apps [56]. While the traffic

characteristics of network devices can be analyzed based on packet-level

characterization in order to give precise insights into the characteristics of the

operations and behavior of these devices. This can provide efficient security and

performance mechanisms for the network [57][58].

2.2.1.2 Flow level Characterization

 The evolution of the network is related to a comprehensive knowledge and

traffic characteristics understanding, which indicate the kind of deployed techniques

in order to perfectly match the requirements of the user and the constraints of the

network. Consequently, the development of monitoring-based tools, improvement

of technologies to collect network traffic information, and analysis of their

characteristics are currently essential topics for network engineering and research.

Flow level characterization is the second most popular approach to modelling

traffic. In this context, traffic flow is "a sequence of packets sent from a particular

source to a particular unicast, any cast, or multicast destination that the source

15

desires to label as a flow" as defined in RFC 3697. A further definition of a flow is

given by [59][60] who describes it as “a uni-directional traffic stream with a unique

<source-IP-address, source port, destination-IP-address, destination port, IP-

protocol> tuple”.

A flow record contains packet-level characteristics, which are found in the

header of every packet of the flow, and flow-level characteristics, which are

calculated depending on the collected values from all the packets in a flow. Average

packet size, flow data rate, and flow duration are good illustrations of flow-level

characteristics[61]. In contrast to packet-level data, flow-level data is used for

different network management functions. The enormous amount of flow data leads

to defying the scalability problems in the classification models that are used for

network traffic [62]. In recent years, state-of-the-art techniques use the flow

statistical features. Therefore, a valid selection of flow-traffic features is substantial

when applying flow-level analysis, which optimizes the traffic behavior

representation. On the other hand, the right selection of flow-level features is

necessary when data reduction is needed [63]. Moreover, by analyzing flow level

statistics, the classification of network traffic can be conducted [13][29][62].

2.2.2 Network Traffic Classification

The classification of network traffic has a general goal, which is network

performance improvement. Accurate classification of traffic is becoming increasingly

essential with many applications in network such as TE, security, and QoS. The

approaches for traffic classification proposed in both the academic literature and in

the practical field include:

2.2.2.1 Port-based methods

According to this method, the initial criteria to classify traffic were transport

protocol ports. Applications like P2P, for example, can use the ports of well-known

protocols to hide themselves dynamically. Similarly, some protocols, such as FTP

16

protocol, can assign ports depending on the load of traffic. This is considered to be

one of the disadvantages of the port-based method. The method is described as rapid

and utilizing low consumption of resources. It is supported by numerous network

devices and does not use the payload of the application layer, so it has no impact on

the users' privacy [42]. It is used by applications and services that employ fixed port

numbers. Since the port number in the system can be changed, therefore, it

facilitates fraud [64]. Moreover, this method has few restrictions. Firstly, applications

for ports, for example, p2p applications, may not be registered with the Internet

Assigned Numbers Authority (IANA). An application may use well-known ports to

avoid access control restrictions of the operating system. In addition, some server

ports are allocated dynamically, as desirable. For example, a Real Video broadcast

device allows dynamic negotiation of the server port used to transfer data. This server

port is negotiated on the initial TCP connection, which was created using the known

Real Video control port. It has been found that the accuracy of port-based

classification using the official IANA list was no better than 70% [65], or 30% to 70%

[66] or only 30% of the total traffic [67]. In some cases, IP layer encryption may cause

TCP or UDP header confusion, which makes it impossible to know the physical port

numbers.

2.2.2.2 Payload Inspection-based Methods

To evade total dependence on port number indications, many existing industry

products use formal session reconstruction and application information from the

content of each packet. At present, the most common methods of traffic

classification are based on payload inspection, owing to its comparatively high

precision. Because of the use of deep inspection of packets, violation of the privacy

of user data and the amount of data that is processed are the main drawbacks of this

approach. Moreover, the classification based on this method cannot be applied to

encrypted data [42]. Although it avoids dependency on fixed port numbers, payload

inspection [40] imposes significant complications and processing load on the traffic-

17

identification device. Extensive up to date knowledge of application protocol

semantics is necessary for the payload-based inspection. In addition, it must have

sufficient power to perform the analysis of a potentially large number of flows

concurrently. Encrypted traffic and private protocols have made the aim of this

method difficult or impossible to achieve. Furthermore, because its inspection

depends on the content of the application layer, the method may infringe on the

relevant privacy policies. For example, examining the factual packet payload, using a

deep packet inspection, detect the services and applications in any case of port

number. Therefore, this method lacks support for several applications, such as Skype.

In addition, it is lazy, needs a lot of power for processing, and signatures must be up

to date.

2.2.2.3 Flow statistics-based methods

Current modern methods tend to classify network traffic on the basis of the

statistical characteristics of the flow. They perform the classification by analyzing the

level of statistical flow. Statistical classification-based methods depend on analysis of

characteristics such as frequencies of byte, packet inter-arrival times, and size of the

packet. An alternative to payload inspection methods, the classification of traffic

based on flow traces could be used [42]. In these techniques, statistical features of

network flows are collected from the headers of packets. The underlying assumption

of such approaches is that in the network layer, the traffic has statistical features

(e.g., duration of flow, idle time of flow, packet inter-arrival time, and length of

packet). These features are unique to particular classes of applications and enable

the use of the diverse source applications to be distinct from each other. In [68] and

[69], a relation between the traffic classes and their observed statistical

characteristics was noticed, where the experimental models of connection

properties, such as duration, bytes, and arrival time for a number of particular TCP

applications were built and analyzed [68]–[70]. In this work, flow statistics-based

techniques will be used because the art of states proves that this method

18

manipulates all the problems of previous methods, which are port-based and

payload-based.

2.3 ML Classification Techniques

Machine learning (ML) is known historically as a set of powerful techniques for

data extraction and the discovery of knowledge. Machine learning is the capability of

a machine to learn automatically from experiments, to edify, and to perfect its base

of knowledge [71]. Learning refers to the adaptability of the system to changes,

whereby it can perform the same tasks more efficiently and effectively the next time

[70][72]. There is a wide range of ML applications, such as, medical diagnosis, text

and handwriting recognition, search engines, and image screening. In 1990, the

control of network traffic using ML techniques was proposed, with the aim of

maximizing the completion of the call on a communications network with a switch

circuit [70]. This was one of the highlights of the expansion of ML in its

communications network applications. In addition, in 1994 ML was first used to

classify internet flow in the context of intrusion detection [70]. On the other hand,

the reasons behind the use of ML technologies in this area are imperative to transact

with the types of traffic, different datasets, and the flow, which is the

multidimensional spaces and properties of packets. There are two learning

techniques in machine learning, supervised and unsupervised. The techniques affect

the data collection, attributes engineering, and creating ground truth.

2.3.1 Supervised ML Classification Technique

Supervised ML is used to “learn” to identify behavior in the “known” training

dataset. This method is applied to overcome the problems of classification and

regression that are related to predicting continuous or discrete outcomes. It ensures

highly precise results in trained applications [43]. The supervised learning technique

concentrates on modelling the relationships between input and output. Its objective

19

is to define a mapping from input parameters to output classes. The knowledge learnt

can be displayed as a decision tree, classification rules, etc., that will be then utilized

to classify unknown instances. This technique creates models by using labelled data.

In supervised learning, there are two major stages (steps):

• Training: It is called the learning stage that examines the input data and

creates or builds a model for classification.

• Testing (also known as classifying): It is called the classifying stage that uses

the model, which has been created in the training stage, to classify new instances.

2.3.2 Unsupervised ML Classification Techniques

Unsupervised learning creates models that can distinguish between patterns in

the data without recourse to use labelled training datasets [13]. Clustering defines an

unsupervised technique of machines learning which leads to portioning a given

dataset into meaningful subclasses so that members in a subclass are similar to one

another and are different from the members in other subclasses. These subclasses

form clusters. There are two basic clustering methods: the classic Partition clustering

such as K-means algorithm; and hierarchical clustering that builds the clusters by

recursively partitioning the instances. K-Means is one of the widespread simplest and

fast "clustering" approaches that store particular pre-elected k centers. It is utilized

to create clusters randomly based on the similarity between all input members [73].

2.3.3 Deep learning Techniques

Deep learning (DL) is a group of techniques that merge between machine

learning (ML) and artificial intelligence (AI)[74]. Due to its capability to learn is

become a popular topic in the networking context is widely utilized in different

applications such as intrusion detection, traffic analysis, and classification, etc.

[10][75][76]. To build a DL model, the same processing strategy of ML will be followed

such as understanding and preprocessing data, building a model, training, and

20

validating machine learning will be followed. However, designing an efficient model

of DL is a challenge because of that the problems and data are variate and have

dynamic nature in a real-world [77]. Based on the literature, deep learning is also

defined as "deep structured learning", "hierarchical learning", "deep feature

learning", and "deep representation learning" [78]. Accordingly, the deep

architectures can be categorized based on their use into three types, called,

"generative", "discriminative", and "hybrid deep architectures". The work concept of

generative deep structures is high-order correlation properties characterization of

the input data for compilation, while a discriminative architecture aims to classify

patterns. Compared with the previous two types, hybrid structures works on carrying

out discrimination processes by the optimized outcomes obtained from the

generative structure [79].

Recently, the availability of data on traffic flows and their related labels has

made the classification problem of protocol efficiently solved by deep learning

models such as deep neural networks [80] and stacked autoencoders [81]. Moreover,

in [82][83] and [84] that the performance of stacked autoencoders is better

compared with the deep neural networks for classifying any traffic data to a pre-

identified protocol. In addition, using of deep learning approaches was presented to

detect anomalous and suspicious flows [85]–[87]. On the other hand, deep learning

frameworks were proposed by many studies in network flow prediction, for example,

aggregating multiple attributes to predict the flow of the network [88][89].

2.4 ML techniques Employments

ML approaches introduce a better strategy for network traffic characterization

and classification by leveraging traffic statistical information that is independent of

traffic payload. Compared to the aforementioned traditional classification methods,

ML has solved the known problems of DPI and port classification for flows [90]. They

have been utilized for traffic classification, as various algorithmic steps can be used

21

to build a classifier that gathers data observations into distinct classes according to

the network field, such as network management [91]and security [92].

2.4.1 Application-based ML Classification Techniques

Nowadays, classification approaches have an effective role in different fields of

networks. The efforts of researchers focus on using ML techniques for traffic

classification according to flow statistics. A powerful classification paradigm is

constructed by selecting suitable features and the correlated information of TCP

flows. This paradigm was proposed to enhance the classification performance using

Correlation (TCC) information [93]. For identifying applications, a system using a

group of seven different applications has been proposed in order to execute a set of

tasks to measure the QoS of the network [94]. In addition, to cluster traffic of

applications based on traffic similarity, two unsupervised ML approaches have been

presented. In the proposed framework, the appropriate attributes of flow were

elected using the filter method before applying K-means and Expectation

Maximization (EM) [73]. On the other hand, for identifying unknown applications

according to statistical features of the flow, the proposed unsupervised ML

classification method is integrated with the clustering approach to create clusters of

traffic[95]. Similarly, a developed semi-supervised clustering technique was

suggested. A modified K-means that used flow statistics to classify network traffic

was applied. The statistics of layer four of the network were input to execute the

classification steps [96].

2.4.2 User-based ML Classification Techniques

In the last decade, internet users’ activities have increased, which has had an

impact on the behavior of the users themselves. For this reason, classification and

pattern extraction from the data of users is very important for business support and

decision-making. Many studies have used classification techniques (clustering) to

minimize the gaps in studying network users’ behavior patterns, They have

22

characterized patterns of individual users’ behavior, and then the clusters of users

have been used to develop prediction methods of network traffic [94].

Data mining with the K-Means technique has also been used as another way to

analyze users’ behavior. Data mining-based k-means clustering technique was used

with log activity, which is another means of studying and analyzing the behavior of

users [97]. On the other hand, lack of knowledge has become a problem for most

large companies, which have a huge amount of data but suffer from a knowledge

famine. Therefore, they are in need of a new technique that is intelligent and has the

capability to overcome this flaw. Accordingly, “data mining technique - customer

clustering” has been used to characterize “high-profit”, “high-value” and “low-risk”

customers [98]. One of the recent challenges in online services is understanding user

behavior because it is increasingly dependent on the participation of users in online

social networks or crowdsourcing services. Therefore, to identify dominant user

behavior by using “clickstream” data, an unsupervised technique-based system has

been built, where the resultant similarity clusters are described through graphs,

which are partitioned on the basis of similarity [99]. Furthermore, one of the big

challenges of the present-day internet is the rapid growth of this field, which is

making it a robust system to spread and restore information. Restoring useful

information from this huge amount of information is, indeed, difficult [100]. The

objective is to take advantage of the similarity-based grouping property of the

clustering method to match the sessions of web users.

2.4.3 Security-based ML Classification Techniques

Network security is an area that has received a great deal of attention over the

years and intrusion detection is a major field for most researchers. A new method to

detect anomaly intrusion with a high detection rate by using a clustering technique

with specific modifications has been innovative [101]. For the same purpose, which

is to modulate the rate of anomaly detection, the clustering technique was used for

data pre-processing in anomaly detection [102]. On the other hand, in order to

23

reduce time consumption and raise the detection rate, the Artificial Neural Network

(ANN) method, which has high computational resources, has been combined with a

fuzzy clustering approach [103]. Analyzing raw data is a key stage in network security

for identifying the causes of damage or loss; the method used for the attack; and the

identity of the attacker. Clustering is considered the most powerful technique for this

purpose: it can help in the detection of intrusion when the training data is unlabeled

as well to detect unknown types of anomalies. Accordingly, the Simple K-Means,

clustering method was used to analyze the NSL-KDD dataset, by clustering it into

normal and the four major types of attack, i.e., DoS, Probe, R2L, and U2R. It is crucial

to distinguish the process of attack from “benign” traffic because its role in identifying

the types of attack leads to the specification of the required preventive measures

[104].

2.5 Traffic Engineering Development and SDN

One of the significant network applications is traffic engineering (TE), which

interacts with the measurement and management of network traffic. In addition, it

designs logical mechanisms to direct network traffic to improve network resources

employment and provide the requirements of network QoS; this is the generic

definition of TE. The technologies of TE mainly include Internet Protocol (IP)-based

TE and Multi-Protocol Label Switching (MPLS)-based TE. To solve the load-balancing

problem in multipath traffic, the IP-based TE has been proposed. The problem has

been solved by optimizing the algorithm of IP routing to avoid congestion of the

network [105]. However, this technology has two disadvantages: first, the inability to

make full use of network resources when Open Short Path First (OSPF) link weights

are used to control the routing of a network. Second, network congestions, packet

losses, delays, and even routing loops occur whenever links fail, or link weight

changes in the topology of the network because OSPF protocol takes time to meet

the new network topology. The MPLS has been proposed to overcome the drawbacks

of IP-based TE [106]. Nevertheless, the complexity of the mechanism of MPLS

24

protocol can lead to a high overhead of network performance, therefore, the

requirements of data center of networks, which need to have high link bandwidth

utilization, green energy saving, and high reliability, is difficult to meet. In traditional

networks, control management and data forwarding are tightly coupled, where

distributed devices control the whole network, and it is hard to improve the flexibility

and extensibility of it. Therefore, it is imperative to evolve the architecture of the

network and corresponding TE technology to solve this problem. Software-Defined

Network (SDN) is an advanced architecture of networks, which was proposed by

researchers at Stanford University, and it has gained widespread attention in recent

years. Its main idea is based on the separation of the forwarding and control planes

of a network system. In addition, it has a programmability attribute that can be used

to improve the innovation capability of network applications significantly [106][107].

Figure 2.1 shows the development of TE from the past to SDN as a future solution to

the above problems. The definitions of essential parts of SDN and important concepts

will be discussed in the following section.

Figure 2.1 Traffic Engineering From Past To Future [Modified From[108]]

2.6 Software-Defined Networking (SDN)

SDN can be defined in general as a novel paradigm of networking that optimizes

the traditional network environment through the separation of the forwarding plane

and control plane [109]–[113]. In other words, SDN is an architectural approach for

managing networks by providing dynamic and programmatic effective network

configuring, which makes the network more intelligent and centrally controlled, to

enhance the performance of networks using software applications [114][115].

25

The generic SDN architecture consists of two components, which are the

controller and compatible switches. Additionally, SDN works according to the concept

of decoupling the network devices’ data plane from the control plane [116]. In

specific, routers, and switches as infrastructure plane has a responsibility to forward

a packet whereas the control plane has the rules for forwarding packets by the

devices in the infrastructure plane. Based on the above, SDN is defined by decoupling

the controller plane and infrastructure plane programmability [117]. Increased SDN

employment has led to a significant evolution of today's network architectures by

offering adaptability, flexibility, and scalability. In addition, SDN has the capabilities

to control and efficiently transfer the data flows through the network to fulfill

sufficient flow management and effective usage of network resources. It does so by

separating the network control logic from the underlying switches and routers,

providing logical centralization of network control, and allowing the programming of

the network. In the last years, most studies have suggested integrating the ML and

SDN for evolving network security, network management, and improving the design

of a network [118]–[120].

2.6.1 SDN Architecture

Nowadays SDN is being used in numerous fields e.g., IOT, wireless networking,

cloud computing, security, etc., so architecture varies with the area of usage but the

basic architecture of SDN remains the same. Figure 2.2 illustrates the standard SDN

Architecture. The typical structure of SDN divides operations such as configuration,

allocation of resources, traffic prioritization, and traffic redirection through core

devices into three layers: application, control, and infrastructure schemes.

26

Figure 2.2 Simplified SDN Architecture [Modified From [121]]

The bridge that connects the application layer and infrastructure layers is a

control scheme with two interfaces (i.e. south and north-bound interfaces). Each one

of these interfaces has a specific function. South-bound interface represents the

downward interaction with the infrastructure layer, which has limited function that

gives controllers the ability to access functions that are provided by switching

devices. For application layer, it connects with the controllers through the north-

bound interface, which is responsible for providing access points in different forms

to the services such as an Application Programming Interface (API). Through API, the

SDN application can get all the status information of the network that is provided by

switching devices. Moreover, network status information has been used to make

decisions for setting rules to execute the forwarding of packets (switches devices) by

application layers using API. Since there are many controllers, therefore, it is

obligatory to coordinate the process of decision-making between them by using an

“east-west” communication interface, which lies among the controllers [117].

Furthermore, SDN has an option of controlling called OpenFlow (OF) protocol, which

27

is the predominant protocol. The architecture of OF protocol is based on three basic

ideas [122]:

1. SDN data plane consists of switches, which are compliant with OF protocol.

2. One or more OF controllers are composed of the SDN control plane.

3. Provisioning of a confidential control channel to connect the switches with

the control panel.

2.6.2 Why SDN?

Compared to the architecture of the traditional network, SDN has the following

distinguishing attributes:

1. Concentricity of control: the entire network information such as the topology

of the network, changes in network status, and requirements of application

such as requirements of security and QoS, are stored by the SDN controller.

2. Programmability: the devices of the data-forwarding layer can be programmed

dynamically to optimize the network resources distribution.

3. Openness: to communicate with the SDN controller, as the controller does not

depend on the various supplier’s devices, therefore, a unified interface is used

by forwarding devices. Furthermore, the SDN controller can gain the status

information of the network conveniently for network traffic scheduling.

In addition, SDN has characteristics that are useful to solve the current problems of

network traffic engineering. These characteristics can be summed up as follows

[123]:

1. Traffic measurement: the SDN, which can gather information on real-time

network status and monitor as well as analyzes traffic centrally in the

controller, has the flexibility of scalable measurement task deployment.

28

2. Scheduling and management of traffic: Globally, the requirements of traffic

application can be considered, hence, the possibility of scheduling with

flexibility and granularity can be achieved.

3. Multiple stream table pipelines of the OpenFlow switch provide more

flexibility and efficiency for flow management.

2.7 Literature Review

The major task of a network is to hold and transfer data between its nodes.

To achieve this task, the network needs to find the optimal route for data to travel

by employing a particular routing system. This system has a specific job that

examines each possible path for data, chooses the suitable one and transmits the

data packets where it needs to go as fast as possible. In addition, it contributes to

enhance the performance of the network as the optimal routing algorithm helps

to run the network efficiently. The clear performance advantage provided by

routing procedures is faster data access. For example, the routing algorithm takes

a decision that determines the best route based on the location where the data is

stored and the destination device that asking for it. On the other hand, the network

can handle much traffic at one time, but it cannot exceed the allowed bandwidth

as the maximum rate of data that the network is able to transfer. However, the

overloading problem is real and still exists. To avoid this problem, the network

chooses the route based on the available bandwidth space.

The main challenge in all network types is the optimization of network

performance, but the situation is different in SDN because the technique is changed

from distributed approach to a centralized one. The characteristics of SDN such as

centralized control and programmability make the possibility of performing not only

routing in a traditional distributed manner but also routing in a centralized manner.

The first advantage of centralized routing using SDN is the existence of a path to

exchange information between the controller and infrastructure devices and because

the controller has the information of the entire network, flexible routing can be

29

achieved. The second advantage is related to the dynamical control of routing due to

the capability of each device to change its configuration based on the controller

commands [4]. On the other hand, The essential function of TE is finding an obvious

route to achieve the bandwidth requirements of the network consequently

optimizing the network performance [1]. Routing optimization has a key role in TE by

finding efficient routes to achieve the desired performance of the network [2]. In

particular, it is based on one particular idea: to achieve that traffic is routed according

to accurate traffic requirements [3]. These traffic requirements are variable

depending on an analyzed dataset that considered if it is data or traffic control.

2.7.1 Investigation into Flow Analysis

Non-redundant and relevant features are the goal of any feature selection

technique as it is essential for solving the dimensionality problem in machine learning

[124][125]. The scalability, reliability, and accuracy of machine learning techniques

facilitate feature selection by selecting valuable attributes. In data analysis, feature

selection is considered contributory for prediction by selecting related features.

There are different measures of evaluation that are used for producing a subset of

good features in feature selection. Dependence measures, uncertainty measures and

distance measures are the three categories of evaluation measures. Based on many

studies on feature selection, evaluation function is classified into five types distance,

consistency, information, classifier error and dependence. [126]–[129] prove that

most of feature selection techniques have been suggested for classification methods.

Many feature selection algorithms use the system of statistical measurements such

as correlation, mutual information and the measurement of gain of information [73].

[127] Clarified that Filters, Wrappers and Embedded methods are the general

approaches of feature selection based on measurements of evaluation. When the

three methods were compared, it was found that, the filter methods have low

complexity of computational, but it cannot guarantee the accuracy of the learning

algorithms. In contrast, the wrapper methods select the best features, so it provides

30

good accuracy with large computational complexity [129]. The one that is more

efficient than the others is the embedded method because it runs the process of

feature selection as part of the training procedure. Therefore, it is specifically used

with learning techniques [127]. However, the increasing of data dimensionality is still

challenge to many of feature selection techniques. Based on many studies [130]–

[132], feature clustering is considered as another type of feature selection.

Hierarchical algorithms and K-means are common in clustering methods.

Machine Learning (ML) is the term given to a set of powerful techniques for

data extraction and the discovery of knowledge [133], [134]. Furthermore, one of the

most favorable techniques to carry out network-data analysis and to automate

configuration and management of networks because of its ability to make network

elements 'learn' from experience by using the large quantity of data to make

networks more intelligent and adaptive [31]. k-Means is a clustering algorithm, which

stores particular pre-chosen k centers which it utilizes to generate clusters randomly,

according to the similarity (often Euclidean distance) between all input objects [135].

There are many clustering techniques known as the best in many situations

compared to the K-means algorithm[134]. However, K-means is common for many

reasons. Firstly, the technique is classified as simple in its implementation. Secondly,

K-means has the capability of fine-setting, therefore it is very effective as it can be

integrated with better algorithms such as clustering of intensity [136], genetic

algorithm [36][137], etc. Third, the limitations of K-means are known, and it was

studied extensively compared to other algorithms that are less studied and have

unknown limitations, so it is the preferred technique. Clustering is effective in a range

of fields, including network management and security. In [138], similarity-based

clustering of application traffic was executed by using two unsupervised clustering

approaches: k-means and Expectation Maximization (EM). In addition, the

Correlation-based Feature Selection (CFS) filter method was used to select

appropriate attributes of a flow. Researchers in [26] concentrate on using ML

methods for statistical flow-based traffic classification. The authors propose a new

31

framework, which is Traffic Classification using Correlation (TCC) information, to

handle the problem of very few training samples. The framework has been

constructed by selecting suitable features and the correlated information of TCP

flows to enhance the classification performance. In [27] a new unsupervised method

for traffic classification was suggested to solve the problem of unknown applications

through identifying traffic classes, based on flow statistical features, where

automated flow classification and signature-based cluster aggregation were

executed by finding a similarity between traffic clusters. While in [28], the C5.0

technique was used for application classification. A new set of features, which are

burstiness and idle time, have been proposed to determine the type of applications

that generate the traffic. The proposed features have proved their effectiveness to

identify the type of applications as compared with previous studies. Another study of

the use of unsupervised ML algorithms to identify applications was described in [32]

. In this study, seven different application groups were concentrated. This work

introduces a system, executed by a set of tasks that measures the network’s QoS. In

accordance with [33], an amended k-means-based semi-supervised clustering

method was used. Flow statistics-based traffic classification was applied, where layer

four statistics were considered as inputs, to manipulate the classification process.

Recently, relevant deep learning techniques such as "deep neural networks",

"deep reinforcement learning", "stacked auto-encoders", and Deep Boltzmann

Machine have been used to solve network problems with respect to traffic analysis,

security, and management. The study in [116] introduced a classification traffic

method. This method starts with conducting traffic identification at the SDN switches

and afterward performs a “global” classification of traffic through the SDN controller,

which will be responsible for training, constructing, and refining the policies of QoS

based on the information of learned traffic. Similarly, the study in [139] proposed a

deep learning-based framework that unified feature extraction and classification

process into one architecture. The “Deep Packet,” system can provide a traffic

characterization scheme, in which the traffic of network is categorized into main

32

classes such as FTP and P2P, and an application identification scheme, in which end-

user applications such as BitTorrent and Skype are identified. In addition, the "Deep

Packet" system can distinguish between encrypted and unencrypted traffic.

2.7.2 Elephant and Mice flows identification

The problem of precise identification of mice and elephant flows still needs to

be handled [34], [140], [141]. In[142], the authors proposed a method for identifying

flows as mice or elephants. Unsupervised and semi-supervised ML approaches have

been used for classification flows in real time. They used three parameters as data

transfers, flow rates, and durations for clustering. The accuracy of the proposed

method was 90%. While the authors in [34] proposed a system that detects elephant

flows in linear time through traffic volume estimation for every flow. The elephant

flows are identified by counting their total bytes. They used a certain data structure

(hash tables) to achieve elephant identification. This system applied two algorithms

for maintaining the data structure, Median SUMming (IM-SUM) and De-amortized

Iterative Median SUMming (DIM-SUM), where they use two different tables for

calculation. On the other hand, other studies clarified that identification and

rerouting of the flows that hold a large amount of data (elephant flows) effectively

can lead to significant improvement in QoS. Authors in[143] presented a system

called DARD (Distributed Adaptive Routing architecture for Datacenter networks).

This system consists of three parts. The first is for detecting an elephant flow if a TCP

connection has lasted for more than 10s. The second is a tracking monitor to check if

all the paths connecting the source and destination switches are existing. The third

part is a flow scheduler that shifts elephant flows from overloaded paths to under

loaded ones. Another approach is proposed by [144], authors present a flow-

scheduling algorithm, which dynamically adjusts the number of two types of paths

according to the real-time traffic into low latency paths and high throughput paths

respectively for the two types of flows to make full utilization of the bandwidth. As

proposed in [7], a routing algorithm called Distributed Flow Scheduling (DiFS) system,

33

defined the flow, which exceeds a threshold of 100KB as a large flow. After that, this

flow will be transmitted to the destination by switching to a path with an abundant

amount of bandwidth.

Recent works have been applying machine learning in network traffic

classification. However, the limitations of existing studies are in the number of

connections used as well as the features identified. The novelty in our work is that

we have first introduced the investigation of the effect of the number of PCA

components on the accuracy of the flow clustering process. Further, k-means were

applied to cluster the traffic based on network performance metrics using a dataset

that contained 1 million complete connections. Finally, full and precise identification

of flows as elephant and mice were performed using pre-decided threshold values.

2.7.3 SDN- based flow routing optimization

SDN is currently utilized in numerous fields, from Internet of Things (IoT), and

wireless networking, to cloud computing and datacenters, focusing on both QoS and

security. In [145] SDN-based framework for the IoT environment has been proposed.

This framework allows significant achievements of quality level in a heterogeneous

environment of wireless networking for the task related to IoT. These achievements

have been done by designing an SDN controller in IoT multi-network for providing

flexible and efficient management of flows and the accessible network resources.

According to [96], the authors present an application that used several ML methods

to classify network traffics. This application started with gathering statistics on

OpenFlow traffic from the switches in the SDN environment, which was deployed in

an enterprise network. The work aimed to evaluate the performance of supervised

classification approaches comparatively. Similarly, in [146] a management design,

named ATLANTIC, was introduced to perform anomaly detection, classification, or

mitigation. The ATLANTIC framework uses information theory for deviation

calculations in the entropy of flow tables integrated with machine learning

34

techniques for traffic classification. Thus, the design has the ability to categorize

traffic anomalies and block malicious traffics by using the available information.

An application-aware multi-path flow routing framework, which integrates ML

and SDN, was proposed in [115]. In this architecture, the controller prioritizes each

flow using ML and determines a path depending on its priority. In the same context,

the authors in [116] introduce a QoS-aware traffic classification model for SDN. The

model uses the requirements of QoS to classify traffic into different classes by using

deep packet inspection (DPI) and a semi-supervised machine learning algorithm. The

management of networks is becoming a big challenge due to the growth of network

size, the volume of traffic, and the diversity of QoS requirements; to consider this

level of complexity, SDN provides flexibility and scalability of network management.

Clustering traffic to provide improved network management also proved successful

to a certain degree in previous studies, where the classification of traffic based on

user interests [147][148], was then applied to an SDN environment [149]. Moving

further, configuring a large complex network is also a challenging job. it is becoming

difficult and increasingly worrisome with the passage of time, as network

administrator needs to perform sophisticated actions in order to manage network

tasks, thereby, to address this problem, authors in [104] proposed an event-driven

network control solution based on the SDN, named Procera, to simplify various

aspects related to network operation and management. The authors proposed that

network operators could utilize four control domains, such as traffic flow, data usage,

time, and authentication. Based on the listed studies, it is increasingly apparent that

clustering of traffic and SDN are indeed likely to lead to more effective handling of

traffic. However, studies tend to look at optimizing the quality of individual flows,

applications, or mixes of applications as employed by end users, without considering

the characteristics shared by the flows in the first instance from a performance

perspective. Indeed, flows may encounter similar levels of packet loss or delay, as

well as share characteristics such as file length or application requirements.

35

The essential reasons for network performance degradation are network

congestion and imbalance in network load, which may cause by the inefficient routing

of elephant and mice flows. According to [150] the load-balancing mechanism has

been proposed using multipath routing of elephant flows in SDN to improve the

utilization of the network. The applications of software-defined networks have

attracted a lot of interest to solve the problem of network management in the last

decades. In [151], the authors have applied a dynamic routing mechanism in SDN to

solve the problem of inconsistent distribution of network traffic that causes

congestion in network links. Knob et al. [152] have introduced a system that can give

the network operator the ability to define templates that can re-route elephant flows

for the specific objective to address the high impact of elephant flows on the overall

network traffic. To improve network performance, researchers in [153] have

proposed to detect the elephant method where the routing algorithm scans the

network to find all the paths available between source and destination and calculates

the link bandwidth of different paths available. Likewise, in [154], authors have

presented a combination of detecting elephant flows and re-routing them to provide

efficient resource utilization. In contrast, [155] suggests a method that routes mice

flows efficiently using SDN technology by reducing the routing rules. In the work of

[156], re-routing elephant flows (EFs) using an ant colony optimization--based

technique has been presented. Load balancing in SDN links has been taken into

account. This technique, known as DPLBAnt, is formulated in SDN as a shortest-path

problem that can alleviate the high controller-switch load. The proposed method first

detects elephant flow by employing a pair of classifiers on both the SDN controller

and the switches. The switches sift through the majority of EF candidates, resulting

in accurate and efficient EF detection. Then, DPLBAnt obtains the SDN's global state,

from which the most optimal paths for congested links are retrieved and EF are

redirected appropriately. In [157] a deep Q-learning (DQL)-based routing strategy for

autonomously generating optimal routing paths for SDN-based data center networks

has been proposed. Deep Q networks are trained to meet the different demands of

36

mice-flows and elephant-flows in data center networks by achieving low latency and

low packet loss rate for mice-flows, and high throughput and low packet loss rate for

elephant-flows. Furthermore, port rate and flow table utilization to describe the

network state were selected, taking into account traffic distribution and the limited

resources of data center networks and SDN. A [158] they proposed DeepRoute which

is a model-free reinforcement learning method that converts the path computation

problem to a learning problem. DeepRoute learns strategies to manage arriving

elephant and mice flows from the network environment to improve the network's

average path utilization. In the study of [159] NNIRSS which is a neural network (NN)-

based intelligent routing scheme was presented for SDN. It uses NN to achieve data

flow transmission patterns and replaces the flow table with a well-trained NN in the

form of an NN packet. To meet the QoS requirements of network applications, the

route of data flow can be predicted based on its application type. In addition, they

develop an intelligent routing mechanism based on radial basis function neural

networks. In addition, an APC-K-means algorithm for determining radial basis

function centers by combining APC-III and K-means was proposed. In the work of

[150] a load-balancing-based dynamic multi-controller deployment scheme was

proposed. They convert the flow requests into a queuing model and consider the

traffic propagation delay and controller capacity as two major factors influencing the

multi-controller deployment. For network planning, a modified affinity propagation

algorithm (PSOAP) based on particle swarm optimization is proposed in the initial

static network to solve the problem of clustering performance being affected by the

initial values of the bias parameters and convergence coefficients. To achieve

controller load balancing, the dynamic traffic network reassigns switches in different

sub-domains using the breadth-first search (BFS) algorithm.

Overall, it is found that non-of the existing approaches for flow routing in SDN

have accomplished an external application for identifying mice and elephant flows,

enabling flow type and topology-aware routing. The goal of this work is to propose a

framework that can accomplish this by using two blocks, namely, external

37

applications and traffic analysis. Furthermore, it provides an algorithm for routing by

using a short route for mice flows and the widest routes for elephant flows. Routes

cost calculation is done recursively, which provides more efficiency and enables

consistency with real-time constraints.

2.8 Conclusion

Network management is a set of actions, which guarantees the utilization of all

network resources in the best possible way. Any network management system

should be capable of monitoring all devices on the network and fulfilling any

management procedures required by these devices. One of the functions of any

network management system is to simplify the monitoring of the network

performance task. The outcome of monitoring is to obtain valuable information

regarding network performance, by using specific tools, which have been designed

for this purpose. In addition, there are tools, which are used as analyzers. Their

function is to collect statistics on the amount and type of traffic on a single network

portion. Increasing volumes of network traffic, increasing speed of networks, and

solutions for capturing full-packet traffic require a huge amount of storage every day.

Unsupervised Machine Learning (clustering) has been used in different areas of

networking, such as application, security, and classification of user behavior. In

addition, clustering techniques have been used in the network performance analysis

area, which will be covered in this thesis.

 Nowadays, network management has become more complicated and less

docile to administer manually, because of the increase in dynamicity, heterogeneity,

and complexity of the network [150][160]. Therefore, the optimization and decision-

making automated approaches by using ML and artificial intelligence (AI) have

become necessary. The aim of unsupervised ML is to build a structure or pattern

using the inputs without the need to pre-define the output class. In addition,

unsupervised ML has the ability to transact with traffic types and a variety of datasets

based on previous studies. Consequently, the employment of unsupervised ML has

38

been increasing to improve the performance of networks and enhance the services

such as anomaly detection, Internet traffic classification, and TE. The term TE, which

includes the measurement, characterization, modeling, and control of traffic, is

described as evaluating and optimizing the performance of network performance.

The main aim of TE is to achieve all the requirements of a network through the

optimal use of the network resources. It is also worth mentioning, that TE is

responsible for designing a reasonable mechanism of routing to control the traffic of

the network for improving the utilization of network resources.

39

Chapter Three: Investigation into Network Performance Analysis

3.1 Introduction

The analysis of network performance is the use of network data to

comprehensively understand trends of network performance. With the analysis of

network data, the network performance variables can be identified and measured to

assess network performance, diagnose network performance issues, and exposed

long-term problems. Consequently, the analysis of network performance has benefits

such as baseline establishment and understanding the limits of network

performance. Additionally, Analysis of the network traffic can extensively provide

knowledge as regards the network resources and data infrastructure devices that are

responsible for routing the packets.

In traffic analysis, the robust and effective election of features to characterize

the traffic is still a real challenge. Practically, the characterization of network traffic

has been categorized as either flow-based using characteristics such as flow bytes,

flow duration, etc., or/and packet-based using properties like packet size, inter-

arrival time, etc. Unfortunately, there is still a shortcoming of studies on the

techniques of traffic characterization of network data. In the literature, the

characterization process can be accomplished according to its purposes such as

encrypted traffic [161][162], encapsulation of protocol [163], applications [11], or

type of application like chat, or streaming [164].

The characteristics of network traffic are still pivotal to most applications due

to their influence on the QoS features of communications links. Therefore, network

traffic characterization is considered an integral aspect of network services

identification and communication flow management between devices. For example,

in IoT environments, the characterization of network traffic contributes to

management capabilities promotion, network capacity adjustment, reliability of flow

packets delivery, improvement of network security, and network QoS ensure [165].

40

Due to the complexity of the network infrastructure and the mix of traffic,

designing a network to support QoS is, therefore, not an easy task. The fundamental

step is to understand the characteristics of different types of network traffic.

Therefore, the modelling of data traffic becomes a decisive and indispensable step.

This project will propose a comprehensive characterization of traffic with respect to

network performance to manage the network efficiently.

This chapter presents an innovative traffic characterization approach based on

network performance descriptors to manage the network efficiently. In addition, it

takes into account the possibility of reducing the number of features for accurate

characterization of network traffic. Two experiments have been conducted to

investigate the efficacy of the approach. These experiments follow the methodology

provided after the description of the proposed approach.

3.2 A Novel Approach for Network Performance Analysis

The proposed method seeks to develop a flow-based characterization

technique to analyze and characterize network traffic. According to [166] the

procedure of characterization can be carried out based on its objectives such as

security (e.g. encrypted traffic and VPN or HTTPS), applications (e.g. name or type of

application), and user behavior. The proposed approach introduced using common

characteristics between the traffic depending on network performance features for

the first time to characterize the network flow. In view of this, Unsupervised ML

techniques are applied to personify similar flows and isolate them based on their

features that are related to network performance such as delay, throughput, packet

loss, etc. By clustering analysis, flows will be summarized, and the central flow of each

cluster may be selected as the representative of that cluster. This can be performed

to improve the management of networks by ensuring a fair allocation of network

resources for the flows and accommodating other flows with different requirements.

Figure 3.1 shows the innovative proposed unsupervised ML scheme.

41

Figure 3.1 The Proposed Scheme

3.3 Proposed Methodology

Network traffic characterization is important in network management, and it is

used to analyse and find the solutions for the problems of network performance. In

accordance with this, this experiment tries to evaluate and validate the

characterization of network traffic based on network performance metrics by

following the methodology depicted in Figure 3.2.

Figure 3.2 The Proposed Methodology

3.3.1 Data Collection

42

Recently, the activities of network users have increased rapidly, and need to

keep up with the problems of analyzing huge traffic. Different solutions and

techniques have been suggested for dealing with data analysis, such as data

clustering, and data reduction. With a view to construct a set of connections,

concentration has been placed on the TCP protocol because it provides a wide variety

of features to characterize flows. The tcpdump [166] tool was used to capture the

raw data at the Center for Security, Communications, and Network Research (CSCAN)

at the University of Plymouth. This data is stored as a pcap file containing a collection

of 19,004 records. The captured and filtered network traffic was analyzed using the

tcptrace analyzer [167] to yield 11,593 completed bi-directional flows. Each one

contains classical fields related to a flow such as IP addresses, port numbers, packets

and byte counters, etc. These bi-directional flows provide full visibility of network

performance. A total of 146 features, related to network performance, were

extracted from the header field of each TCP packet to generate a dataset. The

tcptrace records were afterward subjected to pre-processing before undergoing to

unsupervised ML techniques as detailed in the following section.

3.3.2 Pre-processing and Feature Extraction

Generally, raw data is incomplete (contains missing values), noisy (there are

duplicates, errors, and outliers), and inconsistent (in different formats). Therefore, it

needs to be transformed into an understandable format for ML. techniques. Data

preprocessing can handle these issues by performing the following tasks:

 (i) Data cleaning entails filling in missing values, smoothing noisy data, identifying

or removing outliers, resolving inconsistencies, and eliminating duplicates,

irrelevant observations, errors, and unnecessary columns.

(ii) Data Transformation requires feature construction and data normalization.

In this step, Principal Component Analysis (PCA) has been employed to handle

outliers and to reduce data as in Sub-section 3.3.4 while z- Score normalization

43

technique has been utilized to scale features’ values that fall within a specified range

to ensure that unit of feature doesn’t distort the closeness of cases. In the

normalization step, a built-in scale() function has been used to achieve z-score

normalization to convert data into 0-1 range. The resulted dataset contains 129

features (Appendix -1), and 11593 connections is ready for feature selection. All the

pre-processing steps are executed using R-based script.

3.3.3 Feature Selection Model

High-dimensional data contains thousands of features, but not all of them are

somewhat relevant or vital to achieve the goal function. Therefore, excluding the

irrelevant features from the data will dispose of their negative impact on the result

of the target function [25]. Furthermore, some of these features are redundant,

which means that many of these features may have the same effect on the goal

function outcomes. To reduce the computation of workload for high-dimensional

data; one feature can represent all the redundant features [26]. Finally, it is

interesting to build an efficient feature selection model, in which the goal is to

identify the smallest group of independent features with the most influence in the

clustering process.

In the current literature [146], feature selection algorithms are mainly

categorized into three groups, i.e. (i) feature selection algorithms that are used to

remove irrelevant features, (ii) feature selection algorithms that are used to remove

redundant features, and (iii) feature selection algorithms that are used to remove

features both irrelevant and redundant features.

 The typical clustering algorithm, which is relevant to be used for large number

of variables is k-means, which is simple and fast. K-means clustering has been applied

as a technique to select specific features in this work by using unlabeled data (i.e.,

categories or groups of data are not defined). Feature selection process is

implemented by excluding the control features of each cluster. The main aim of this

44

process is to minimize the dataset and consequently diminish the size of high

dimensional data and choose the essential features. A vector of 52 features is the

output of this stage as will contribute to speeding up the clustering process in the

future. These features illustrated in Table 3.1 as Feature set2.

Table 3.1 Feature Set 2

Seq. Feature Seq. Feature

1. first_packet 2. avg_owin_a2b

3. total_packets_a2b 4. wavg_owin_a2b

5. total_packets_b2a 6. wavg_owin_b2a

7. ack_pkts_sent_a2b 8. initial_window_bytes_b2a

9. ack_pkts_sent_b2a 10. ttl_stream_length_a2b

11. pure_acks_sent_a2b 12. ttl_stream_length_b2a

13. sack_pkts_sent_a2b 14. throughput_b2a

15. sack_pkts_sent_b2a 16. RTT_samples_a2b

17. dsack_pkts_sent_a2b 18. RTT_samples_b2a

19. unique_bytes_sent_a2b 20. RTT_min_a2b

21. unique_bytes_sent_b2a 22. RTT_min_b2a

23. actual_data_pkts_a2b 24. RTT_max_a2b

25. actual_data_pkts_b2a 26. RTT_max_b2a

27. actual_data_bytes_a2b 28. RTT_avg_a2b

29. actual_data_bytes_b2a 30. RTT_avg_b2a

31. rexmt_data_pkts_a2b 32. RTT_stdev_a2b

33. rexmt_data_pkts_b2a 34. RTT_stdev_b2a

35. rexmt_data_bytes_a2b 36. post.loss_acks_a2b

37. rexmt_data_bytes_b2a 38. post.loss_acks_b2a

39. outoforder_pkts_a2b 40. ambiguous_acks_a2b

41. outoforder_pkts_b2a 42. ambiguous_acks_b2a

43. sacks_sent_a2b 44. segs_cum_acked_a2b

45. sacks_sent_b2a 46. segs_cum_acked_b2a

47. avg_win_adv_b2a 48. duplicate_acks_a2b

49. max_owin_a2b 50. duplicate_acks_b2a

51. max_owin_b2a 52. triple_dupacks_b2a.

3.3.4 Data reduction Model

Nowadays, network measurements have hundreds or thousands of data

available for a single experiment, therefore the statistical approaches are considered

challenging to deal with such high‐dimensional data [168][169]. Nevertheless, this

45

data might contain highly redundant variables and can be efficiently minimized these

number of variables without losing any significant information [170][171]. The

mathematical methods that are designed to achieve this reduction are called

dimensionality reduction techniques [172]. Data reduction involves the

transformation of high dimensional space to low dimensional space by eliminating

dependent or highly correlated variables and feature selection. Furthermore,

reducing the dataset leads to a group of advantages such as improving the quality of

data, increasing the efficiency of the algorithm work, better accuracy achievement,

and clarifying pattern design and examination researchers in [173]. Additionally, the

cost of computing will be reduced, dimensions visualization enhanced, and the

results improved [174][175].

Several techniques have been utilized to deal with the high-dimensionality

problem in traffic analysis such as PCA, Isomap, autoencoder, etc. Choosing the

convenient technique depends on the volume of the dataset, the aim of the analysis,

the computational resources, and data complexity e.g., image or numerical, linear or

nonlinear. PCA is one of the top-known dimensional reduction techniques and it is

still preferable in the classification context [176]–[178]. PCA compared with other

techniques like autoencoder is faster [179] and accelerate the convergence of the

model [180]. The core difference between PCA and lies in the way they carry out

dimensionality reduction. In PCA, the encoder and decoder are linear methods and

might be extended to work with nonlinear data [181].

PCA utilizes orthogonal transformation on the data as a statistical procedure to

transform a specific number of correlated variables into a minimal number of

uncorrelated variables, which are called principal components. These components

are arranged based on their variability in descending order. Being an essential

approach for exploratory analysis of data, PCA takes data in n dimensions and makes

visible the maximum variability in the data by rotating them. Primarily, PCA has been

used for dimensional reduction, as input data is reduced without losing the important

46

information in the data. The choice of the number of principal components is a critical

issue in taking a decision. Many studies conducted on choosing the number of

components such as cross-validation approximations [182]. Optimally, the reduction

process is based on the proportion of the average squared projection error to the

total variation in the data such that must be less than or equal to 1%. This process

retains 99% of the variance as principal components. The techniques of feature

selection are applied as a dimensional reduction [183], [184] in spite of there being a

difference between them [185]. Feature selection is performed usually as a

supervised process, which generally can be done well, but is not scalable and apt to

judgment bias. On the other hand, Dimensionality reduction is an unsupervised task,

as new features (dimensions) have been created instead of choosing a subset of

features.

3.3.5 Clustering traffic Model

In the last decades, the employment of unsupervised machine learning

techniques using unlabeled data has become common for network performance

improvement and providing services, such as TE, optimization of QoS, anomaly

detection, and Internet traffic classification[134][186][187]. These techniques make

machine learning general, flexible, and automated as they provide the ability for

analyzing data without having to formulate useful features manually and label them

[134]. One of the powerful unsupervised learning methods is the K-means algorithm,

which is a famous partitioning clustering technique, compared with other algorithms

such as DBSCAN. The k-means algorithm can be applied efficiently with sparse and

large datasets whereas DBSCAN fails with such datasets because it depends upon the

Euclidean definition of density [188]. Furthermore, k-means requires one parameter

that defines the number of clusters (K) while DBSCAN requires two parameters

radius(R) and minimum points (M) [189]. Moreover, k-means works better than

DBSCAN when utilized with real-time dynamic datasets because it consumes less time

for computation [189]. A brief definition of K-means is an algorithm that aggregates

47

observations with identical characteristics into k clusters. It starts deducing the model

of clustering based on a statistical vector of points as an input. Then, it distributes

these points into cluster form. The clustering process is performed based on the

algorithm [190] illustrated as below:

K-means Algorithm

Input:
P= {P1,P2,P3,……..,Pn}: the set of data points and
V = {v1,v2,…….,vc} the set of centers.

Output:
C={c1,c2,……………ck} the set of clusters

Start algorithm:
Step 1: Select ‘c’ cluster centers randomly.
Step 2: Calculate of the distance between cluster centers and each data point.
Step 3: Assign data points and a corresponding cluster center based on the

minimum distance between them.

Step 4: Recalculate of the new cluster center by:

𝑉𝑖 = (
1

𝐶𝑖
) ∑ 𝑃𝑖

𝑐𝑖

𝑗=1

Where, ‘ci’ is the number of data points in ith cluster.

Step 5: Recalculate of the distance between new cluster centers and each data
point.

Step 6: When there is no data point to be reassigned
then end,

Otherwise recall from step 3.

Furthermore, K-means has commonly used with unlabeled data where

categories or groups of data are not defined. Therefore, to determine the

optimization of the K-means clustering the accuracy will be calculated using two

measurements Within Cluster Sum of Squares (WCSS) and Between Clusters Sum of

Squares (BCSS).

In this model, K-means has been utilized to cluster network traffic flows based

on network performance parameters. It started with determining an optimum ‘k’

48

value. This was carried out using the Elbow method, which limits the number of

clusters to a value beyond that appending another cluster does not improve the

modeling of data. The elbow technique chooses the appropriate number of clusters

by repeating the k-means technique on a dataset for a range of values of k (1-10) and

computing the sum of squared errors for each value of k. Two sets of features were

used: Feature set1 contains 129 features as mentioned in Sub-section 3.3.2, while

Feature set2 includes 52 features as shown in Sub-section 3.3.3. Feature set2 is a

subset of Feature set1 where 77 features, which represent the control or driven

features for each cluster, have been removed to minimize the total number of

features. Moreover, this model includes the calculation of cluster convergence and

profiling clusters, which identify the behavior of each cluster.

3.3.5.1 Cluster Convergence

Analysis of clusters is an exploratory method. Any clustering algorithm cannot

achieve a perfect endpoint, but it can reach a point where the error is minimized.

Convergence is a condition that rules the minimal change in cluster centers. It sets a

ratio of the minimum value that the distance between initial cluster centers reaches.

In other terms, true convergence is done when reaching the point that there is no

possibility of further improvement. Consequently, the analysis of clusters is

considered good if the condition of cluster convergence is met. The threshold that

has been used to restrict criteria for convergence was between 5% and 30% for the

population of all clusters overall dataset. Therefore, in this research with a dataset

that contains 11593 bidirectional connections; the minimum and the maximum

number of connections in any cluster should be between 500 and 4000. Whereas the

cluster with a size that exceeds these limits will be considered an outlier and it needs

to be handled. Further, a few outliers can be easily incorporated by cluster structure.

3.3.5.2 Cluster Profiling

Profiling is defined as generating the description of the clusters based on input

variables that have been used for the analysis of clusters. The purpose of profiling is

49

to understand the network behavior within a particular situation. Profiling is effective

when cluster analysis has been conducted on multivariate clusters, so the clusters

can be described based on multiple aspects, provide an accurate description of the

network behavior, and get inferences based on the provided information. After

validating the convergence of clusters, it is essential to recognize the behavior of each

cluster. In this stage, the aim of cluster profiling is to accomplish an obvious

description of the type of flows in each cluster, and the behavior of each flow with

respect to network performance metrics. This is achieved by mapping a combination

of variables with respect to network performance such as packet loss, delay,

connection size, throughput, and congestion window; the output of this stage will be

a representative connection for each cluster.

3.4 Experimental Setup and Results

This experiment is carried out on an Ubuntu 14.0.4 LTS Operating System with

a Linux kernel (3.14.4 x64). The CPU is Intel Core i7-1165 G7, 2.8 GHz, and 16 GB RAM.

The experimental procedure has been applied by using a network pcap file. This file

contains network traffic that was collected utilizing the tcpdump capturing tool in the

laboratory of Plymouth University. In-depth analysis was accomplished on the

captured data to debrief network performance features using tcptrace analysis tool.

Unsupervised Machine Learning techniques (PCA and K-means) are implemented as

a final stage to reduce the dimensionality of data and find the common features

between connections. These techniques are applied using two sets of features

explained in Sub-section 3.3.3. The hypothesis of this work was to clarify the

possibility of characterizing TCP flows based on network performance metrics. In

accordance with this, two questions are suggested:

• What is the reliability of characterizing TCP flows based on network

performance metrics?

• What are the factors of clustering that may affect the accuracy of

characterizing TCP flows?

50

In order to answer these questions, the below steps were implemented.

3.4.1 Data Reduction Implementation

The work started with extracting key variables (in form of components) from a

larger set of variables that are available in both selected datasets. PCA technique was

applied for the purpose of dimensional reduction to make the clustering algorithm

more effective and efficient. Furthermore, PCA has been used before the clustering

algorithm to analyze the correlation between the features of Feature set1 as a second

purpose. Figure 3.3 Presents the correlation of the first ten variables in Feature set1.

In this figure, correlation coefficients have been colored according to the value.

In Feature set1, each of the 129 features contained approximately 0.77%

(1/129) of the total variance in the original space. At least 0.77% of the total variance

should be explained by the selected principal components. By applying PCA, the

contribution information that each principal component makes to the total variance

of the data has been gained. Table 3.2 shows the first 13 principal components and

their associated eigenvalues, the proportion of variance, and cumulative variance. It

Figure 3.3 Correlation of First 10 Variables

51

is significant to retain a convenient number of components based on the trade-off

between simplicity and completeness as a data reduction technique in PCA.

In this work, the first five PCA components have been chosen based on their

variance as in Figure 3.5Error! Reference source not found. This number of

components has been selected based on the results of using the Elbow method.

These five principal components represent about 40% of the variation in the data as

illustrated in Figure 3.4. Using the first five components will provide a good

understanding of the data. Despite that, there is still a need to add more PCA

components to cover as much as possible of data based on the trade-off between

simplicity and completeness. This is one of the objectives of the work in Chapter 4.

Table 3.2 Components and Their Associated Eigenvalues

Component Eigenvalues Variance%
Cumulative

variance %

Comp1 18.502 14.34 14.34

Comp2 13.443 10.42 24.77

Comp3 8.175 6.33 31.10

Comp4 7.551 5.86 36.96

Comp5 5.059 3.92 40.88

Comp6 4.253 3.29 44.18

Comp7 4.130 3.20 47.38

Comp8 3.626 2.81 50.19

Comp9 3.126 2.42 52.62

Comp10 2.972 2.30 54.92

Comp11 2.874 2.22 57.15

Comp12 2.587 2.00 59.15

Comp13 2.479 1.92 61.08

52

3.4.2 Feature Selection Implementation

In this part of the work, feature selection has been achieved by applying the K-

means technique using a Feature set1, which contains 129 features. This is

accomplished by excluding the driven features for each cluster. Driven features are

the set of features that control the distribution of the observations between clusters.

These features are extracted from the clusters using the filter approach. The main

0

5

10

15

20

25

30

35

40

45

PC1 PC2 PC3 PC4 PC5

Ex
p

la
in

ed
 V

ar
ia

n
ce

 R
at

io

P Components

Explained Variance Ratio

Cumulative variance %

Figure 3.4 The Explained Variance Ratio and Cumulative Variance
Percentage of the Five Principal Components

Figure 3.5 Percentages of Variance in Each Principal Component
(Elbow Method)

53

aim of this step is to diminish the size of high-dimensional data. As a result, the new

dataset, which only contains the essential features, is a vector of 52 features. This

feature set (Feature set2) has contributed to accelerating and increasing the accuracy

of the clustering. Moreover, the PCA technique has been used to reduce the

dimensions of this data.

3.4.3 Clustering Implementation

Clustering, or cluster analysis, is a task of unsupervised machine learning.

Unlike supervised learning, which is predictive model, cluster analysis includes

detecting natural grouping in data automatically. This will be achieved by interpreting

the input data and discovering natural groups or clusters in space of features. On the

other hand, Clustering is the mechanism that causes the instances with a stronger

similarity to be gathered to each other than to the remaining instances. In this part,

two experiments were conducted to use the K-means algorithm as a clustering

technique with two sets of features with and without PCA. The factor that was used

to determine the optimization of clustering process is the accuracy.

Accuracy: Each object is included to the closest cluster and then Euclidean

distance is used to calculate the distance between the object and the cluster center.

Each cluster center will be updated as the mean for objects in each cluster.

The within-sum of squares is:

𝑾𝑺𝑺 = ∑ (∑ (𝑿𝒊 − 𝑪𝒌)𝟐

𝑿𝒎

𝑿𝒊𝒊𝒏𝑪𝒌

)

𝑪𝒏

𝑪𝒊

 3.1

Where X is the data point in each cluster, C is the cluster centroid, k is the

number of clusters [191].

54

The process is iteratively repeated until either it reaches the maximum number

of iterations or the change of within-cluster sum of squares in two successive

iterations is less than the threshold value.

3.4.3.1 Analysis of using K-means Clustering Only

This part of analysis involves employment of K-means clustering algorithm

individually without using PCA as a dimensional reduction technique. The algorithm

has implemented using the two different sets of features, which are mentioned in

Section 3.4.2 to get an optimal clustering. As known, K-means has no ability to

determine the number of clusters (k). Therefore, it has applied using two values of

(k) based on elbow method (k=3 and k=100) as a lower and a higher limit,

respectively.

As shown in Table 3.3, when the value of k is three, the within-cluster sum of

the square will be high and the recorded accuracy is considerably low regardless of

the number of features, and when comparing the accuracy for the two sets, it turns

out that it is considerably low for Feature set1. As the value of k increases to 100, the

within-cluster sum of the square value will decrease and the results represent a

significant improvement in accuracy, yielding 80.7% for the Feature set1 and 92.9%

for Feature set2 even though it consists of a reduced number of features. One

interesting finding is when choosing the value of k beyond 100, the accuracy is slightly

increased reaching 84.9% and 94.8% for Feature set1 and Feature set2 respectively.

Table 3.3 Accuracy of K-Means with Features Sets

 Feature set Accuracy of K

3 100 110 120 130 140 150

Features set1 15.2% 80.7% 81.8% 82.8% 83% 83.2% 84.9%

Features set2 43.2% 92.9% 93.6% 94.2% 94.6% 94.7% 94.8%

55

3.4.3.2 Analysis of using K-means clustering with PCA

PCA is a data reduction method, it is significant to retain a suitable number of

factors on the basis of keeping a balance between retaining as few as possible factors

(simplicity) and explaining most of the variation in the data (completeness). Kaiser’s

rule recommends only factors with eigenvalues exceeding unity should be retained.

Intuitively, this means that any retained factor should compute at least as much

variation as any of the original variables [192].

In this step of work, PCA is used to reduce the dimensions of each dataset to

five components before applying the clustering algorithm. Using the PCA approach

drives faster convergence of the K-Means clustering with few iterations compared to

the basic K-Means method. The findings in Table 3.4 show that when applying K-

means on the Features set1, with three clusters and five components of PCA, the

accuracy is 36.7%. However, when the number of clusters is 100, the accuracy has

increased significantly to 97.6% and starts to have a slight increase when the value of

k is exceeded 100, and the clusters, which have only one connection have been

eliminated. This keeps all resultant clusters in the safe range, which should contain

between 5% and 30% of the overall dataset. Whereas, with the Feature set2, the

result shows an accuracy rate equal to 60.6%. While the result has changed to the

best level with 100 clusters or more, as the accuracy becomes 99%.

Table 3.4 Accuracy of K-Means with PCA

Feature set
Accuracy of 5 PCs. and K

3 100 110 120 130 140 150

Features set1 36.7% 97.6% 97.8% 97.6% 97.7% 97.8% 98%

Features set2 60.6% 99% 99% 99% 99% 99% 99%

Based on the aforementioned results for both sets of features there is a

significant improvement in accuracy when k equals three, in contrast, the accuracy

has a slight increase with k equals 100 or more.

56

According to the findings in the above two experiments (K-means with and

without PCA) the accuracy has increased significantly in the two feature datasets. This

means applying PCA before clustering, contributes to improving clustering accuracy

even though the number of components is few (five PCA components).

3.5 Conclusion

The proposed scheme introduces flow-level characterization based on network

performance metrics utilizing unsupervised machine learning techniques. The main

idea behind the scheme is finding precise clusters of flows sharing certain

characteristics that can be leveraged to improve the flow routing mechanism in a

network as a final part of this project. The idea has been achieved through

accomplishing experiments based on a group of concepts as follows: (i) trade-off

between simplicity and completeness in choosing the suitable number of PCA

components and (ii) the reliability of characterization TCP flows based on the

accuracy of clustering that basically depends on the choice of (k) values. As a result,

the accuracy of the clustering varied according to the use of K-means only and K-

means with PCA as clarified in the experimental results section. The experiments

were executed utilizing different feature sets to investigate the precision and

flexibility of the innovative scheme.

57

Chapter Four: Traffic Analysis-based Flow Identification

4.1 Introduction

In network performance management, congestion, and unbalanced load are

two main problems, which stem from the unfair use of the network resources by

specific flows [15]. Some of these flows contain a large amount of data and consume

many network resources, which hinders the use of these resources by others that

have a small size. Consequently, the differentiation between these flows has an

important role to solve network management issues. Characterizing and identifying

these flows into Long-lived large flows as elephants versus short-lived small flows as

mice can allow optimization of the network performance[17], [193], [194].

Recent studies in network engineering propose new strategies to optimize

network performance by identifying and handling mice and elephant flows differently

[29], [123], [142], [195]. These studies include the assignment of different flows to

different queues, flow distribution across the links, and the creation of a policy of

routing as a rule. These methods are achieved by either applying ML approaches,

using certain data structures, designing adaptive routing architecture, or proposing a

flow-scheduling algorithm. A wide variety of ML methods were used to classify

network traffic, using statistical analysis based on conceptual classification [135][25].

The aforementioned studies have used one or two parameters, such as the size

of flow and the duration, to distinguish between elephant and mice flows. In addition,

they have assigned different threshold values for the identification process of these

flows, 100KB to 10MB for total byte count per flow and 10s for duration threshold.

Moreover, with the ever increasing Internet traffic, improving the network flow

identification is still a challenge and of considerable interest to network operators,

and the identification of these types of flows has a significant role in the

enhancement of network management. However, the influence of the characterizing

of elephant and mice flows on the identification process has remained unclear.

58

However, no previous research has specifically concentrated on leveraging TCP-

based performance information to characterize and identify the flow. The present

chapter proposes characterizing flow employing TCP based information and

identifying flows based on specific thresholds and features. This has been achieved

using unsupervised ML and thresholding techniques. These techniques have been

implemented on real data captured and stored in a 2GB pcap file, which will be

explained in Section 4.4.1. Hence, the main contributions of this chapter are three-

fold:

1. Investigate the impact of a retained number of PCA components on the

efficiency and efficacy of clustering.

2. Characterize flows according to TCP-based performance attributes.

3. Based on the above, introduce an innovative mechanism to identify mice and

elephant flows.

The remainder of this chapter is organized as follows. Section 4.2 details the

proposed flow identification methodology. Section 4.3. contains the experimental

set-up. Section 4.4. Presents the results. Results are discussed in Section 4.5, and

Section 4.6 concludes the chapter.

4.2 Flow Identification Methodology

Flow identification is a very important process that can be used to improve

network management tasks such as scheduling, load balancing, and routing. Flow

type determination (elephant or mice) is more challenging because of continual

changes in traffic patterns [196]. In this work, a method that addresses the

identification problem of elephant and mice flows and characterizes them by

leveraging network performance metrics such as packet loss, round trip time (RTT),

and throughput has been presented. Figure 4.1 displays the major stages of flow

characterization using unsupervised ML and identifies these flows as elephants and

mice. The detailed steps of the proposed approach are discussed hereafter.

59

Figure 4.1 Proposed Methodology

4.2.1 Flow characterization

The reason behind using traffic characterization is that it is considered the

typical solution for data analysis for understanding the behavior of network traffic

patterns. The present work intended to characterize traffic behavior using statistics

of network performance. After collecting these statistics, flows were grouped into

unique clusters by employing unsupervised ML due to the similarity between flows.

This is achieved by discovering hidden patterns or groups of data without the need

for human intervention.

To simplify the ML step, data preprocessing is applied primarily. In this step, the

raw data, which contain missing and non-numeric values, are manipulated to get a

dataset of TCP parameters that will be used as input for the next stage. A set of

features including 146 comprehensive attributes associated with the network

connection provided by the tcptrace analysis tool. Irrelevant and useless records and

features are removed as a data-cleaning step. All attributes with character values are

60

converted to numeric values. The normalization step is also applied as a final step of

data preprocessing to get a consistent dataset.

Due to the effectiveness of the reduction algorithm PCA with clustering as

presented previously in Chapter 3, therefore PCA is utilized in this work to cancel the

redundant features from the used dataset and obtain the optimal feature set to form

the input of the k-means. To present the impact of the number of PCA components

on the accuracy of clustering, different numbers of these components have been

chosen to cover different percentages of data in this experiment.

To produce tighter clusters of the traffic flows, based on their performance

features, an unsupervised clustering technique, which works with unlabeled data,

was used after PCA. The main aim of clustering is to build robust labeling of clusters.

The k-means algorithm has run to execute the clustering process, which is not

considered the end step of the lifecycle of the proposed system. Therefore, the new

data that contain unseen points will be considered as test data that presupposes the

model has trained on our data, which will then be considered training data. K-means

technique has been implemented using incremental values of k to show how the

clustering accuracy changes with the changing of the number of PCA components and

the value of (k).

4.2.2 Elephant and Mice Flows Identification

A flow is considered an elephant subject to its volume [3], [25]–[29], [33], [197]

or depending upon preconfigured thresholds for size and duration [144][3][26][27].

Besides, some approaches were introduced [2], [32]–[34] to differentiate flows

between elephants and mice based on the number of packets of a flow. Interestingly,

the aforementioned literature explained that the approaches for identifying flows

picked one feature (size or the number of packets) or two features (size and duration)

to differentiate two types of flow as elephants and mice. This can indicate a motive

61

to develop a novel identification mechanism. In this experiment, mice and elephant

flows were identified for each resultant cluster from the clustering process.

The innovative mechanism uses pre-defined threshold values for the

parameters of flow: number of packets, flow size, and flow duration. The mechanism

identifies the flow as an elephant whenever it surpasses threshold values otherwise

it is defined as mice. This work has proved that the flows identification process was

efficient as it doesn’t require long processing time and does enhance the accuracy of

results. The results show that the type of flow can be identified quickly (less than

0.4ms) and efficiently by the novel mechanism.

4.3 Experimental Set Up

The dataset description, dimensional reduction, and cluster construction will

be presented in this section. Firstly, the criteria for choosing the connections, the

features that will be used to describe each connection, and the necessary processes

of pre-processing that are needed for the used dataset, will be explained. After that,

unsupervised machine learning techniques that are used to reduce the

dimensionality of the dataset and clustering the connections with respect to network

performance metrics will be presented. Finally, flow identification based on pre-

defined parameters will be shown.

4.3.1 The Description and Preprocessing Dataset

Real-world data have been traced in a university laboratory and captured by

tcpdump. Such raw data carries about 2G bytes. The tcptrace tool has been used to

analyze and convert this raw traffic to a dataset with two million connections.

Complete connections have been selected as a criterion for the entire image of

network performance. Therefore, the final figure of the dataset is 1 million complete

connections, where each connection is formed by a sequence of TCP packets in two

directions. On the other hand, each connection was represented by a vector of 146

extracted feature values. All these features are associated with the network

62

performance such as the bytes number, duration, round trip time, the number of

transferred packets, retransmissions' number, throughput, window advertisements,

and so on. To handle noisy, incomplete, and inconsistent data, the preprocessing

treatment is required for the used dataset.

The main aim of preprocessing is to construct a highly suitable dataset. The

process started by excluding all inconsistent or missing values. After that, all

categorical such as control attributes (FIN and SYN values) data have been converted

to appropriate numerical values. To standardize all the variables of a dataset and to

keep the closeness of cases, data normalization was performed as a final step. This

step has been achieved for each variable's value by subtracting the mean value of the

variable and dividing it by its standard deviation. As a result, the input dataset of the

unsupervised ML model will contain 129 features with respect to network

performance and 1 million complete bidirectional connections. These features have

been elected due to their validity in the previous experiment in Chapter 3.

4.3.2 Data Reduction and Data Clustering

In this experiment, each connection in the dataset has been characterized by

more than one hundred numeric variables; consequently, PCA has been used to

warrant component representation accurately with a minimal number of variables.

On the other hand, there are additional two reasons to use this technique. The first

one is to handle the high correlation among the original variables. Secondly, the used

dataset contains values that are extremely outside the range of expected and unlike

the other values. These values are called outliers, which can negatively affect the

process of clustering.

Generally, as a rule in PCA, each variable in the dataset will be represented by a

component in PCA format where the components explain the full variation in data.

As a result, the number of components will be equal to the number of variables in

the dataset. Completeness and simplicity are the aims of PCA as a dimensional

63

reduction technique. These aims will be achieved by retaining a suitable number of

components based on the trade-off between the aims. To choose a suitable number

of components, the “quick.elbow” function has been used in this experiment. Based

on the cumulative percentage of components, this function determines the number

of components that should be retained. To decide the appropriate number of

components that achieve good clustering (clustering with high accuracy), PCA has run

with a different number of components.

In clustering step, the k-means clustering method was run based on two

criteria, which are the number of clusters (k), and maximum iterations. Using

incremental values of k from 10 to 100 in steps of 10 and random initialization of

cluster center, k-means was applied. This scenario was executed at first with the

original dataset that contains 129 variables and secondly, it was followed using the

reduced dataset with a different number of components. Accuracy is the metric that

was used for measuring the clustering goodness. Therefore, there was no need to

compare the cluster analysis results to the external information (class labels or

ground truth). Inter-cluster distance and intra-cluster distance are the factors that

have been used to calculate the accuracy of clustering.

4.3.3 Extracting Flow Type (Elephant and Mice)

A flow is defined as a sequence of packets that can be identified by a group of

characteristics such as Source IP, Source Port, Destination IP, Destination Port,

Protocol (TCP, UDP, etc.). Internet traffic is comprised 90% of mice flows, which are

small volume, short and transmit a small amount of traffic while elephant flows,

which are large, long-lived flows and transmit a large amount of bytes, represent only

10% of all flows. Network congestion is a major performance problem. In general, the

temporary congestion is caused by mice, while the elephant flows induce the

permanent congestion [198]. Therefore, specifying mice flows and identifying their

priority automatically over elephant flows can optimize the forwarding mechanism.

This can be achieved by improving the computing of transactions that depend on a

64

small data block. This mechanism can reduce 30% of the completion time of an

application [199]. There is flexibility to choose the appropriate threshold for

identifying mice and elephants [Cisco’s ACI][31][25]. While the aim of the clustering

technique in this work is to characterize flows based on the performance metrics of

the network, it does not specifically identify the type of generated flows per cluster

if it is elephants or mice. Per-type identification consequently requires a separation

of flows utilizing an independent technique which is the thresholding method. As a

result, flow identification is performed based on threshold values for extracted

parameters to retrieve the different flow types contained per cluster. The mechanism

of flow type identification follows the algorithm below.

Flow Identification Algorithm

1. PPR: set of rules for predefined parameters
2. CID: set of predicted clusters (kmeansModel)
3. FT: a string indicates mice or elephant flow
4. CF: set of current flows

5. FT Ø

6. for each cid CID do

7. for each cf CF do

8. for each ppr PPR do
9. if cf.packetCount > 15 and cf.flowDuration > 5 and cf.avgPacketSize >=10 then

10. FT  ‘elephant‘
11. else

12. FT  ‘mice’
13. end if
14. end for
15. end for

16. end for

4.4 Results

This experiment was conducted using k-means clustering techniques with a

new dataset where each connection was described by over one hundred variables

and k has been set from 10 to 100. Additionally, the accuracy, which is the clustering

internal index, was used for measuring the clustering structure goodness. The

65

calculation of this index depends on two factors. The first is the inter-cluster distance

between the observation and cluster center and the intra-cluster distance between

cluster centers is the second factor. In general, the results show that the accuracy of

clustering is proportional to the increase in k, where it increases substantially from

24.46% to 62.89%. Based on the aforementioned results and because the accuracy is

still low. Therefore, the need to reduce the dimension of the dataset is necessary to

make the process of clustering more efficient and effective. Further, the variables of

the dataset have had a significant correlation. For these reasons, PCA has been used

in this experiment to investigate the impact of a number of PCA components on the

clustering process. Figure 4.2 shows the correlation of the first ten variables in the

dataset. In this figure, the coefficient of correlation has been colored based on the

value. Positive correlation has been represented by blue circles, while red circles

present negative correlations. In addition, the correlation coefficients are

proportional to the color intensity and the size of the circles.

Figure 4.2 Correlation of the First Ten Network Performance Variables

66

The variance proportion explained by each principal component has been

presented in Figure 4.3. The visualized variance of each component can help in

determining the number of principal components that are needed to explain the data

variation. The first three principal components clarify the most of data variation in

the dataset. Since these components exemplify less than 30% of the data, therefore,

there is a need to represent more data by increasing the number of components.

Also, the first ten PCA components containing the features with the most variance

and they covered 40% of the data, but they did not achieve the trade-off between

completeness and simplicity, which is the major rule in the PCA technique. Table 4.1

explains associated eigenvalues, the proportion of variance, and the cumulative

variance of the first 13 principal components.

Figure 4.3 Percentages of Variance in Each Principal Component

67

Table 4.1 The First 13 PCA Components.

Component
s

Eigenvalues Variance
(%)

Cumulative
(%)

Comp1 14.22 11.03 11.03

Comp2 12.84 9.95 20.98

Comp3 7.18 5.57 26.55

Comp4 6.03 4.68 31.23

Comp5 4.57 3.55 34.77

Comp6 4.10 3.17 37.95

Comp7 3.77 2.93 40.87

Comp8 3.41 2.64 43.52

Comp9 3.28 2.54 46.06

Comp10 2.97 2.31 48.36

Comp11 2.94 2.28 50.64

Comp12 2.87 2.22 52.87

Comp13 2.65 2.05 54.92

To achieve the essential rule of the PCA technique, the 13 PCA components that

covered 50% of the data were used as inputs to the k-means clustering paradigm. In

the clustering process, k has been set from 10 to 100. The findings depicted that the

accuracy of clustering increased with the incremental k, where it increases

significantly from 43.83% to 90.39%.

In order to comparatively investigate the effect of the chosen number of PCA

components upon the accuracy of clustering, different numbers of PCA components

(124, 57, 28, 13, 10) were elected taking into account the ratio of data covered by

each number i.e., 100%, 90%, 70%, 50%, and 40%, respectively. The 124 components

represent most of the features including the features with low variance, which leads

to a change in the data distribution among the clusters. Consequently, the accuracy

of clustering will be affected. The results show that the accuracy of clustering the

reduced dataset is proportional to the increase in k regardless of the number of

components. However, at least 10% of the overall accuracy was improved by

minimizing the number of components. For example, for 100 clusters, the accuracy

was 60.83% with 124 components, whereas it was 90.39% with 13 components.

68

In this experiment, in general, the results show that the accuracy of clustering

both datasets is proportional to the increase in k, where it increases substantially

from 24.07% to 91.4% whenever the value of k is increased from 10 to 100.

Nevertheless, at least 10% of the overall accuracy was improved with minimizing the

number of components when clustering the reduced data. In summary, using PCA

before the clustering process and minimizing the number of principal components

contributes significantly to increase the accuracy of clustering. In contrast, the

accuracy of clustering is inversely proportional to the increase in the number of PCA

components, where the accuracy decreases with 124 components, which represent

100% of the data as shown in Figure 4.4.

Figure 4.4 Relation between Accuracy and Number of PCA Components with
Incremental Number of Clusters

In this part of the work, the aim was to reduce the dimensionality of data and

the process of clustering based on 129 performance features. The high accuracy of

the clustering process and the balance between simplicity and completeness while

retaining the suitable number of PCA components were the criteria that have been

used in this work. As shown in Figure 4.4, the results explain that using 13 PCA

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy
 %

Number of Clusters k

without PCA

124 comp., 100% data

57 comp., 90% data

28 comp., 70% data

13 comp., 50% data

10 comp., 40% data

69

components, which represent 50% of data and 60 clusters (K=60) leads to getting

high accuracy of 85.39%. Therefore, they represent the best choice. The distribution

of data points for each cluster is shown in Figure 4.5, where each color is a cluster

identity for 60 clusters.

Figure 4.5 Distribution of Points in Clusters

In this context, it is essential to understand the behavior of flows inside each

cluster resulting from the clustering process. In addition to the characterization of

these flows based on network performance features, their type is needed to be

recognized to solve the problem of resource allocation. Therefore, the final part of

this experiment includes identifying these flows as mice or elephants based on

certain features. The identification mechanism follows the thresholding method in

setting values for the selected parameters of flow i.e., number of packets, flow size,

and flow duration. The flow is identified as an elephant whenever its size surpasses

10KB, its number of packets exceeds 15 packets, and its duration is more than 5

seconds. In contrast, the flows with values fewer than thresholds for these

70

parameters will be identified as mice. After applying the mechanism to all clusters,

the percentages of elephants and mice are different from one cluster to another due

to the clusters' size. For example, the percentages of identified mice and elephant

flows in one of the 60 clusters were 89.92% and 10.07% respectively as Figure 4.6

depicts.

Figure 4.6 Elephant and Mice Identification

According to this, to undertake an evaluation of the flow identification process,

the Naïve Bayes classifier [200] has been used. Here, the same ratio for training and

testing datasets i.e., 50% of the flows were used to train the classifier and the

remaining 50% of flows were used to test it. The Naïve Bayes classifier was applied to

all resulting clusters from the clustering process. The empirical results present that

elephant and mice flows were identified with an accuracy rate of 92.7% for all

clusters. Figure 4.7 illustrate the confusion matrix [90] of flow identification of one of

the resulting clusters that contains 179256 flows. the matrix shows four values, which

71

are used to compute the accuracy (F-score [187]) of the classification process. These

values will be clarified as follows from top-left to bottom-right:

• True Positives (TP): The values (2) refer to elephant flows that were correctly

predicted by the classifier,

• True Negatives (TN): These (77454) mice samples are the negative flows that

were correctly predicted by the classifier.

• False Positives (FP): These are (5) negative flows of mice that are labeled

incorrectly as positive.

• False Negatives (FN): These are (12167) positive elephant flows, which were

mispredicted as negative.

Figure 4.7 The Confusion Matrix

4.5 Discussion

Generally, the experiment results confirm that the proposed mechanism can

be used effectively to differentiate the flows using the parameters related to that

flow. The clustering conception is leveraged to characterize TCP flows through the

performance metrics by using Inter-cluster distance and intra-cluster distance factors

to calculate the accuracy of the clustering. Initially, the accuracy was low because of

the high dimensionality of the dataset, the correlated features, and the outliers'

72

existence. Hereafter, PCA was employed to get accurate clustering by treating all

these problems. At the same time, this approach tested different numbers of PCA

components to get the appropriate accuracy with achieving the trade-off between

simplicity and completeness. The clustering was applied with numerous numbers of

components (124, 57, 28, 13, and 10). The result exhibits that 13 components were

the suitable number that achieve the aforementioned two conditions where it

covered more than 50% of the data and the accuracy of clustering was 90.39%. The

clustering process and PCA showed the two algorithms could collaborate and

characterize more than 85% of flows based on the network performance features.

These outcomes significantly promote the results of the work in Chapter 3.

Elephant flow identification models either depend on flow-level features such

as the total number of packets, count of bytes, duration, etc., or on packet-level

features such as RTT, size of a packet, inter-arrival time, and direction of the packet.

Each of these two techniques has pros and cons. Flow-level features-based models

have proved a high accuracy of elephant flow identification, but they cannot detect

elephant flows in their premature stage. In contrast, the models that are based on

packet-level features might determine elephant flow in its early stage; however, it

needs to define the application type that generates that elephant flow. In addition,

the detection accuracy is a major concern in this kind of model.

The empirical results of the innovative flow identification mechanism based on

flow-level features models were effective in identifying the flows as elephants and

mice. Flow size, number of packets, and duration of flow features have been used in

this experiment to distinguish between elephant and mice flows. On the other hand,

the threshold that can be chosen for the mentioned features can be fixed or dynamic

based on the traffic, or the top number of flows based on the traffic share, however,

there is no common guideline to choose the appropriate threshold in different

scenarios [201]. Depending upon that the thresholding method revealed that the

73

threshold values (10KB, 15, and 5 seconds respectively) for the parameters that have

been chosen in this experiment, were efficient in identifying elephant and mice flows.

To evaluate the flow identification process, the Naïve Bayes classifier has been

employed, as it is suitable in use in flow-based traffic classification in relation to the

proposed mechanism. The 50% of the flows were used to train the classifier, and the

remaining 50% of flows were used to test it. The Naïve Bayes classifier was applied to

all each cluster resulting from the clustering process. The accuracy rate of identifying

elephant and mice flows for all clusters was 92.7%.4.6

4.6 Conclusion

The introduced platform proposes a working concept to identify a particular

flow based on its characteristics that in turn depend on the network performance

metrics. The proposed platform is capable to identify elephant and mice flows

through pre-decided thresholds. The platform includes differentiation between

elephant and mice flows according to their characteristics, and calculation of the own

delay of each flow based on its parameters to provide the best path for each type of

flow by choosing the least delay path. The objective of the new method is to network

performance improvement by managing flow traffic and providing equal use of

network resources dynamically as the next chapter proposed.

74

Chapter Five: SDN routing framework based on flow identification

5.1 Introduction

The idea of software-defined networking (SDN) is introduced to provide the

ability to control the pathing of traffic flow across the network. It has been employed

to achieve sufficient management of flow and effective utilization of resources in the

network. This is attained by developing more programmable control and routing

techniques according to a comprehensive view of the network condition and fine-

grain control of network traffic and resources [202]. An SDN has several advantages

to support TE due to its distinct properties. These properties include control

centralization, the separation between forwarding and control planes, and the

programmability of network behavior [203][204].

The essential functionality, which affects the performance of the network, is

flow routing. An obvious advantage of the routing process is accessing the data as

fast as needed. This can contribute to improve the performance of a network [2][3].

In multipath routing, the SDN controller handles determining the best path and

substituting the link failure. However, the time consumed for selecting the best path

by the SDN controller is still high [23].

SDN is indeed the optimal vehicle to control and prioritize the respective types

of traffic according to their needs, as it decouples the network devices in data plane

from the traffic and its associated needs in the control plane [115][116]. Specifically,

the data plane devices such as router and switches have a packet-forwarding

responsibility while the control plane includes rules that are used by the devices of

data plane to forward packets. Depending on the above, SDN is characterized by

decoupled control and data planes and control plane programmability [117].

On the other hand, the data center is a network of computing and storage

resources. It provides the delivery of applications and shared data. Routers, switches,

75

servers, storage systems, firewalls, and controllers of application delivery are the key

components of the data center. Recently, the infrastructure of data centers has

changed from the traditional structure of physical servers to virtual networks [205],

which support applications. Traffic in data centers consists of many latency sensitive

flows "mice", which contain only a several packets, and a few of the bandwidth-

sensitive 'elephant' flows that comprise more than 80% of the total load [17]. In

general, 'mice' flows induce transient congestion, while 'elephant' flows cause

constant congestion where the congestion of the network is one of the main

inhibitors of its performance [15]. As a result, not all flows use the network resources

equally. There are many methods for providing the good network performance and

high QoS to flows such as mice flows prioritizing or re-forwarding elephant flows [7],

[143], [144], [206]–[209].

This chapter presents an innovative SDN routing framework based on flow type

identification to find the best path using a number of developed algorithms. In

addition, it takes into account leveraging the network performance features in flow

characterization and flow type identification by employing unsupervised ML

techniques. The framework has been conducted on different network topologies. The

effectiveness of the framework has been evaluated through two experiments and by

comparing its performance with that of the Ryu controller according to different

factors. The main contributions of this chapter are as follows:

1. Characterizing traffic flows in the data centers using network

performance features leveraging Unsupervised ML techniques.

2. Proposing an identification mechanism for distinguishing flows as mice

or elephants based on their performance features.

3. Developing a unified architectural flow routing solution that integrates

Unsupervised ML with SDN.

76

4. Developing a route updating-based recursive process for enabling a

more efficient calculation of route cost and providing consistency with

the real-time constraint.

The rest of this chapter is organized as follows. Section 5.2 highlights the

proposed SDN-based flow routing application. The results and analysis of the

experiment are presented in Section 5.3 and Section 5.4 presents final Conclusions.

5.2 SDN-based Flow Routing Application

SDN-based flow routing application that optimizes flow routing based on

network performance analysis will be presented in this section. This application starts

with capturing OpenFlow traffic statistics from the SDN switch. Pre-processing and

feature selection is the next step of the proposed mechanism. Then, for dimensional

reduction and flow clustering, unsupervised ML techniques were utilized . Particular

parameters and thresholds have been pre-defined to identify flows as elephant and

mice. Finally, Two topologies of Data Centre Network (DCN) have been used for SDN

deployment. The proposed methodology is depicted in Error! Reference source not f

ound.

77

Figure 5.1 Proposed Methodology

5.2.1 The Proposed Framework

We advocate that selecting the best route based on flow type can take

advantage of the programmability offered by SDN/OpenFlow. To illustrate this, a

framework that is competent for identification and routing flows is presented. This

framework enables the administrator to use the operation of selecting the best route

based on flow type to improve the performance of the network. The operation

depends on specifying the appropriate parameters and integrating the unsupervised

ML and SDN environment. A conceptual graph of the framework is shown in Figure

5.2. The paradigm contains four intelligible blocks as below:

1) The Data Center (DC) Network topology.

2) SDN controller.

3) External application.

4) Traffic analysis.

To test the proposed application, SDN-based two different DCN topologies have

been used. Mininet emulator [210]–[212] was used to implement the proposed

78

paradigm. Figure 5.3 and Figure 5.4 present the two DCN topologies that comprise

two servers for each topology and different numbers of switches. In this study, SDN

has been deployed utilizing the SDN-Ryu controller [213]. The external application

was designed for flow routing optimization that depends on a statistical analysis of

network performance. To achieve this, the application includes three stages:

A. Characterizing the flows based on network performance metrics by

employing unsupervised ML. this stage starts with using Principal

Component Analysis (PCA) as a linear technique to reduce the dimensions of

the used dataset. By converting correlated features to uncorrelated features,

the dataset will be reduced from high-dimensional space to low-dimensional

space. To cluster the flows based on their own features of network

performance, K-means was used as a second unsupervised ML technique.

B. Identifying flow type. This stage is the process that is responsible for

determining the type of flows (elephant or mice) based on pre-defined

parameters and thresholds. The procedure will be applied to each cluster

that resulted from the clustering operation.

C. Selecting the best path for each flow according to its type and

characteristics. The stage starts with a sampling operation to gain

representative flows for each cluster. Then using a developed routing

algorithm, the best path selection will be achieved for each representative

flow.

The proposed application employs two algorithms, which are the shortest path

Dijkstra algorithm [214] and the widest path Dijkstra Algorithm [215] to build the

developed routing algorithm. It has been built to find the route that fulfills the

conditions related to the types of flow identified before. The developed algorithm

was employed to find paths with appropriate bandwidth and latency.

79

The last part of the proposed framework is the traffic analysis. In this part, the

flows with their paths will be stored and visualized. The output of this block is a log

file containing the type of flow, cluster-ID, the paths of flow, and the latency for each

route. The next section covers the implementation of the proposed framework by

running a group of proposed algorithms.

Figure 5.2 The Proposed Framework

5.2.2 Framework Implementation

80

In this section, the implementation of the innovative framework will be

clarified. In particular, the main algorithms and their roles in selecting the best path

are explained.

5.2.2.1 Routing rule setting

The details of the flow routing algorithm are illustrated in algorithm 1. This

algorithm aimed to select the best path to route each flow, which is the major

procedure of the proposed framework. The procedure starts with extracting

datapath, inPort, packet, source, and destination. At first, the existence of the source

in the macTable will be checked. Then it will be added to the macTable if it is not

there. Thereafter, the algorithm checks whether the destination exists in the

macTable or not. In case of the destination is in macTable, a topology discovery will

be executed using a Link Layer Discovery Protocol (LLDP). Next, Algorithm 2 FAS (Find

all Available paths between two Switches) will be implicitly called by Algorithm 3

FAPBS (Find all Available Paths Between each pair of Switches) to find all available

paths between each pair of switches. After that, the bestPath is determined based

on clusterID, flowType, and acceptable latency, and in a recursive manner, the costs

of paths will be updated. If a destination does not exist in macTable, a broadcast

message will be sent.

Algorithm 1 Flow Routing Algorithm

1. Every new flow,extract flow information (src, dst, inport, outport, etc.)

2. adjacency Ø

3. availableBW Ø {availableBW:available bandwidth}

4. paths Ø

5. clusterID Ø

6. flowType Ø

7. acceptableLatency Ø

8. bestpath Ø

9. if src not in macTable, then

81

10. add src to macTable

11. end if

12. if dst in macTable, then

13. check topology using LLDP to get adjacency and availableBW

14. paths FAPBS(adjacency, availableBW)

15. clusterID, flowType, acceptableLatency  flowIdentification(kmeansModel,
flow)

16. bestpath SelectBestPaths(src, dest, acceptableLatency, flowType, paths)

17. paths updatedPaths(paths, availableBW)

18. else

19. send broadcast message

20. end if

Algorithm 2: Find all Available paths between two Switches (FAS)

1. source: source switch
2. destination: destination switch
3. adjacency: adjacency matrix represents the network as a graph
4. paths: set of available paths between source and destination

5. paths Ø

6. QueOfPaths  Queue()

7. QueOfNode  Queue()
8. QueOfNode.add(source)
9. for each len(QueOfPaths) > 0 do

10. currPath QueOfPaths.pop()

11. lastNode currQue[-1]
12. if lastNode matches destination then
13. paths.append(currPath)
14. end if
15. for each neighbor in adjacency[lastNode] do

16. newPath copy(currPath)
17. newPath.add(neighbor)
18. if !QueOfPaths.contains(newPaths) then
19. QueOfPaths.add(newPath)
20. end if
21. end for
22. end for
23. for each availablePaths in paths do
24. for each path in availablePaths do

25. cost Update Cost(path)
26. path.addLast(cost)
27. end for

82

28. end for each path in availablePaths do

Algorithm 3: Find all Available Paths Between each pair of Switches (FAPBS)

1. adjacency: adjacency matrix represents the network as a graph
2. availableBandwidth:2D array contains available bandwidth between each two switches
3. Paths: set of available paths between source and destination

4. Paths Ø
5. for each node1 in adjacency do
6. for each node2 in adjacency do
7. if node1 does not match node2 then

8. p FAS(node1,node2,adjacency)

9. paths{'node1TOnode2'} P
10. end if
11. end for
12. end for

13. Paths Update Cost(paths, availableBandwidth)

5.2.2.2 Cluster vector extraction

The output of the K-means model will be used as input for the flow identification

process (Algorithm 4). For each resulted cluster, the flow identification will be

implemented. Accordingly, three parameters were extracted for each flow in each

cluster. These parameters are flow duration, packet count, and average packet size. In

the case of having packet count higher than 15, flow duration higher than 5 seconds,

and average packet size higher or equal to 10KB, the flow is predicted as an elephant.

Otherwise, the predicted flow is mice. At the end of this process, three variables were

obtained. clusterID, which represents the ID of the predicted cluster, flowType that is

a string indicating a mice or elephant flow, and the acceptable delay of the flow is

represented as a float number called acceptableLatency. Based on the above, the

clusterVector will be assigned. This vector represents the features generated from the

center of the cluster called representative flow. From each representative flow, the

value of the acceptable latency is calculated.

Algorithm 4: Flow Identification

1. PPR: set of rules for predefined parameters

83

2. CID: set of predicted clusters (kmeansModel)
3. FT: a string indicates mice or elephant flow
4. CF: set of current flows
5. RF: set of representative flows
6. AL: a float number represents the acceptable delay of cf 2 CF

7. FT Ø

8. RF Ø

9. AL Ø

10. for each cid CID do

11. for each cf CF do

12. for each ppr PPR do
13. if cf.packetCount > 15 and cf.flowDuration > 5 and cf.avgPacketSize >=10 then

14. FT  ‘elephant‘
15. else

16. FT  ‘mice’

17. AL cf.latency
18. end if
19. end for
20. end for

21. RF kmeansModel.lefts{cid}
22. end for

5.2.2.3 Latency and bandwidth measurement

The source, destination, flow, acceptableLatency, paths, and N will be used as

the input for algorithm 5 where N determines the number of paths to be selected. This

algorithm starts with checking the type of flow. If it was mice, the algorithm will sort

the available paths with respect to length and select the shortest path as the best.

Otherwise, it was elephant flow and the best N paths will be chosen based on the

1/bandwidth, as shown in Sub-section 5.3.1.6. As a result, for each type of flow, we

have the best path based on acceptable delay and bandwidth for the particular source

and destination. After all, the particular best path will be installed for each elephant

and mice flow. This is done by sending a message containing the information of the

selected path to SDN controller to determine the required switches. Finally, an updated

version of input paths contains each path associated with the cost of it. The process of

updating will be based on the paths, which is the output of FAPBS algorithm and

84

availableBandwidth as a 2D array containing available bandwidth between every two

switches. This is summarized in algorithm 6.

Algorithm 5: Select best paths

1. source: source switch
2. destination: destination switch
3. acceptableLatency: acceptable delay
4. FT: a string indicates mice or elephant flow
5. paths: set of paths between each two switches
6. N: integer, determine number of paths to be selected
7. RT: routing table

8. N Ø

9. cost Ø

10. availablePaths paths{'sourceTOdestination'}
11. if FT matches ’mice’ then

12. path availablePaths.sort(key = len, ascending = False){0}
13. Else

14. path availablePaths.sort(key = cost,ascending = False){0 N}
15. end if

16. RT path /*path installing*/

Algorithm 6: Update Cost

1. Paths: set of output of FAPBS algorithm
2. key:(src,dst)
3. availableBandwidth: 2D array contains available bandwidth between each two switches
4. updatedPaths: updated version of input paths contains each path associated with the cost

of that path

5. updatedPaths Ø
6. for each key in Paths.keys() do

7. updatedPaths{key}Ø
8. for each path in Paths{key} do

9. cost 0
10. for each node1, node2 in path{:-1}, path{1:} do

11. cost cost + availableBandwidth{node1}{node2}
12. end for
13. updatedPaths{key}.append({path,cost})
14. end for
15. end for

85

5.3 Results and Analysis of Experiment

The results and analysis of this experiment demonstrate how feasible the

proposed approach at calculating the cost of links and selecting the best path in the

SDN environment. The experimental design is provided in Sub-section 5.3.1 and the

results and evaluation are presented in Sub-section 5.3.2.

5.3.1 Experimental Design

The experiments have been conducted using the Mininet emulator. Two DCN

topologies. The first topology (No.1) consists of two servers, seven switches, and two

hosts, illustrated in Figure 5.3. Whereas the second topology (No.2) includes two

servers, 16 switches, which are distributed on five layers, and three hosts as shown

in Figure 5.4. The work was carried out by a group of phases as below.

86

Figure 5.3 Topology No.1 of Network

Figure 5.4 Topology No.2 of Network

5.3.1.1 Monitoring and Data Collection Phases

For improving the comprehensive performance of the network and traffic flow

optimization, which is the aim of this work, traffic monitoring is very vital. SDN

presented a dynamic monitoring scheme for network traffic by adopting the concepts

of centralized controllability, the scalability of network infrastructure, usable, and

programmable. In this experiment, the Mininet emulation paradigm was used for

setting up and installing an SDN environment with the parameters of simulation as in

Table 5 1. Two scenarios (two topologies with different settings) for the DCN have

been emulated for implementing the proposed method. The used topologies are

configured for handling the TCP and UDP flows. These flows are generated using a

virtual machine created by the VMware workstation in a Linux environment.

OpenFlow Wireshark and tcpdump tools have been used with the Mininet simulator

to understand the behavior of proposed DCN topologies for analyzing the

87

performance of the networks. In order to perform a flow background load on the

network, the work started with generating UDP packets with different packet sizes

and rates during 300 seconds of simulation as shown in Table 5.2. Multiple TCP

connections (parallel flows) were initiated at different times to raise the throughput

and improve the performance between the two hosts. The value of bandwidth for

each link was generated randomly between 30 Mbps and 1000 Mbps. Here, for a

single stream of TCP, the average throughput is calculated as [216]:

𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 ≈
𝑴𝑺𝑺

𝑹𝑻𝑻√𝑷𝑳
 𝒃𝒚𝒕𝒆𝒔 𝒑𝒆𝒓 𝒔𝒆𝒄𝒐𝒏𝒅 5.1

The MSS value represents the maximum segment size and PL represents the

rate of packet loss. For multiple parallel streams(X) and if RTT, PL, and MSS are the

same in each stream, the aggregate average throughput is the sum of the X average

throughput [217]. Figure 5.5 illustrates the behavior of topology No.1, which uses

Ryu controller, according to the throughput parameter with the absence of the

proposed application.

Table 5.1 the parameters setting for the SDN network simulation

Parameters Details Descriptions

Operating System Mininet 2.2
Default behavior; idle timeout 30s;
traffic monitor polling 30s

SDN controller
Ryu controller v3.3
(Equal Cost Multipath routing
algorithm(ECMP))

OpenFlow software
OpenFlow: v1.3
Open vSwitch: v1.3.1

Table 5.2 UDP packets generated during 300 seconds

Duration
(Seconds)

Packet
rate(pps)

Data rate
(bps)

0-30 250 1024

30-60 500 2097152

88

Figure 5.5 Throughput of the Network during 300 Seconds

Wireshark has been run in the background to capture OpenFlow packets, which

are TCP packet types. Then the tcpdump tool has been utilized for the loopback

interface. The collected data was stored as pcap files for the two proposed DCN

topologies. To undertake a comprehensive analysis, the tcptrace tool was employed

to produce all complete flows characterized based on performance parameters and

store them in a CSV files.

5.3.1.2 Pre-Processing and Feature metric Phase

This phase is essential to obtain consistent, integrated, and processable data by

machine learning techniques. The data provided by the monitoring tools is of great

60-120 1000 12582912

120-200 1000 14582912

200-260 1000 20971520

260-300 1500 20971520

89

benefit not only for direct use, but historical data can help academics in

understanding the behavior of networks. The tcptrace tool aims to aggregate and

analysis the required information across the network to introduce data in a

consistent and understandable form. It stores data in a CSV file format. Here, 146

parameter values were produced by the tcptrace tool. These parameters are related

to bi‑directional complete connections and identify the most significant

discriminators of the traffic to determine which discriminators are suitable for traffic

classification and how classification accuracy can be improved. In this work, the main

data preprocessing steps are similar to those that have been applied in the previous

work in Chapter 4. Figure 5.6 explains these steps. 129 parameters resulted after

applying data cleaning and data transformation steps. Data reduction is another step

of preprocessing. PCA was utilized with 13 components in this experiment. The

results proved the validity of the findings of the preprocessing in the previous work

in Chapter 4 by achieving the balance between completeness and the simplicity and

accuracy of the clustering process.

90

Figure 5.6 The Steps of Preprocessing Phase

5.3.1.3 Flow statistics-based Clustering Phase

Recently, ML techniques have overcome some of the heuristic solutions'

limitations by enabling new classification methods. Flow-statistics-based classifiers

are a popular group of these methods [25], [29], [34], [37], [38], [40], [218], [219].

These classifiers have been adopted because it shows high speed in feature

computation and classification. Here, unsupervised ML techniques have been

proposed to develop a flow statistics-based characterizing mechanism using the

metrics of network performance. One of these techniques is K-means clustering

algorithm, which can create clusters of flow without the need for predefining classes.

This algorithm has been utilized to understand the differentiation of flows with

respect to network performance features. It has been applied to construct three

clusters, where the minimum number of clusters has been experienced in this work.

The goodness of clustering has been measured by using the accuracy metric. This

91

metric is determined by two factors: inter-cluster distance and intra-cluster distance

[197]. As a result, unique samples of flow will be recognized for each cluster.

5.3.1.4 Flow Type Identification Phase

One of the serious problems that have affected the quality of service for mice

flows is a slow-down transfer caused by elephant flows through a network, which

leads to the degradation of network performance. The solution for this problem

starts with proposing a novel identification mechanism for distinguishing the flows as

elephants and mice by leveraging some of the parameters clarified in the previous

Sub-section 5.3.1.4. Each elephant or mice flow has been defined based on static

threshold values marked on pre-decided features using the thresholding method. The

values of a threshold may be static or dynamic. This depends on the traffic or top-N

of flows, where N refers to the top number of traffic as mentioned in Section 4.5. The

final step in this phase includes the extraction of a representative flow for each

elephant and mice flows in each cluster that results from the clustering process. It is

interesting in the step that in some clusters one or two representative flows can be

extracted for each elephant or mice flow.

5.3.1.5 Flow Type-based Path Selection Phase

Normally, a large number of servers and switches are included in DCN, and each

node has multiple flows. Furthermore, the performance of the DCN is a critical

aspect; hence, high throughput and sensitivity of packet loss are required to gain high

performance of the network. And in accordance with the aforementioned problem

in Sub-section 5.3.1.4, accessing the data with reliability and in a simple way is

extremely hard in DCN [220][208]. Therefore, the need to manage the traffic in this

type of network still exists as clarified in the literature review Sub-section 2.7.3.

Many routing algorithms can provide a management solution for elephants and/or

mice flow. For example, Equal Cost Multipath Routing (ECMP) [221] can be utilized

for routing mice but not elephant flows [150]. In this project, the major aim is to

select the best path for each elephant and mice flows. The best path for a flow is the

92

path that achieved the requirements of that flow like low latency for mice flows and

high bandwidth for elephant flows. A developed Dijkstra algorithm is proposed to

find the route based on the type of flow (elephant or mice flows) by employing

algorithms 3, 4, 6, and 7 as shown in Section 5.2.2. Using a developed Dijkstra

algorithm, the links that fulfill the conditions will be determined, and the paths that

contain appropriate bandwidth and latency will be selected. Dijkstra algorithm was

applied to find the shortest path for mice flows whereas, for elephant flows, the

Widest-Dijkstra algorithm was used to find multipath to route them and record all

the available shortest paths. Because it has an appropriate complexity in real-time

problems and it gives deterministic results, the Dijkstra algorithm has been chosen.

The proposed approach introduces a new calculation for the cost of a link as

compared with the one used in the Dijkstra algorithm. In this part of the work,

different topologies based on SDN have been used with improved utilization of the

bandwidth and reduced network congestion. The deployed DCN topologies are

depicted in Figure 5.3 and Figure 5.4.

5.3.1.6 Link-Cost Updating phase

Determining a route for a particular flow through SDN efficiently is still

challenging. In order to accomplish this, a lot of information must be obtained by the

SDN controller. the information includes getting a comprehensive vision of the

network (i.e. network topology discovery and getting link state information),

computing optimum paths for the flows regarding the information of the flow and

network, and reconfiguring the routing table based on the new forwarding rules in

the infrastructure plane. The common routing algorithms depend on three concepts

to compute the cost of the link. These concepts are static link-cost (Hop-to-Hop

count, distance, link-capacity), dynamic link-cost (available link-capacity, link

utilization), and dynamic link-cost with minimizing the interference (available link-

capacity, link-utilization, flows count on a link) [222]. The proposed approach

presented in this part explains calculating and updating the cost of the link in the SDN

93

framework. The proposed method computes the cost of the link based on the inverse

proportional relationship between bandwidth and latency of the link, where

latency=1/bandwidth. The cost of the link will be updated recursively. The calculation

of the cost of the link based on the Update Cost algorithm in Sub-section 5.2.2 with

an example and figures are explained in this regard.

Suppose a host (Host) want to send a set of packets to a server (Server) and

there are two different routes between Host and Server as in Figure 5.7. For more

explanation, the flowchart in Figure 5.8 and the steps below will be followed to

calculate link-cost of both routes:

1. 1st route R1 goes through switches S1- > S2- > S4- > S6- > Server
2. 2nd route R2 goes through switches: S1- > S3- > -S5- > S6- > Server
3. The getAvailablePaths (Host, Server) algorithm will find these two paths (R1,

R2) between Host and Server
4. For each link in R1, R2
5. B1 =Available bandwidth of R1 = availableBW(L12) + availableBW(L24) +

availableBW(L46)
6. B2 =Available bandwidth of R2 = availableBW(L13) + availableBW(L35) +

availableBW(L56)
7. Latency of R1 = D1 = 1/B1; Latency of R2 = D2 = 1/B2.
8. If D1–acceptableLatency > D2–acceptableLatency then bestCost = D2
9. else bestCost = D1
10. Then we get the nearest value to the acceptable Latency
11. If bestCost = D1 then best path is R1 else best path is R2

Figure 5.7 Updating Link-Cost

94

Figure 5.8 Flowchart of Updating Cost of Link

5.3.2 Results and Evaluation

The empirical results of this experiment determine the impact of the

differentiation between elephant and mice flows using the innovative routing

algorithm upon DCN performance. In general, the results of this experiment

demonstrate the proposed characterization mechanism can be employed to identify

the type of flow to facilitate the election of the path that fulfills the requirement of

each of them. This experiment is performed using a number of python programming

scripts written and generated on a Linux (Ubuntu 18.04) 64-bit Operating System with

Intel Core i7-1165 G7, 2.8 GHz, and 16 GB RAM.

The experiment was conducted using a CSV file for each suggested DCN

topology. Each file contains 1 million flow records and 129 features. These features

are chosen based on the work in chapter 3. For dimensionality reduction, PCA has

95

been applied to select the most relevant features (13 components out of 129

features) from a whole dataset. These 13 PCA components have been input into the

clustering process. A possible explanation for choosing this number of components

might be found in Chapter 4. The k-means-based clustering explains that all flows

were only obtained in three clusters. Each cluster contains a group of flows with

distinct types and characteristics. Another important finding is in every cluster one or

two representative flows have been extracted for each elephant and mice type.

Finally, the best path for each type of flow will be found based on that representative

feature vector. A developed Dijkstra algorithm was utilized for that purpose. A

sample of elephant and mice flows with a brief description of the work are provided

in Table 5.3.

Table 5.3 Traffic Routing Based On Flow Types

Number

of Flows
Flow Type

Port

Number

Protocol

Service

Packet

Rate

Method to

Apply

60 Elephant 88 HTTP 1M Multipath

17 Elephant 443 HTTPS 300K Multipath

40 Elephant 20 FTP 22K Multipath

26 Elephant 25 SMTP 12K Multipath

9 Mice 514 Syslog 632K Single path

14 Mice 88 Kerberos 220K Single path

6 Mice 119 NNTP 125K Single path

Figure 5.9 depicts how the route was elected for each type of flow in all three

clusters for network topology No.1. Based on the proposed routing algorithm, the

best path has been selected from the available paths on this network. As given in the

top left corner of the figure, multipath route has been selected from Host A to the

server for elephant-type flows based on their characteristics in cluster 1. The same

procedure was followed for clusters 2 and 3. In the same way, the shortest path for

all mice flows in three clusters has been selected as represented in the bottom right

96

corner of the figure. On the other hand, higher priority flows such as real-time traffic

have been taken into consideration to be saved in this scenario. The figure clarifies

the used links with a green dotted line, whereas the unused link with a red dashed

line.

To achieve the aim of implementing the proposed flow routing optimization

method and measure its effectiveness in SDN environment, we implement the

proposed framework as described in Section 5.2.1. According to this, different

experiments were conducted to evaluate the performance of the proposed approach

against that of the SDN-Ryu controller. Furthermore, the evaluation will reveal the

impact of routing-based traffic management, which depends on the type of flow and

link-cost computation, on the network performance.

97

Figure 5.9 An Example of Flow Path's in the Network Using Proposed Approach

The first experiment that carry out to compare the performance of the

proposed application with that of Ryu controller using two metrics or parameters

throughput and bandwidth usage. As is shown below in Figure 5.10, for all flows the

proposed application has provided higher throughput than the Ryu controller has.

For example, at flow 10, the throughput of the proposed application was improved

with a ratio of 61.5% compared with the throughput of the Ryu controller. In addition,

it has been observed that the number of parallel flows in inversely proportional to

the throughput of the network. This confirms that increasing the higher the number

of parallel flows leads to a decline in the throughput for both the proposed

application and the Ryu controller. However, the performance of the proposed

method is still better than the Ryu controller. The comparison of throughput was

done for the two types of flows.

98

Figure 5.10 Comparison between the Proposed Approach and RYU-Controller with
Respect to Throughput for Two Types of Flows

For elephant-type flows, the findings show that the throughput provided by the

proposed application is outperforming that of the Ryu controller as depicted in Figure

5.11. For instance, it was found that the throughput of the proposed application is

about 88.2% superior to that of the Ryu controller for flow number 22. The

measurement of elephant throughput has been executed for intervals of 0-40

seconds and a bandwidth of 100MB.

99

Figure 5.11 Comparison between the Proposed Approach and RYU-Controller with

Respect to Throughput for Elephant Flow

Regarding mice-type flows, Figure 5.12 shows that both the proposed

application and Ryu controller have provided the same throughput. It is interpreted

by the fact that both of them use the shortest path for routing the mice flows. The

measurement of mice throughput was run for intervals of 0-60 seconds with a

bandwidth of 100 KB.

100

Figure 5.12 Comparison between the Proposed Approach and RYU-Controller with
Respect to Throughput for Mice Flow

Figure 5.13 Comparison between the Bandwidth Used in the Proposed Approach
and RYU-Controller for Two Types of Flows

 For bandwidth usage, the experimental findings show that the performance of

the proposed application is high in most of the flows compared with the Ryu-

controller as illustrated in Figure 5.13. The reasons behind that are (i) using a

clustering process and (ii) using a developed Dijkstra algorithm. While the low

101

performance of the proposed method in flows 14 and 22 is because of serving higher

priority flows.

For the second topology, the proposed mechanism evaluation was

accomplished by running two experiments in order to (i) Compare the performance

of the Ryu controller to that of the proposed method. (ii) Compare the performance

of the proposed method in both experiments. (ii) Compare the performance of the

Ryu controller in both experiments. All the comparisons were based on the same

parameters for the first topology. Figure 5.14 and Figure 5.15 depict the throughput

and bandwidth usage measurement provided by the proposed mechanism and Ryu

controller in the two experiments. It is clear from the charts of experiment 1 that the

performance of the proposed method was better than that of the Ryu controller for

the majority of flows for both parameters. However, as the number of flows

increases, the performance of the proposed method is equal to or slightly less than

that of the controller. In experiment 2 as shown in the charts of the aforementioned

figures, the throughput, and bandwidth provided by the proposed mechanism were

improved compared with those by the Ryu controller. Consequently, the

performance of the proposed mechanism enhanced for 70% of flows. Nevertheless,

compared to the performance of the Ryu controller, the performance of the

proposed application has declined for the rest 30% of flows.

In general, it is observed that the performance of the two methods has

improved as the number of flows increase in both experiments.

102

Figure 5.14 Comparison of Throughput between the Proposed Approach and RYU-
Controller for Two Types of Flows in Two Experiments

The data transfer rate, which is the third parameter that has been used in these

experiments, has been added to support the evaluation of the proposed method.

Figure 5.16 shows that the proposed method was more effective in transferring data

than the Ryu controller for most of the flows in both experiments. Based on the

measurement of the rate of data transfer, the proposed method in the second

experiment has the same behavior as in the previous parameters for the majority of

flows, where the performance has become better than it is in the first experiment,

although it may slightly less than the performance of the controller sometimes.

As a result, the proposed approach was more efficient than the Ryu controller

and proved its ability to find the best route according to the type of flow and cost of

the link despite the degradation of its performance because of serving the higher

priority flows.

103

Figure 5.15 Comparison of Bandwidth Usage between the Proposed Approach and
RYU Controller for Two Types of Flows in Two Experiments

Figure 5.16 Comparison of Data Transfer Rate between the Proposed Approach
and RYU- Controller for Two Types of Flows in Two Experiments

For more clarification, Figure 5.17 illustrates the throughput measurement for

both the Ryu controller and the proposed method in two experiments. The plot

presents descriptive statistics that there is obvious variability through the

experiments that examined the throughput (speed) feature. For our method, there is

a slight change in the median, first and second quartiles, while there is a significant

change in the third and fourth quartiles for the two experiments. Similarly, the

throughput of the Ryu controller significantly changes in the first and third quartiles,

104

while it shows stability in the median and second quartile and a slight change in the

fourth quartile for two experiments.

Figure 5.17 Throughput Measurement in Experiment1 and Experiment2

Figure 5.18 presents the measuring of bandwidth usage for the proposed

mechanism and the Ryu controller in the two experiments. The plot clarifies clear

variation through the experiments that test the usage of bandwidth. For the two

methods, there is significant changes in the median, first, second, third, and fourth

quartiles in the two experiments. As a result, a clear increase in bandwidth usage

through two experiments for both methods.

105

Figure 5.18 Bandwidth Usage Measurement in Experiment1 and Experiment2

Figure 5.19 depicts the third feature, which is the data transfer rate for the

two mechanisms in the two experiments. The plot explains significant variation

through the experiments for the Ryu controller for the data transfer rate. While our

method has a similar median and variance in the ratio of data transfer in the first,

second, third, and fourth quartiles in the two experiments.

106

Figure 5.19 Data Transfer Rate Measurement in Experiment1 and Experiment2

5.4 Conclusion

The innovative unified architecture has presented an SDN-based flow routing

framework that leverages the concept of flow-level characterization and flow-type

identification based on clustering and thresholding techniques that provide a high

level of accuracy and flexibility. The flow-level characterization has been executed

based on selected metrics of network performance using clustering ideology;

consequently, identifying the type of that flow will depend on its own metrics based

on pre-defined thresholds. As a result, the best path will be selected for each flow

after determining its type and characteristics such as delay and bandwidth. In

addition, the Dijkstra algorithm concept-based flow routing technique will be chosen

according to the type of flow and cluster-ID.

107

The most interesting finding was that the presented solution demonstrates an

efficient calculation of route cost and consistency with real-time constraints in the

SDN environment. This can be seen in the experimental results, which show that 70%

of the flows can be routed precisely. Therefore, the dynamic provisions of network

resources among different flow types are achieved. For future works, the suggested

application sets the ground for designing an automated SDN-based application for

routing different types of flow and network topologies to improve bandwidth

utilization and reduce congestion across networks.

108

Chapter Six: Conclusions and Future work

This project presents a novel mechanism to optimize the routing of particular

flows by taking advantage of network performance analysis. This Chapter discusses

the main contribution to Knowledge and highlights the novelty, research challenges,

future work, and the conclusions.

6.1 Contributions to Knowledge

Overall, all the aims that are mentioned in Chapter 1 through this research have

been achieved. The core contribution of this project concentrates on performing

three experimental studies to investigate the probability of leveraging network

performance analysis to characterize and identify elephant and mice flows,

consequently, routing them to accomplish the equal utilization of network resources

through the design of an application that integrates unsupervised ML and SDN

environment. The project establishes the following main contributions.

• For optimizing a network routing mechanism by leveraging its performance

analysis, a comprehensive investigation has been established on the topics of

network performance metrics, network Traffic analysis methods such as

traffic characterization and classification techniques, ML techniques and their

applications, Traffic engineering development, and SDN environment

architecture and characteristics.

• A baseline of experiment has been conducted to investigate the impact of

excluding the driven or control features on the clustering accuracy by using

different feature sets. The main aim of this experiment is to gain efficient and

accurate characterization of network flows based on network performance

features.

• A series of experiments has modeled and performed to investigate the

influence of the number of PCA components on the clustering process. The

objective of these experiments of gaining a higher accuracy of the clustering

109

as well as taking into consideration the trade-off between completeness and

simplicity.

• Designing an innovative flow characterization model based on utilizing

unsupervised ML. This model offers a comprehensive leveraging of network

performance metrics to characterize the flows.

• Proposing and evaluating an innovative flow architecture based on pre-

defined features and fixed thresholds. This model aims to identify elephant

and mice flows precisely using the thresholding method to solve the problem

of taking over network resources by elephant flow type in the future.

• A unified architectural solution that integrates unsupervised machine learning

techniques and an SDN environment has been proposed. This solution

introduces a novel routing mechanism that offers a more balanced and

effective network by selecting the best path to route each of the elephant and

mice flows based on their requirements

Several papers associated with the research have introduced and published in

refereed conferences and journals (Appendix-2). As a result, the project

introduced positive contributions to the network management and specifically to

the network routing system.

6.2 Research challenges

Although the above research objectives have been achieved, this research work

includes some limitations, which are explained hereafter. The main limitations of this

research work are described as follows.

1. The flow characterization carried out in the first experiment (Chapter 3)

primarily relied on flow representation through network performance

metrics. An unsupervised ML technique has been used to characterize each

flow. An essential aspect of machine learning for training, testing, and

validation is the size of the dataset. The aforementioned experiment was

110

accomplished using a dataset with a small size. This led that the inference of

significant relationships among data members being difficult. To solve this

limitation, use a dataset with a large size in the second experiment (Chapter

4). On the other hand, Outliers are one of the clear problems in data analysis;

therefore, detection and manipulation of the outliers are of great effect on

Machine Learning because the quality of data is as important as the quality of

a prediction or classification model. In the two experiments (Chapter 3 &

Chapter 4), avoiding outliers' existence completely was not possible, which

causes the subsistence of a cluster or more with a size beyond the limits of

clusters convergence between 500-4000 connections for each cluster. Using

the PCA technique has significantly alleviated this limitation.

2. In PCA, it is significant to retain a suitable number of components based on

keeping a balance between simplicity and completeness. However, the choice

of clustering accuracy as an aim for the first experiment (Chapter 3) led to

being restricted to choosing 5 PCA components despite they covered 40% of

the data. To avoid this restriction in the second experiment (Chapter 4), a

different number of PCA components have been experimented with to decide

the suitable number of components to achieve an effective clustering process

taking into consideration the balance between simplicity and completeness

for retaining the appropriate number of principal components as an essential

objective of PCA technique.

3. In dynamic networks, one of the essential issues for routing platforms is

finding the routing scheme that has the capability to overcome a fault

tolerance problem. This problem can be solved by generating more than one

path between the source and the destination [223].In addition, the shortest-

path algorithm has a superior performance in a dynamic network

environment [224]. Our proposed routing mechanism introduces the

developed Dijkstra algorithm. The developed algorithm has the ability to

111

choose between multipath routing and shortest path routing algorithms

based on the requirements of the flow type.

4. With increasing the adoption of network traffic encryption in the last years

for users' privacy protection. This led to appear of many challenges related to

traffic analysis techniques and traffic inspection tools. In this project, a

clustering mechanism has been proposed. This mechanism essentially

depends on extracting the significant network-related features such as RTT,

bytes transmitted, percentage of packet loss, and other network features.

Therefore, the proposed framework has the ability to cluster the encrypted

traffic [225]. On the other hand, ML classification techniques have the ability

to better deal with encrypted traffic [226][227][228].

5. One of the features that have been used in the proposed identification

scheme is flow duration. It means all packets should be sent within a certain

flow, and the transmission should be completed to determine the duration of

the flow. In this case, the transmission of the flow will be delayed for a long

period, negatively affecting the performance of the network. For example: If

the required time to consider the flow to type elephant is 5 seconds, the

transmission will be delayed 5 seconds for each flow, which doesn’t work in

real-time. To overcome this problem in real-time, we will assume that all the

current packets are from type mice and store the beginning time for each

flow, afterword we test the existing duration for every flow, and if it exceeds

the specified threshold, it will be elephant type flow.

6. One of the factors that had a clear impact on the performance of the

proposed Routing framework is serving higher priority flows such as real-time

traffic.

6.3 Future Work Suggestions

1. The idea behind this research supports the area of network management by

providing an efficient technique for routing particular flows based on their

112

pre-defined features and thresholds using the characteristics of the SDN

environment. However, to improve or develop the framework of this project

further, there are a group of network domains in which future work can be

performed. The proposed idea of an unsupervised ML model is compatible

with using different feature sets, different types of traffic, and different

protocols. For example, the model can be utilized in the network security area

to characterize network attacks.

2. In addition, the proposed identification mechanism in this project was based

on pre-defined features and static thresholds for distinguishing between

elephant and mice flows. Two of these features can be utilized in real-time,

so the opportunity to improve this mechanism is required through configuring

switches by the controller with the estimated value of the threshold to

identify elephant and mice flows at a real-time in a dynamic environment

[229] especially since the problem of routing elephant and mice flows is still

present.

6.4 Conclusions

Recently, the design goal of the network is network scalability, which means the

capability to handle not only immediate demand but also the possibility of traffic

growth in the future with little upgrades and costs. Today, traffic engineering is the

optimal solution to optimize networks and provide the best services where traffic

engineering allows sending traffic over less congested links, regardless of the rule of

the shortest path. This can help to mitigate the congestion of the network and to

exploit the infrastructure of the network to use it in a better way.

The SDN-based techniques are the best solution to overcome all the challenges

of traffic engineering. It provided the possibility of transforming the networks to be

flexible and scalable for handling the changes in users' demands. The centralization

concept in SDN addresses all the above challenges by calculating the path and

specifying the bandwidth for the entire network. Furthermore, the possibility of

113

traffic engineering being a third-party application allows for the creation of a more

featured SDN application with a better algorithm.

 The novelty of this project is utilizing network performance analysis to

characterize network flows through building a clustering model, identifying elephant

and mice flows using pre-defined parameters and thresholds to route them based on

their requirements by a developed routing algorithm. SDN environment was used to

run the proposed framework by creating a consistent unified architecture. The

proposed scheme proved to be effective to improve SDN-traffic engineering by

routing traffic over less or uncongested links by leveraging the characteristics of the

flow. In the end, mitigating the congestion of the network, exploiting the

infrastructure of the network to get the most out of it, and achieving the fair use of

network resources have been achieved.

114

References

[1] Y. Wang and Z. Wang, “Explicit routing algorithms for Internet

traffic engineering,” in Proceedings - 8th International Conference

on Computer Communications and Networks, ICCCN 1999, 1999,

pp. 582–588, doi: 10.1109/ICCCN.1999.805577.

[2] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of

routing optimization for internet traffic engineering,” IEEE

Communications Surveys and Tutorials, vol. 10, no. 1. pp. 36–56,

2008, doi: 10.1109/COMST.2008.4483669.

[3] A. Mendiola, J. Astorga, E. Jacob, M. Higuero, S. Member, and M.

Higuero, A Survey on the Contributions of Software-Defined

Networking to Traffic Engineering, vol. 19, no. 2. 2017.

[4] K. Sawada, D. Kotani, and Y. Okabe, “Network Routing Optimization

Based on Machine Learning Using Graph Networks Robust against

Topology Change,” in International Conference on Information

Networking, 2020, vol. 2020-Janua, pp. 608–615, doi:

10.1109/ICOIN48656.2020.9016573.

[5] A. Gupta, “Network Management: Current Trends and Future

Perspectives,” J. Netw. Syst. Manag., vol. 14, no. 4, pp. 483–491,

Dec. 2006, doi: 10.1007/s10922-006-9044-7.

[6] N. Samaan and A. Karmouch, “Towards autonomic network

management: An analysis of current and future research

115

directions,” IEEE Commun. Surv. Tutorials, vol. 11, no. 3, pp. 4–21,

2009, doi: 10.1109/SURV.2009.090302.

[7] W. Cui, Y. Yu, and C. Qian, “DiFS: Distributed Flow Scheduling for

adaptive switching in FatTree data center networks,” Comput.

Networks, vol. 105, pp. 166–179, 2016, doi:

10.1016/j.comnet.2016.06.003.

[8] S. Verma, Y. Kawamoto, H. Nishiyama, and N. Kato, “A Survey on

Network Methodologies for Real-Time Analytics of Massive IoT

Data and Open Research Issues,” IEEE Commun. Surv. TUTORIALS,

vol. 19, no. 3, 2017, doi: 10.1109/COMST.2017.2694469.

[9] M. Conti, S. Member, Q. Li, A. Maragno, and R. Spolaor, “The dark

side (-channel) of mobile devices: A survey on network traffic

analysis,” ieeexplore.ieee.org, Accessed: Jun. 17, 2023. [Online].

Available:

https://ieeexplore.ieee.org/abstract/document/8371242/.

[10] A. T. b Mahmoud Abbasi a, Amin Shahraki b c, “Deep Learning for

Network Traffic Monitoring and Analysis (NTMA): A Survey,”

Comput. Commun., vol. 170, pp. 19–41, 2021.

[11] A. Shusterman, C. Finkelstein, O. Gruner, Y. S.-C. Networks, and

undefined 2021, “Cache-based characterization: A low-

infrastructure, distributed alternative to network-based traffic and

application characterization,” Elsevier, Accessed: Feb. 21, 2023.

[Online]. Available:

116

https://www.sciencedirect.com/science/article/pii/S13891286210

04710.

[12] A. Dainotti, A. Pescapé, and G. Ventre, “A packet-level

characterization of network traffic,” 2006 11th Int. Work. Comput.

Model. Anal. Des. Commun. Links Networks, vol. 2006, pp. 38–45,

2006, doi: 10.1109/CAMAD.2006.1649716.

[13] S. Dong et al., “Flow cluster algorithm based on improved K-means

method,” IETE J. Res., vol. 59, no. 4, p. 326, 2013, doi:

10.4103/0377-2063.118021.

[14] R. Trestian, G. M. Muntean, and K. Katrinis, “MiceTrap: Scalable

traffic engineering of datacenter mice flows using OpenFlow,” in

Proceedings of the 2013 IFIP/IEEE International Symposium on

Integrated Network Management, IM 2013, 2013, pp. 904–907.

[15] L. C. F. Tang, H. Zhang, L.T. Yang, F. Tang, H. Zhang, L. T. Yang, L.

Chen, and L. C. F. Tang, H. Zhang, L.T. Yang, “Elephant Flow

Detection and Load-Balanced Routing with Efficient Sampling and

Classification,” IEEE Trans. Cloud Comput., vol. 9, no. 3, pp. 1022–

1036, 2021, doi: 10.1109/TCC.2019.2901669.

[16] F. Amezquita-Suarez, F. Estrada-Solano, N. L. S. Da Fonseca, and O.

M. C. Rendon, “An Efficient Mice Flow Routing Algorithm for Data

Centers Based on Software-Defined Networking,” IEEE Int. Conf.

Commun., vol. 2019-May, no. May, 2019, doi:

10.1109/ICC.2019.8761552.

117

[17] H. Thiri Zaw, A. Htein Maw, H. T. Zaw, A. H. Maw, H. Thiri Zaw, and

A. Htein Maw, “Elephant Flow Detection and Delay-Aware Flow

Rerouting in Software-Defined Network,” 2017 9th Int. Conf. Inf.

Technol. Electr. Eng. ICITEE 2017, vol. 2018-Janua, pp. 1–6, Jul.

2017, doi: 10.1109/ICITEED.2017.8250487.

[18] K. Boussaoud, M. Ayache, and A. En-Nouaary, “Performance

Evaluation of Supervised ML Algorithms for Elephant Flow

Detection in SDN; Performance Evaluation of Supervised ML

Algorithms for Elephant Flow Detection in SDN,” 2022, doi:

10.1109/ICOA55659.2022.9934652.

[19] A. H. Maw, “Traffic Engineering in Software-Defined Networking (

SDN),” vol. 3, no. 5, pp. 1320–1323, 2019.

[20] Y. Lu et al., “SDTCP: Towards Datacenter TCP Congestion Control

with SDN for IoT Applications,” doi: 10.3390/s17010109.

[21] R. Mohammadi, S. Akleylek, A. Ghaffari, and A. Shirmarz,

“Taxonomy of traffic engineering mechanisms in software-defined

networks: a survey,” Telecommunication Systems, vol. 81, no. 3.

Springer, pp. 475–502, Nov. 01, 2022, doi: 10.1007/s11235-022-

00947-6.

[22] K. T. Dinh, S. Kukliński, T. Osiński, and J. Wytrębowicz, “Heuristic

traffic engineering for SDN,” J. Inf. Telecommun., vol. 4, no. 3, pp.

251–266, 2020, doi: 10.1080/24751839.2020.1755528.

118

[23] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee, “DevoFlow: Scaling flow management for high-

performance networks,” in Proceedings of the ACM SIGCOMM

2011 Conference, SIGCOMM’11, 2011, pp. 254–265, doi:

10.1145/2018436.2018466.

[24] P. Dymora, M. Mazurek, and D. Strzałka, “Computer network traffic

analysis with the use of statistical self-similarity factor,” Ann. UMCS

Inform. AI XIII, vol. 2, pp. 69–81, 2013, doi: 10.2478/v10065-012-

0040-0.

[25] F. Pacheco et al., “Towards the Deployment of Machine Learning

Solutions in Network Traffic Classification: A Systematic Survey,”

IEEE Commun. Surv. Tutorials, vol. 21, no. 2, pp. 1988–2014, 2019,

doi: 10.1109/COMST.2018.2883147.

[26] D. Rui, Xu and W., “survey of clustering algorithms,” IEEE Trans.

Neural Netw., vol. 16, pp. 269--298, 2009.

[27] P. Berkhin, “A Survey of Clustering Data Mining Techniques,”

Kogan, Jacob; Nicholas, Charles; Teboulle, Marc Group.

Multidimens. Data,Springer Press, pp. 25–72, 2011.

[28] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data

Clustering Method for Very Large Databases,” SIGMOD Rec. (ACM

Spec. Interes. Gr. Manag. Data), vol. 25, no. 2, pp. 103–114, 1996,

doi: 10.1145/235968.233324.

119

[29] M. Kiran and A. Chhabra, “Understanding flows in high-speed

scientific networks: A Netflow data study,” Futur. Gener. Comput.

Syst., vol. 94, pp. 72–79, 2019, doi: 10.1016/j.future.2018.11.006.

[30] B. Suter, T. V. Lakshman, D. Stiliadis, and A. K. Choudhury, “Design

considerations for supporting TCP with per-flow queueing,” Proc. -

IEEE INFOCOM, vol. 1, pp. 299–306, 1998, doi:

10.1109/infcom.1998.659666.

[31] N. Gude et al., “NOX: Towards an Operating System for Networks,”

ACM SIGCOMM Comput. Commun. Rev. e Submitt. to CCR, vol. 38,

no. 3, pp. 105–110, 2008, Accessed: Sep. 03, 2019. [Online].

Available: http://www.noxrepo.org.

[32] A. J. and R. Dubes, “Algorithms for Clustering Data,” New Jersey,

2011.

[33] P. J. F. A. K. Jain, M. N. Murtyand, “Data Clustering: A Review,” ACM

Comput. Surv., vol. 31, pp. 264–324, 2012.

[34] R. Ben Basat, G. Einziger, R. Friedman, and Y. Kassner, Optimal

elephant flow detection. Institute of Electrical and Electronics

Engineers Inc., 2017.

[35] J. Alkenani and K. Nassar, “Network Monitoring Measurements for

Quality of Service: A Review,” Iraqi J. Electr. Electron. Eng., vol. 18,

no. 2, pp. 33–42, 2022, doi: 10.37917/ijeee.18.2.5.

[36] G. Martinovic, B. Petrisevac, and D. Zagar, “Monitoring and

120

measurement of computer network performance,” Teh. Vjesn., vol.

17, no. 3, pp. 317–326, 2010, [Online]. Available:

http://www.scopus.com/inward/record.url?eid=2-s2.0-

79951988229&partnerID=40&md5=c1913a7e7a20d4942b5ebed3

666e5278.

[37] L. H. Zhiwei Cen, “Measurement and Analysis of Ip,” no. March

2003, 2016.

[38] A. D. Orcesi, D. M. Frangopol, and S. Kim, “Network Performance

Measurement and Monitoring,” Eng. Struct., vol. 1, pp. 1–14, 2009,

doi: 10.1016/j.engstruct.2009.11.009.

[39] ITU-T, “General Aspects of Quality of Service and Network

Performance, Including ISDNs, ITU. I.350,” 1993.

[40] A. Hanemann, A. Liakopoulos, M. Molina, and D. M. Swany, “A

study on network performance metrics and their composition,”

Campus-Wide Inf. Syst., vol. 23, no. 4, pp. 268–282, 2006, doi:

10.1108/10650740610704135.

[41] A. A.Obiniyi, M. B. Soroyewun, and M. M. Abur, “New Innovations

in Performance Analysis of Computer Networks: A Review,” Int. J.

Appl. Inf. Syst., vol. 6, no. 8, pp. 1–10, 2014, doi: 10.5120/ijais14-

451085.

[42] M. Soysal and E. G. Schmidt, “Machine learning algorithms for

accurate flow-based network traffic classification: Evaluation and

121

comparison,” Perform. Eval., vol. 67, no. 6, pp. 451–467, 2010, doi:

10.1016/j.peva.2010.01.001.

[43] S. H. Yoon, J. S. Park, and M. S. Kim, “Behavior signature for fine-

grained traffic identification,” Appl. Math. Inf. Sci., vol. 9, no. 2, pp.

523–534, 2015, doi: 10.12785/amis/092L27.

[44] M. Shen et al., “Machine Learning-Powered Encrypted Network

Traffic Analysis: A Comprehensive Survey,” IEEE Commun. Surv.

Tutorials, vol. 25, no. 1, pp. 791–824, 2022, doi:

10.1109/COMST.2022.3208196.

[45] N. Alqudah and Q. Yaseen, “Machine Learning for Traffic Analysis:

A Review,” Procedia Comput. Sci., vol. 170, pp. 911–916, 2020, doi:

10.1016/j.procs.2020.03.111.

[46] O. Aouedi, K. Piamrat, S. Hamma, and J. K. M. Perera, “Network

traffic analysis using machine learning: an unsupervised approach

to understand and slice your network,” Ann. des Telecommun.

Telecommun., vol. 77, no. 5–6, pp. 297–309, 2022, doi:

10.1007/s12243-021-00889-1.

[47] H. Luo, C. Liu, and Y. Liang, “A SDN-based Testbed for Underwater

Sensor Networks,” ACM Int. Conf. Proceeding Ser., no. April, 2019,

doi: 10.1145/3321408.3321410.

[48] A. Bulashenko, S. Piltyay, O. Bulashenko, and A. Polishchuk, “New

Traffic Model of M2M Technology in 5G Wireless Sensor Networks;

122

New Traffic Model of M2M Technology in 5G Wireless Sensor

Networks,” 2020 IEEE 2nd Int. Conf. Adv. Trends Inf. Theory, 2020,

doi: 10.1109/ATIT50783.2020.9349305.

[49] G. A. Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia Smith,

“Plumber: Diagnosing and Removing Performance Bottlenecks in

Machine Learning Data Pipelines,” Proc. Mach. Learn. Syst., vol. 4,

2022.

[50] M. H. Fortier PJ, Computer Systems Performance Evaluation and

Prediction. Butterworth-Heinemann:USA, 2003.

[51] G. Ruth, “Traffic Flow Measurement: Architecture,” pp. 1–48, 1999.

[52] A. Us, “Active vs . Passive network monitoring : an i f Navigate :,”

vol. 474767, pp. 1–5, 2018, [Online]. Available:

https://www.irisns.com/active-vs-passive-network-monitoring-an-

infographic/.

[53] T. C. Luz, G. A. Nunez, C. B. Margi, and F. L. Verdi, “In-network

performance measurements for Software Defined Wireless Sensor

Networks; In-network performance measurements for Software

Defined Wireless Sensor Networks,” 2019 IEEE 16th Int. Conf.

Networking, Sens. Control, 2019.

[54] M. Mainuddin, Z. Duan, Y. Dong, S. Salman, and T. Taami, “IoT

Device Identification Based on Network Traffic Characteristics,” pp.

6067–6072, 2023, doi: 10.1109/globecom48099.2022.10001639.

123

[55] A. Montieri, G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A.

Pescapè, “Packet-level prediction of mobile-app traffic using

multitask Deep Learning,” Comput. Networks, vol. 200, p. 108529,

Dec. 2021, doi: 10.1016/J.COMNET.2021.108529.

[56] G. Aceto et al., “Characterization and Prediction of Mobile-App

Traffic Using Markov Modeling,” IEEE Trans. Netw. Serv. Manag.,

vol. 18, no. 1, 2021, doi: 10.1109/TNSM.2021.3051381.

[57] M. Mainuddin, Z. Duan, and Y. Dong, “Network Traffic

Characteristics of IoT Devices in Smart Homes; Network Traffic

Characteristics of IoT Devices in Smart Homes,” 2021, doi:

10.1109/ICCCN52240.2021.9522168.

[58] R. Roy Chowdhury, S. Aneja, N. Aneja, and P. E. Abas, “Packet-level

and IEEE 802.11 MAC frame-level network traffic traces data of the

D-Link IoT devices,” Data Br., vol. 37, Aug. 2021, doi:

10.1016/J.DIB.2021.107208.

[59] K. Thompson, G. J. Miller, and R. Wilder, “Wide-Area Internet

Traffic Patterns and Characteristics (Extended Version),” Network,

IEEE, vol. 11, no. 6, pp. 1–28, 1997, doi: 10.1109/65.642356.

[60] A. W. Moore and D. Zuev, “Internet traffic classification using

bayesian analysis techniques,” Proc. 2005 ACM SIGMETRICS Int.

Conf. Meas. Model. Comput. Syst. - SIGMETRICS ’05, vol. 33, no. 1,

p. 50, 2005, doi: 10.1145/1064212.1064220.

124

[61] R. Bhattacharjee and G. Santhosh Kumar, “User characterization

through network flow analysis; User characterization through

network flow analysis,” 2016, doi: 10.1109/ICDSE.2016.7823965.

[62] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z. L. Zhang, “A

modular machine learning system for flow-level traffic classification

in large networks,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1,

Mar. 2012, doi: 10.1145/2133360.2133364.

[63] M. J. Vargas-Muñoz et al., “Classification of network anomalies in

flow level network traffic using Bayesian networks; Classification of

network anomalies in flow level network traffic using Bayesian

networks,” 2018, doi: 10.1109/CONIELECOMP.2018.8327205.

[64] Z. A. G. H. Shaikh, C. Science, and C. Science, “An Overview of

Network Traffic Classification Methods,” Int. J. Recent Innov. Trends

Comput. Commun., vol. 3, no. 2, pp. 482–488, 2015.

[65] A. W. Moore and K. Papagiannaki, “Toward the accurate

identification of network applications,” Passiv. Act. Netw. Meas.,

vol. 3431, pp. 41–54, 2005, doi: 10.1007/978-3-540-31966-5_4.

[66] A. Madhukar and C. Williamson, “A Longitudinal Study of P2P

Traffic Classification,” 14th IEEE Int. Symp. Model. Anal. Simul., pp.

179–188, 2006, doi: 10.1109/MASCOTS.2006.6.

[67] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network

identification of p2p traffic using application signatures,” Proc. 13th

125

Conf. World Wide Web - WWW ’04, p. 512, 2004, doi:

10.1145/988672.988742.

[68] O. N. Networking, “of Wide-Area TCP Connections,” Methodology,

vol. 2, no. 4, pp. 316–336, 1994.

[69] C. Dewes and M. Tu, “An A nalysis of I nternet C hat S ystems,” pp.

51–64.

[70] T. T. T. Nguyen and G. Armitage, “A survey of techniques for

internet traffic classification using machine learning,” Commun.

Surv. Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008, doi:

10.1109/SURV.2008.080406.

[71] R. Kumar and T. Kaur, “Machine Learning based Traffic

Classification using Low Level Features and Statistical Analysis,” Int.

J. Comput. Appl., vol. 108, no. 12, pp. 6–13, 2014, doi:

10.5120/18961-0290.

[72] I. H. Witten, E. Frank, and M. a Hall, Data Mining: Practical Machine

Learning Tools and Techniques (Google eBook). 2011.

[73] H. Singh, “Performance Analysis of Unsupervised Machine Learning

Techniques for Network Traffic Classification,” 2015 Fifth Int. Conf.

Adv. Comput. Commun. Technol., pp. 401–404, 2015, doi:

10.1109/ACCT.2015.54.

[74] F. Behrad and M. Saniee Abadeh, “An overview of deep learning

methods for multimodal medical data mining,” Expert Syst. Appl.,

126

vol. 200, no. April, p. 117006, 2022, doi:

10.1016/j.eswa.2022.117006.

[75] S. Moraboena, G. Ketepalli, and P. Ragam, “A deep learning

approach to network intrusion detection using deep autoencoder,”

Rev. d’Intelligence Artif., vol. 34, no. 4, pp. 457–463, 2020, doi:

10.18280/ria.340410.

[76] X. Yin, G. Wu, J. Wei, Y. Shen, H. Qi, and B. Yin, “Deep Learning on

Traffic Prediction: Methods, Analysis, and Future Directions,” IEEE

Trans. Intell. Transp. Syst., vol. 23, no. 6, pp. 4927–4943, 2022, doi:

10.1109/TITS.2021.3054840.

[77] I. H. Sarker, “Deep Learning: A Comprehensive Overview on

Techniques, Taxonomy, Applications and Research Directions,” SN

Computer Science, vol. 2, no. 6. Springer Singapore, 2021, doi:

10.1007/s42979-021-00815-1.

[78] L. Deng, “A tutorial survey of architectures, algorithms, and

applications for deep learning,” APSIPA Trans. Signal Inf. Process.,

vol. 3, 2014, doi: 10.1017/ATSIP.2013.99.

[79] Z. M. Fadlullah et al., “State-of-the-Art Deep Learning: Evolving

Machine Intelligence Toward Tomorrow’s Intelligent Network

Traffic Control Systems,” IEEE Commun. Surv. Tutorials, vol. 19, no.

4, pp. 2432–2455, 2017, doi: 10.1109/COMST.2017.2707140.

[80] D. P and G. C, “A systematic review on machine learning and deep

127

learning techniques in cancer survival prediction,” Prog. Biophys.

Mol. Biol., vol. 174, pp. 62–71, 2022, doi:

10.1016/j.pbiomolbio.2022.07.004.

[81] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-

Nemrat, and S. Venkatraman, “Deep Learning Approach for

Intelligent Intrusion Detection System,” doi:

10.1109/ACCESS.2019.2895334.

[82] G. Aceto, D. Ciuonzo, S. Member, A. Montieri, G. Student Member,

and A. Pescapé, “Mobile Encrypted Traffic Classification Using Deep

Learning: Experimental Evaluation, Lessons Learned, and

Challenges,” IEEE Trans. Netw. Serv. Manag., vol. 16, no. 2, p. 445,

2019, doi: 10.1109/TNSM.2019.2899085.

[83] Z. Wang, “The Applications of Deep Learning on Traffic

Identification,” Black Hat USA, 2015, Accessed: May 15, 2023.

[Online]. Available:

https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-

2015/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-

Identification-wp.pdf.

[84] T. P. Oliveira, J. S. Barbar, and A. S. Soares, “Multilayer perceptron

and stacked autoencoder for Internet traffic prediction,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 8707 LNCS, pp. 61–71, 2014, doi:

10.1007/978-3-662-44917-2_6/COVER.

128

[85] S. Garg et al., “A Hybrid Deep Learning-Based Model for Anomaly

Detection in Cloud Datacenter Networks,” IEEE Trans. Netw. Serv.

Manag., vol. 16, no. 3, 2019, doi: 10.1109/TNSM.2019.2927886.

[86] R.-H. Hwang, M.-C. Peng, C.-W. Huang, P.-C. Lin, and V.-L. Nguyen,

“An Unsupervised Deep Learning Model for Early Network Traffic

Anomaly Detection,” doi: 10.1109/ACCESS.2020.2973023.

[87] I. Ullah and Q. H. Mahmoud, “Design and Development of a Deep

Learning-Based Model for Anomaly Detection in IoT Networks,”

doi: 10.1109/ACCESS.2021.3094024.

[88] A. Coates and A. Y. Ng, “Selecting receptive fields in deep

networks,” in Advances in Neural Information Processing Systems

24: 25th Annual Conference on Neural Information Processing

Systems 2011, NIPS 2011, 2011, pp. 2528–2536.

[89] S. Gao, H. Pang, P. Gallinari, J. Guo, and N. Kato, “A Novel

Embedding Method for Information Diffusion Prediction in Social

Network Big Data,” IEEE Trans. Ind. INFORMATICS, vol. 13, no. 4,

2017, doi: 10.1109/TII.2017.2684160.

[90] K. L. Dias, M. A. Pongelupe, W. M. Caminhas, and L. de Errico, “An

innovative approach for real-time network traffic classification,”

Comput. Networks, vol. 158, pp. 143–157, Jul. 2019, doi:

10.1016/J.COMNET.2019.04.004.

[91] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing,

129

“Learning from class-imbalanced data: Review of methods and

applications,” Expert Syst. Appl., vol. 73, pp. 220–239, May 2017,

doi: 10.1016/J.ESWA.2016.12.035.

[92] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:

Techniques and challenges,” Comput. Secur., vol. 70, pp. 238–254,

Sep. 2017, doi: 10.1016/J.COSE.2017.05.009.

[93] J. Zhang, Y. Y. Xiang, Y. Wang, W. Zhou, Y. Y. Xiang, and Y. Guan,

“Network traffic classification using correlation information,” IEEE

Trans. Parallel Distrib. Syst., vol. 24, no. 1, pp. 104–117, 2013, doi:

10.1109/TPDS.2012.98.

[94] H. Chen and L. Trajković, “Trunked radio systems: Traffic prediction

based on user clusters,” 1st Int. Symp. Wirel. Commun. Syst. 2004,

Proc. ISWCS ’04, pp. 76–80, 2004, doi:

10.1109/iswcs.2004.1407212.

[95] J. Zhang, Y. Xiang, W. Zhou, and Y. Wang, “Unsupervised traffic

classification using flow statistical properties and IP packet

payload,” J. Comput. Syst. Sci., vol. 79, no. 5, pp. 573–585, 2013,

doi: 10.1016/j.jcss.2012.11.004.

[96] G. Z. Lin, Y. Xin, X. X. Niu, and H. B. Jiang, “Network traffic

classification based on semi-supervised clustering,” J. China Univ.

Posts Telecommun., vol. 17, no. SUPPL. 2, pp. 84–88, 2010, doi:

10.1016/S1005-8885(09)60577-X.

130

[97] M. Zulfadhilah, Y. Prayudi, and I. Riadi, “Cyber Profiling Using Log

Analysis And K-Means Clustering,” Int. J. Adv. Comput. Sci. Appl.,

vol. 7, no. 7, pp. 430–435, 2016, doi: 10.14569/ijacsa.2016.070759.

[98] S. Rajagopal, “CUSTOMER DATA CLUSTERING USING DATA MINING

TECHNIQUE,” Int. J. Database Manag. Syst. (IJDMS, vol. 3, no. 4,

Dec. 2011, doi: 10.5121/ijdms.2011.3401.

[99] G. Wang, X. Zhang, S. Tang, H. Zheng, and B. Y. Zhao, “Unsupervised

Clickstream Clustering for User Behavior Analysis,” Proc. 2016 CHI

Conf. Hum. Factors Comput. Syst. - CHI ’16, pp. 225–236, 2016, doi:

10.1145/2858036.2858107.

[100] N. Huidrom and N. Bagoria, “Clustering Techniques for the

Identification of Web User Session,” Int. J. Sci. Res. Publ., vol. 3, no.

1, pp. 1–4, 2013.

[101] R. Ranjan and G. Sahoo, “A New Clustering Approach for Anomaly

Intrusion Detection,” Int. J. Data Min. Knowl. Manag. Process, vol.

4, no. 2, p. 10, 2014, doi: 10.5121/ijdkp.2014.4203.

[102] D. Hock, M. Kappes, and B. Ghita, “A pre-clustering method to

improve anomaly detection,” ICETE 2016 - Proc. 13th Int. Jt. Conf.

E-bus. Telecommun., vol. 4, no. July, pp. 391–396, 2016, doi:

10.5220/0005953003910396.

[103] S.Shraddha, “Intrusion Detection using Artificial Neural Network,”

Adv. Neural Networks, Fuzzy Syst. Artif. Intell. Intrusion, no. 1, pp.

131

209–217, 2014.

[104] V. Kumar, H. Chauhan, and D. Panwar, “K-Means Clustering

Approach to Analyze NSL-KDD Intrusion Detection Dataset,” Int. J.

Soft Comput. Eng., vol. 3, no. 4, pp. 1–4, 2013.

[105] G. Han, J. Jiang, N. Bao, L. Wan, and M. Guizani, “Routing protocols

for underwater wireless sensor networks,” IEEE Commun. Mag.,

vol. 53, no. 11, pp. 72–78, 2015, doi:

10.1109/MCOM.2015.7321974.

[106] L. Gouveia, P. Patrício, and A. De Sousa, “Hop-Constrained Node

Survivable Network Design : An Application to MPLS over WDM,”

pp. 3–4, 2008, doi: 10.1007/s11067-007-9038-3.

[107] J. Liu, Y. Li, M. Chen, W. Dong, and D. Jin, “SOFTWARE-DEFINED

INTERNET OF THINGS FOR SMART URBAN SENSING,” IEEE Commun.

Mag., vol. 53(9), no. September, pp. 55–63, 2015.

[108] O.N.F., “Software-defined networking: The new norm for

networks,” ONF White Pap., vol. 2, pp. 2–6, 2012, doi: citeulike-

article-id:12475417.

[109] J. Wickboldt, W. De Jesus, P. Isolani, C. Both, J. Rochol, and L.

Granville, “Software-defined networking: Management

requirements and challenges,” IEEE Commun. Mag., vol. 53, no. 1,

pp. 278–285, Jan. 2015, doi: 10.1109/MCOM.2015.7010546.

[110] A. Yassine, … H. R.-I. I. &, and undefined 2015, “Software defined

132

network traffic measurement: Current trends and challenges,”

ieeexplore.ieee.org, 2015, doi: 10.1109/MIM.2015.7066685.

[111] M. R. Parsaei, M. J. Sobouti, S. Raouf, and R. Javidan, “Network

Traffic Classification using Machine Learning Techniques over

Software Defined Networks,” 2017.

[112] A. Al-Jawad, R. Trestian, P. Shah, and O. Gemikonakli, “BaProbSDN:

A probabilistic-based QoS routing mechanism for Software Defined

Networks,” 2015, doi: 10.1109/NETSOFT.2015.7116128.

[113] M. Alkasassbeh, G. Al-Naymat, M. Alauthman, and E. Ednat,

“Optimizing Traffic Engineering in Software Defined Networking,”

no. November, 2018, [Online]. Available:

https://www.preprints.org/manuscript/201811.0486/v1.

[114] M. C. De Toro and C. Borrego, “A Software-Defined Networking

approach for congestion control in Opportunistic Networking,” Int.

Conf. Inf. Netw., vol. 2020-Janua, pp. 354–359, Jan. 2020, doi:

10.48550/arxiv.2001.05257.

[115] S. T. V. Pasca, S. S. P. Kodali, and K. Kataoka, “AMPS: Application

aware multipath flow routing using machine learning in SDN,” 2017

23rd Natl. Conf. Commun. NCC 2017, 2017, doi:

10.1109/NCC.2017.8077095.

[116] P. Wang, S. C. Lin, and M. Luo, “A framework for QoS-aware traffic

classification using semi-supervised machine learning in SDNs,” in

133

Proceedings - 2016 IEEE International Conference on Services

Computing, SCC 2016, 2016, pp. 760–765, doi:

10.1109/SCC.2016.133.

[117] J. Chen, X. Zheng, and C. Rong, “Survey on software-defined

networking,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 9106, no. 1, pp. 115–

124, 2015, doi: 10.1007/978-3-319-28430-9_9.

[118] M. Cokic and I. Seskar, “Software defined network management for

dynamic smart GRID traffic,” Futur. Gener. Comput. Syst., vol. 96,

pp. 270–282, Jul. 2019, doi: 10.1016/J.FUTURE.2019.02.022.

[119] A. Stamou, G. Kakkavas, K. Tsitseklis, V. Karyotis, and S.

Papavassiliou, “Autonomic Network Management and Cross-Layer

Optimization in Software Defined Radio Environments,” doi:

10.3390/fi11020037.

[120] M. Aboubakar, M. Kellil, and P. Roux, “A review of IoT network

management: Current status and perspectives,” J. King Saud Univ.

- Comput. Inf. Sci., vol. 34, no. 7, pp. 4163–4176, Jul. 2022, doi:

10.1016/J.JKSUCI.2021.03.006.

[121] I. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A Roadmap for

Traffic Engineering in Software Defined Networks,” Comput.

Networks, no. June, pp. 1–27, 2014, doi:

10.1016/j.comnet.2014.06.002.

134

[122] W. Braun and M. Menth, “Software-Defined Networking Using

OpenFlow: Protocols, Applications and Architectural Design

Choices,” Futur. Internet, vol. 6, no. 2, pp. 302–336, 2014, doi:

10.3390/fi6020302.

[123] M. Alsaeedi, M. Murtadha Mohamad, and A. A. Al-Roubaiey,

“Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A

Survey,” doi: 10.1109/ACCESS.2019.2932422.

[124] M. Dash and H. Liu, “Feature selection for classification,” Intell.

Data Anal., vol. 1, no. 3, pp. 131–156, Jan. 1997, doi: 10.3233/IDA-

1997-1302.

[125] H. Liu and L. Yu, “Toward integrating feature selection algorithms

for classification and clustering,” IEEE Trans. Knowl. Data Eng., vol.

17, no. 4, pp. 491–502, 2005, doi: 10.1109/TKDE.2005.66.

[126] H. Fröhlich, O. Chapelle, and B. Schölkopf, “Feature Selection for

Support Vector Machines by Means of Genetic Algorithms,” Proc.

Int. Conf. Tools with Artif. Intell., pp. 142–148, 2003, doi:

10.1109/TAI.2003.1250182.

[127] I. Guyon, A. E.-J. of machine learning research, and undefined 2003,

“An introduction to variable and feature selection,” jmlr.org, vol. 3,

pp. 1157–1182, 2003.

[128] S.-W. Lin, K.-C. Ying, C.-Y. Lee, and Z.-J. Lee, “An intelligent

algorithm with feature selection and decision rules applied to

135

anomaly intrusion detection,” Appl. Soft Comput., vol. 12, pp.

3285–3290, 2012, doi: 10.1016/j.asoc.2012.05.004.

[129] J. T. de Souza, “Feature Selection with a General Hybrid Algorithm,”

Diss. Univ. Ottawa, no. August, 2004.

[130] A. Hashemi and M. B. Dowlatshahi, “MLCR: A Fast Multi-label

Feature Selection Method Based on K-means and L2-norm,” 2020,

doi: 10.1109/CSICC49403.2020.9050104.

[131] A. F. H. Alharan, H. K. Fatlawi, and N. S. Ali, “A cluster-based feature

selection method for image texture classification,” Indones. J.

Electr. Eng. Comput. Sci., vol. 14, no. 3, p. 1433, Jan. 2019, doi:

10.11591/IJEECS.V14.I3.PP1433-1442.

[132] S. Chormunge and S. Jena, “Correlation based feature selection

with clustering for high dimensional data,” J. Electr. Syst. Inf.

Technol., vol. 5, no. 3, pp. 542–549, Dec. 2018, doi:

10.1016/J.JESIT.2017.06.004.

[133] G. D’Angelo and F. Palmieri, “Network traffic classification using

deep convolutional recurrent autoencoder neural networks for

spatial–temporal features extraction,” J. Netw. Comput. Appl., vol.

173, p. 102890, Jan. 2021, doi: 10.1016/J.JNCA.2020.102890.

[134] M. Usama et al., “Unsupervised Machine Learning for Networking:

Techniques, Applications and Research Challenges,”

ieeexplore.ieee.org, 2019, doi: 10.1109/ACCESS.2019.2916648.

136

[135] I. H. Sarker, “Machine Learning: Algorithms, Real-World

Applications and Research Directions,” SN Comput. Sci., vol. 2, no.

3, May 2021, doi: 10.1007/S42979-021-00592-X.

[136] Cisco, “Cisco IOS NetFlow.”

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-

netflow/index.html (accessed Oct. 01, 2018).

[137] International Telecommunication Union, “Terms and Definitions

Related to Quality of Service and Network Performance Including

Dependability,” 1994.

[138] F. Pacheco et al., “Towards the deployment of machine learning

solutions in network traffic classification: A systematic survey,”

ieeexplore.ieee.org, vol. 21, no. 2, pp. 1988–2014, 2018, doi:

10.1109/COMST.2018.2883147ï.

[139] M. Lotfollahi et al., “Deep Packet: A Novel Approach For Encrypted

Traffic Classification Using Deep Learning,” Soft Comput., vol. 24,

no. 3, pp. 1999–2012, Feb. 2017, doi: 10.1007/S00500-019-04030-

2.

[140] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W.

Willinger, “Anatomy of a large european IXP,” SIGCOMM’12 - Proc.

ACM SIGCOMM 2012 Conf. Appl. Technol. Archit. Protoc. Comput.

Commun., pp. 163–174, 2012, doi: 10.1145/2342356.2342393.

[141] L. Guo and I. Matta, “The war between mice and elephants,” Int.

137

Conf. Netw. Protoc., pp. 180–188, 2001, doi:

10.1109/ICNP.2001.992898.

[142] A. Chhabra and M. Kiran, “Classifying Elephant and Mice Flows in

High-Speed Scientific Networks,” Prepr. Submitt. to INDIS Sept. 19,

2017, 2017.

[143] X. Wu and X. Yang, “DARD: Distributed adaptive routing for

datacenter networks,” in Proceedings - International Conference on

Distributed Computing Systems, 2012, pp. 32–41, doi:

10.1109/ICDCS.2012.69.

[144] W. Wang, Y. Sun, K. Zheng, M. A. Kaafar, D. Li, and Z. Li, “Concise

Paper: Freeway: Adaptively Isolating the Elephant and Mice Flows

on Different Transmission Paths,” 2014, doi:

10.1109/ICNP.2014.59.

[145] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop:

An autonomic QoS policy enforcement framework for software

defined networks,” 2013. doi: 10.1109/SDN4FNS.2013.6702548.

[146] A. Santos Da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-

Filho, “ATLANTIC: A framework for anomaly traffic detection,

classification, and mitigation in SDN,” Proc. NOMS 2016 - 2016

IEEE/IFIP Netw. Oper. Manag. Symp., no. Noms, pp. 27–35, 2016,

doi: 10.1109/NOMS.2016.7502793.

[147] R. Gonzalez, C. Soriente, and N. Laoutaris, “User profiling in the

138

time of HTTPS,” Proc. ACM SIGCOMM Internet Meas. Conf. IMC, vol.

14-16-Nove, pp. 373–379, 2016, doi: 10.1145/2987443.2987451.

[148] T. Mai, D. Ajwani, and A. Sala, “Profiling user activities with minimal

traffic traces,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9114, pp. 116–

133, 2015, doi: 10.1007/978-3-319-19890-3_9/COVER/.

[149] T. Bakhshi and B. Ghita, “OpenFlow-enabled user traffic profiling in

campus software defined networks,” in 2016 IEEE 12th

International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob), 2016, pp. 1–8.

[150] R. Thamilselvan, K. T. Selvi, R. R. Rajalaxmi, and E. Gothai,

“Multipath Routing of Elephant Flows in Data Centers Based on

Software Defined Networking,” Int. J. Eng. Adv. Technol., vol. 9, no.

2, pp. 2714–2717, 2019, doi: 10.35940/ijeat.b3258.129219.

[151] S. Tomovic, N. Lekic, I. Radusinovic, and G. Gardasevic, A new

approach to dynamic routing in SDN networks. IEEE, 2016, pp. 1–6.

[152] L. A. D. Knob, R. P. Esteves, L. Z. Granville, and L. M. R. Tarouco,

“Mitigating elephant flows in SDN-based IXP networks,” Proc. - IEEE

Symp. Comput. Commun., no. Noms, pp. 1352–1359, 2017, doi:

10.1109/ISCC.2017.8024712.

[153] S. Bavugi and V. Sahni, “Detection and Re-routing of elephant flows

in a Software Defined Networking to avoid traffic congestion,”

139

2018, Accessed: Jun. 25, 2022. [Online]. Available:

http://norma.ncirl.ie/3303/.

[154] H. T. Zaw and A. H. Maw, “Traffic management with elephant flow

detection in software defined networks (SDN),” Int. J. Electr.

Comput. Eng., vol. 9, no. 4, pp. 3203–3211, 2019, doi:

10.11591/ijece.v9i4.pp3203-3211.

[155] J. Reed, “What Is Hyper-V Manager and How Does It Work?”

https://www.nakivo.com/blog/what-is-hyper-v-manager-and-

how-does-it-work/ (accessed Apr. 02, 2019).

[156] M. Hamdan et al., “DPLBAnt: Improved load balancing technique

based on detection and rerouting of elephant flows in software-

defined networks,” Comput. Commun., vol. 180, pp. 315–327,

2021, doi: 10.1016/j.comcom.2021.10.013.

[157] Q. Fu, E. Sun, E. Sun, K. Meng, M. Li, and Y. Zhang, “Deep Q-Learning

for Routing Schemes in SDN-Based Data Center Networks,” IEEE

Access, vol. 8, pp. 103491–103499, 2020, doi:

10.1109/ACCESS.2020.2995511.

[158] M. Kiran, B. Mohammed, and N. Krishnaswamy, “DeepRoute:

Herding Elephant and Mice Flows with Reinforcement Learning,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 12081 LNCS, pp. 296–314, 2020,

doi: 10.1007/978-3-030-45778-5_20.

140

[159] C. Zhang, X. Wang, F. Li, and M. Huang, “NNIRSS: neural network-

based intelligent routing scheme for SDN,” Neural Comput. Appl.,

vol. 31, no. 10, pp. 6189–6205, Oct. 2019, doi: 10.1007/S00521-

018-3427-Z.

[160] D. Kreutz, F. Ramos, … P. V.-P. of the, and U. 2014, “Software-

defined networking: A comprehensive survey,” ieeexplore.ieee.org,

2014, Accessed: Jul. 18, 2022. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/6994333/.

[161] Z. Bu, B. Zhou, P. Cheng, K. Zhang, and Z. H. Ling, “Encrypted

Network Traffic Classification Using Deep and Parallel Network-in-

Network Models,” IEEE Access, vol. 8, pp. 132950–132959, 2020,

doi: 10.1109/ACCESS.2020.3010637.

[162] L. Yang, S. Fu, X. Zhang, S. Guo, Y. Wang, and C. Yang,

“FlowSpectrum: a concrete characterization scheme of network

traffic behavior for anomaly detection,” World Wide Web, vol. 25,

no. 5, pp. 2139–2161, 2022, doi: 10.1007/s11280-022-01057-8.

[163] Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I. , Ghorbani, A.A.,

“Characterization of Encrypted and VPN Traffic using Time-related

Features,” Proc. 2nd Int. Conf. Inf. Syst. Secur. Priv., pp. 407–414,

2016.

[164] M. Di Mauro and M. Longo, “Revealing encrypted WebRTC traffic

via machine learning tools; Revealing encrypted WebRTC traffic via

machine learning tools,” 2015.

141

[165] D. Bebortta, S. , Senapati, “Empirical characterization of network

traffic for reliable communication in IoT devices,” Secur. cyber-

physical Syst. Found. Appl., pp. 67–90, 2021.

[166] “TCPDUMP&LiBPCAP.” http://www.tcpdump.org/ (accessed Oct.

01, 2018).

[167] Shawn Ostermann, “tcptrace.” http://www.tcptrace.org/

(accessed Oct. 01, 2018).

[168] S. Ayesha, M. K. Hanif, and R. Talib, “Overview and comparative

study of dimensionality reduction techniques for high dimensional

data,” Inf. Fusion, vol. 59, pp. 44–58, 2020, doi:

10.1016/j.inffus.2020.01.005.

[169] D. Q. Zeebaree, H. Haron, A. Mohsin Abdulazeez, and S. R. M.

Zeebaree, “Combination of K-means clustering with Genetic

Algorithm: A review,” Int. J. Appl. Eng. Res., vol. 12, pp. 14238–

14245, 2017, Accessed: May 16, 2023. [Online]. Available:

http://www.ripublication.com.

[170] S. Khare and M. Totaro, “Big Data in IoT,” in 2019 10th International

Conference on Computing, Communication and Networking

Technologies, ICCCNT 2019, 2019, pp. 1–7, doi:

10.1109/ICCCNT45670.2019.8944495.

[171] M. A. Mohammed et al., “Neural network and multi-fractal

dimension features for breast cancer classification from ultrasound

142

images R,” Comput. Electr. Eng., vol. 70, pp. 871–882, 2018, doi:

10.1016/j.compeleceng.2018.01.033.

[172] M. Li, H. Wang, L. Yang, Y. Liang, Z. Shang, and H. Wan, “Fast hybrid

dimensionality reduction method for classification based on

feature selection and grouped feature extraction,” Expert Syst.

Appl., vol. 150, p. 113277, 2020, doi: 10.1016/j.eswa.2020.113277.

[173] S. Velliangiri, S. Alagumuthukrishnan, and S. I. Thankumar Joseph,

“A Review of Dimensionality Reduction Techniques for Efficient

Computation,” Procedia Comput. Sci., vol. 165, pp. 104–111, 2019,

doi: 10.1016/J.PROCS.2020.01.079.

[174] W. Wang, W.-G. Shen, Y.-X. Sun, B. Chen, and R. Zhu,

“Dimensionality reduction via adjusting data distribution density,”

2018.

[175] J. Stuckman, J. Walden, and R. Scandariato, “The Effect of

Dimensionality Reduction on Software Vulnerability Prediction

Models,” IEEE Trans. Reliab., vol. 66, no. 1, 2017, doi:

10.1109/TR.2016.2630503.

[176] Q. Fournier and D. Aloise, “Empirical comparison between

autoencoders and traditional dimensionality reduction methods,”

in Proceedings - IEEE 2nd International Conference on Artificial

Intelligence and Knowledge Engineering, AIKE 2019, 2019, pp. 211–

214, doi: 10.1109/AIKE.2019.00044.

143

[177] D. Hai Hoang and H. Duong Nguyen, “A PCA-based method for IoT

network traffic anomaly detection; A PCA-based method for IoT

network traffic anomaly detection,” 2018, doi:

10.23919/ICACT.2018.8323766.

[178] K. Keerthi Vasan and B. Surendiran, “Dimensionality reduction

using Principal Component Analysis for network intrusion

detection,” Perspect. Sci., vol. 8, pp. 510–512, Sep. 2016, doi:

10.1016/J.PISC.2016.05.010.

[179] J. Almotiri, K. Elleithy, and A. Elleithy, “Comparison of Autoencoder

and Principal Component Analysis Followed by Neural Network for

E-Learning Using Handwritten Recognition,” 2017, doi:

10.1109/LISAT.2017.8001963.

[180] Z. Wang, D. Han, M. Li, H. Liu, and M. Cui, “The abnormal traffic

detection scheme based on PCA and SSH,” Conn. Sci., vol. 2022, no.

1, pp. 1201–1220, 2022, doi: 10.1080/09540091.2022.2051434.

[181] V. L. Chetana, S. S. Kolisetty, and K. Amogh, “A Short Survey of

Dimensionality Reduction Techniques,” in Recent Advances in

Computer Based Systems, Processes and Applications, 2020, pp. 3–

14.

[182] J. Josse and F. Husson, “Selecting the number of components in

principal component analysis using cross-validation

approximations,” Comput. Stat. Data Anal., vol. 56, no. 6, pp. 1869–

1879, Jun. 2012, doi: 10.1016/J.CSDA.2011.11.012.

144

[183] P. Pudil and J. Novovičová, “Novel Methods for Feature Subset

Selection with Respect to Problem Knowledge,” Featur. Extr.

Constr. Sel., pp. 101–116, 1998, doi: 10.1007/978-1-4615-5725-

8_7.

[184] L. Yu, H. L.-P. of the 20th international conference on, and

undefined 2003, “Feature selection for high-dimensional data: A

fast correlation-based filter solution,” aaai.org.

[185] W. M. Hartmann, “Dimension reduction vs. variable selection,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 3732 LNCS, pp. 931–938, 2006, doi:

10.1007/11558958_113.

[186] M. Z. F. Audah, T. S. Chin, Y. Zulfadzli, C. K. Lee, K. Rizaluddin, and

K. Audah, M.Z.F.; Chin, T.S.; Zulfadzli, Y.; Lee, C.K.; Rizaluddin,

“Towards Efficient and Scalable Machine Learning-Based QoS

Traffic Classification in Software-Defined Network,” Mob. Web

Intell. Inf. Syst. Springer Cham, Switz., pp. 217–229, 2019.

[187] G. S. A.A. Afuwape, Y. Xu, J.H. Anajemba, A. A. Afuwape, Y. Xu, J. H.

Anajemba, and G. Srivastava, “Performance evaluation of secured

network traffic classification using a machine learning approach,”

Comput. Stand. Interfaces,78, p. 103545, 2021, doi:

10.1016/j.csi.2021.103545.

[188] G. Dong, Y. Jin, S. Wang, W. Li, … Z. T.-2019 20th A.-P., and

undefined 2019, “Db-kmeans: an intrusion detection algorithm

145

based on dbscan and k-means,” ieeexplore.ieee.org, Accessed: Apr.

26, 2023. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8892910/.

[189] L. Zhang, S. Deng, and S. Li, “Analysis of power consumer behavior

based on the complementation of K-means and DBSCAN,” 2017

IEEE Conf. Energy Internet Energy Syst. Integr. EI2 2017 - Proc., vol.

2018-January, pp. 1–5, Jun. 2017, doi: 10.1109/EI2.2017.8245490.

[190] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, “Constrained K-

means Clustering with Background Knowledge,” in International

Conference on Machine Learning ICML, 2001, vol. pages, pp. 577–

584, Accessed: Jul. 23, 2022. [Online]. Available:

http://www.cs.cornell.edu/home/wkiri/cop-kmeans/.

[191] A. Nair, “Beginner’s Guide To K-Means Clustering,” 2019.

https://analyticsindiamag.com/beginners-guide-to-k-means-

clustering/ (accessed Jul. 26, 2022).

[192] L. Bai, X. Cheng, J. Liang, H. Shen, and Y. Guo, “Fast density

clustering strategies based on the k-means algorithm,” Pattern

Recognit., vol. 71, pp. 375–386, Nov. 2017, doi:

10.1016/j.patcog.2017.06.023.

[193] M. Vinicius Brito da Silva, J. Adilson Marques, L. Paschoal Gaspary,

and L. Zambenedetti Granville, “Identifying elephant flows using

dynamic thresholds in programmable IXP networks,” J. Internet

Serv. Appl. Silva al. J. Internet Serv. Appl., vol. 11, p. 10, 2020, doi:

146

10.1186/s13174-020-00131-6.

[194] W. Wang, Y. Sun, K. Salamatian, Z. Li, and Z. Li, “Adaptive Path

Isolation for Elephant and Mice Flows by Exploiting Path Diversity

in Datacenters,” IEEE Trans. Netw. Serv. Manag., vol. 13, no. 1,

2016, doi: 10.1109/TNSM.2016.2517087.

[195] M. Hamdan et al., “Flow-Aware Elephant Flow Detection for

Software-Defined Networks,” IEEE Access, vol. 8, pp. 72585–72597,

2020, doi: 10.1109/ACCESS.2020.2987977.

[196] H. Yahyaoui, S. Aidi, and M. F. Zhaní, “On Using Flow Classification

to Optimize Traffic Routing in SDN Networks; On Using Flow

Classification to Optimize Traffic Routing in SDN Networks,” 2020.

[197] M. Al-Saadi, A. Khan, V. Kelefouras, D. J. Walker, and B. Al-Saadi,

“Unsupervised Machine Learning-Based Elephant and Mice Flow

Identification,” Lect. Notes Networks Syst., vol. 284, pp. 357–370,

2021, doi: 10.1007/978-3-030-80126-7_27.

[198] W. Cheng, F. Ren, W. Jiang, K. Qian, T. Zhang, and R. Shu, “Isolating

Mice and Elephant in Data Centers,” 2016, Accessed: May 16, 2023.

[Online]. Available: http://arxiv.org/abs/1605.07732.

[199] P. K. Mondal, L. P. Aguirre Sanchez, E. Benedetto, Y. Shen, and M.

Guo, “A dynamic network traffic classifier using supervised ML for

a Docker-based SDN network,” Conn. Sci., vol. 33, no. 3, pp. 693–

718, 2021, doi: 10.1080/09540091.2020.1870437.

147

[200] D. Berrar, “Bayes’ theorem and naive bayes classifier,” Encycl.

Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. January

2018, pp. 403–412, 2018, doi: 10.1016/B978-0-12-809633-

8.20473-1.

[201] L. X. Liao, H.-C. C. Chao, and M.-Y. Y. Chen, “Intelligently modeling,

detecting, and scheduling elephant flows in software defined

energy cloud: A survey,” J. Parallel Distrib. Comput., vol. 146, pp.

64–78, 2020, doi: 10.1016/j.jpdc.2020.07.008.

[202] S. K. S. Keshari, V. Kansal, S. Kumar, S. K.-W. P. Communications,

undefined 2021, and S. Kumar, “A Systematic Review of Quality of

Services (QoS) in Software Defined Networking (SDN),” Wirel. Pers.

Commun., vol. 116, no. 3, pp. 2593–2614, Feb. 2021, doi:

10.1007/s11277-020-07812-2.

[203] M. Khattar Awad, A. Almutairi, M. Hassan Hafez Ahmed, A. F.

Almutairi, I. Ahmad, and M. Khattar Awad mohamad, “Machine

learning-based multipath routing for software defined networks,”

Springer, vol. 29, no. 2, p. 18, Apr. 2021, doi: 10.1007/s10922-020-

09583-4.

[204] Y. S. Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, “A survey of

networking applications applying the software defined networking

concept based on machine learning,” IEEE Access, pp. 95397–

95417, 2019.

[205] A. Nasir, T. Alyas, M. Asif, and M. N. Akhtar, “Reliability

148

Management Framework and Recommender System for Hyper-

converged Infrastructured Data Centers,” 2020.

[206] M. Apostolaki, E. Zürich, L. Vanbever, and M. Ghobadi, “FAB:

Toward Flow-aware Buffer Sharing on Programmable Switches,”

2019, doi: 10.1145/3375235.3375237.

[207] L. Wang et al., “Scheduling with machine-learning-based flow

detection for packet-switched optical data center networks,” J.

Opt. Commun. Netw., vol. 10, no. 4, pp. 365–375, 2018, doi:

10.1364/JOCN.10.000365.

[208] A. Alghadhban and B. Shihada, “FLight: A fast and lightweight

elephant-flow detection mechanism,” in Proceedings -

International Conference on Distributed Computing Systems, 2018,

vol. 2018-July, pp. 1537–1538, doi: 10.1109/ICDCS.2018.00161.

[209] E. T. B. Hong and C. Y. Wey, “An optimized flow management

mechanism in OpenFlow network,” in International Conference on

Information Networking, 2017, pp. 143–147, doi:

10.1109/ICOIN.2017.7899493.

[210] “Mininet.” http://mininet.org/.

[211] K. Kaur, J. Singh, N. G.-I. conference On, and U. 2014, “Mininet as

software defined networking testing platform,” researchgate.net,

2014, Accessed: Jun. 25, 2022. [Online]. Available:

https://www.researchgate.net/profile/Sundara-Kumar-

149

V/post/how_to_implement_optical_CDMA_using_optisystem_an

d_matlab_all_together/attachment/5e770593cfe4a7809f8a2b62/

AS%3A871773948096512%401584858514455/download/Proceed

ingsICCCS2014.pdf#page=156.

[212] R. Leão et al., “Using mininet for emulation and prototyping

software-defined networks,” ieeexplore.ieee.org, 2014, doi:

10.1109/ColComCon.2014.6860404.

[213] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In

VINI veritas: Realistic and controlled network experimentation,” in

Computer Communication Review, 2006, vol. 36, no. 4, pp. 3–14,

doi: 10.1145/1151659.1159916.

[214] M. Iqbal, K. Zhang, S. Iqbal, I. T.-I. J. C. S. Eng, and undefined 2018,

“A fast and reliable Dijkstra algorithm for online shortest path,”

pdfs.semanticscholar.org, vol. 5, p. 12, 2018, Accessed: Jun. 25,

2022. [Online]. Available:

https://pdfs.semanticscholar.org/b745/15006908078bc2efc27844

f85a351740b148.pdf.

[215] J. Yi and B. Parrein, “Multipath Extension for the Optimized Link

State Routing Protocol Version 2 (OLSRv2),” No. rfc8218, 2017,

Accessed: Jun. 17, 2023. [Online]. Available: https://www.rfc-

editor.org/rfc/rfc8218.

[216] O. T. Mathis M, Semke J, Mahdavi J, “The macroscopic behavior of

the TCP congestion avoidance algorithm,” ACM SIGCOMM Comput.

150

Commun. Rev., vol. 27, no. 3, pp. 67–82, 1997.

[217] Thomas J. Hacker; Brian D. Athey, “The End-to-End Performance

Effects of Parallel TCP Sockets on a Lossy WideArea Network,”

InProceedings 16th Int. Parallel Distrib. Process. Symp. 2002 Apr 15

IEEE., pp. 10-pp, 2002.

[218] F. Techniques and I. P. P. Selection, “02/12/12 RFC 5475 - Sampling

and Filtering Techniques f or IP Packet Selection,” pp. 1–46, 2018.

[219] X. Jiang, S. Liu, S. Naama, F. Bronzino, P. Schmitt, and N. Feamster,

“AC-DC: Adaptive Ensemble Classification for Network Traffic

Identification,” arxiv.org, 2023, Accessed: May 16, 2023. [Online].

Available: http://arxiv.org/abs/2302.11718.

[220] B. Nougnanke, Y. Labit, M. Bruyere, U. Aivodji, and S. Ferlin, “ML-

based Performance Modeling in SDN-enabled Data Center

Networks,” IEEE Trans. Netw. Serv. Manag., pp. 1–15, 2022, doi:

10.1109/TNSM.2022.3197789.

[221] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with

equal-cost-multipath: An algorithmic perspective,” IEEE/ACM

Trans. Netw., vol. 25, no. 2, pp. 779–792, 2017, doi:

10.1109/TNET.2016.2614247.

[222] E. Akin and T. Korkmaz, “Comparison of Routing Algorithms with

Static and Dynamic Link Cost in Software Defined Networking

(SDN),” IEEE Access, vol. 7, pp. 148629–148644, 2019, doi:

151

10.1109/ACCESS.2019.2946707.

[223] X. Feng and H. Chengde, “A Fault-Tolerant Routing Scheme in

Dynamic Networks,” J. Comput. Sci. Technol, vol. 16, no. 4, 2001.

[224] X. You et al., “Toward Packet Routing With Fully Distributed

Multiagent Deep Reinforcement Learning,” SYSTEMS, vol. 52, no. 2,

p. 855, 2022, doi: 10.1109/TSMC.2020.3012832.

[225] E. Papadogiannaki and S. Ioannidis, “A Survey on Encrypted

Network Traffic Analysis Applications, Techniques, and

Countermeasures,” ACM Comput. Surv., vol. 54, no. 6, 2021, doi:

10.1145/3457904.

[226] P. Wang, X. Chen, F. Ye, and Z. Sun, “A Survey of Techniques for

Mobile Service Encrypted Traffic Classification Using Deep

Learning,” IEEE Access, vol. 7, pp. 54024–54033, 2019, doi:

10.1109/ACCESS.2019.2912896.

[227] A. Gupta, “Vpn-nonvpn traffic classification using deep reinforced

naive bayes and fuzzy k-means clustering,” Proc. - 2021 IEEE 41st

Int. Conf. Distrib. Comput. Syst. Work. ICDCSW 2021, pp. 1–6, 2021,

doi: 10.1109/ICDCSW53096.2021.00008.

[228] M. Shen, J. Zhang, S. Chen, Y. Liu, and L. Zhu, “Machine learning

classification on traffic of secondary encryption,” 2019 IEEE Glob.

Commun. Conf. GLOBECOM 2019 - Proc., pp. 1–6, 2019, doi:

10.1109/GLOBECOM38437.2019.9013272.

152

[229] Z. Liu, D. Gao, Y. Liu, H. Zhang, and C. H. Foh, “An adaptive approach

for elephant flow detection with the rapidly changing traffic in data

center network,” Int. J. Netw. Manag., vol. 27, no. 6, pp. 1–13, Nov.

2017, doi: 10.1002/nem.1987.

153

Appendix-1 Table of Features

1. First _packet 2. last_packet 3. total_packets_a2b

4. total_packets_b2a 5. resets_sent_a2b 6. resets_sent_b2a

7. ack_pkts_sent_a2b 8. ack_pkts_sent_b2a 9. pure_acks_sent_a2b

10. pure_acks_sent_b2a 11. sack_pkts_sent_a2b 12. sack_pkts_sent_b2a

13. dsack_pkts_sent_a2b 14. dsack_pkts_sent_b2a 15. max_sack_blks.ack_a2b

16. max_sack_blks.ack_b2a 17. unique_bytes_sent_a2b 18. unique_bytes_sent_b2a

19. actual_data_pkts_a2b 20. actual_data_pkts_b2a 21. actual_data_bytes_a2b

22. actual_data_bytes_b2a 23. rexmt_data_pkts_a2b 24. rexmt_data_pkts_b2a

25. rexmt_data_bytes_a2b 26. rexmt_data_bytes_b2a 27. outoforder_pkts_a2b

28. outoforder_pkts_b2a 29. pushed_data_pkts_a2b 30. pushed_data_pkts_b2a

31. adv_wind_scale_a2b 32. adv_wind_scale_b2a 33. sacks_sent_a2b

34. sacks_sent_b2a 35. mss_requested_a2b 36. mss_requested_b2a

37. max_segm_size_a2b 38. max_segm_size_b2a 39. min_segm_size_a2b

40. min_segm_size_b2a 41. avg_segm_size_a2b 42. avg_segm_size_b2a

43. max_win_adv_a2b 44. max_win_adv_b2a 45. min_win_adv_a2b

46. min_win_adv_b2a 47. zero_win_adv_a2b 48. zero_win_adv_b2a

49. avg_win_adv_a2b 50. avg_win_adv_b2a 51. max_owin_a2b

52. max_owin_b2a 53. min_non.zero_owin_b2a 54. avg_owin_a2b

55. avg_owin_b2a 56. wavg_owin_a2b 57. wavg_owin_b2a

58. initial_window_bytes_a2b 59. initial_window_bytes_b2a 60. initial_window_pkts_a2b

61. initial_window_pkts_b2a 62. ttl_stream_length_a2b 63. ttl_stream_length_b2a

64. missed_data_a2b 65. missed_data_b2a 66. data_xmit_time_a2b

67. data_xmit_time_b2a 68. idletime_max_a2b 69. idletime_max_b2a

70. throughput_a2b 71. throughput_b2a 72. RTT_samples_a2b

73. RTT_samples_b2a 74. RTT_min_a2b 75. RTT_min_b2a

76. RTT_max_a2b 77. RTT_max_b2a 78. RTT_avg_a2b

79. RTT_avg_b2a 80. RTT_stdev_a2b 81. RTT_stdev_b2a

82. RTT_from_3WHS_a2b 83. RTT_from_3WHS_b2a 84. RTT_full_sz_smpls_a2b

85. RTT_full_sz_smpls_b2a 86. RTT_full_sz_min_a2b 87. RTT_full_sz_min_b2a

88. RTT_full_sz_max_a2b 89. RTT_full_sz_max_b2a 90. RTT_full_sz_avg_a2b

91. RTT_full_sz_avg_b2a 92. RTT.full_sz_stdev_a2b 93. RTT_full_sz_stdev_b2a

94. post.loss_acks_a2b 95. post.loss_acks_b2a 96. ambiguous_acks_a2b

97. ambiguous_acks_b2a 98. RTT_min_.last._a2b 99. RTT_min_.last._b2a

100. RTT_max_.last._a2b 101. RTT_max_.last._b2a 102. RTT_avg_.last._a2b

103. RTT_avg_.last._b2a 104. RTT_sdv_.last._a2b 105. RTT_sdv_.last._b2a

106. segs_cum_acked_a2b 107. segs_cum_acked_b2a 108. duplicate_acks_a2b

109. duplicate_acks_b2a 110. triple_dupacks_a2b 111. triple_dupacks_b2a

112. max_._retrans_a2b 113. max_._retrans_b2a 114. min_retr_time_a2b

115. min_retr_time_b2a 116. max_retr_time_a2b 117. max_retr_time_b2a

118. avg_retr_time_a2b 119. avg_retr_time_b2a 120. sdv_retr_time_a2b

121. sdv_retr_time_b2a 122. SYN_pkts_sent_a2b 123. FIN_pkts_sent_a2b

124. SYN_pkts_sent_b2a 125. FIN_pkts_sent_b2a 126. req_1323_ws_a2b

127. req_1323_ts_a2b 128. req_1323_ws_b2a 129. req_1323_ts_b2a

154

Appendix-2 List of publications

[1] Muna Al-Saadi, Bogdan V Ghita, Stavros Shiaeles, Panagiotis Sarigiannidis: A novel

approach for performance-based clustering and management of network traffic

flows, IWCMC, 978-1-5386-7747-6/19/$31.00 ©2019 IEEE.

[2] M. Al-Saadi, A. Khan, V. Kelefouras, D. J. Walker, and B. Al-Saadi: Unsupervised

Machine Learning-Based Elephant and Mice Flow Identification, Lect. Notes

Networks Syst., vol. 284, pp. 357–370, 2021, doi: 10.1007/978-3-030-80126-7_27.

[3] M. Al-Saadi, A. Khan, V. Kelefouras, D. J. Walker, and B. Al-Saadi: SDN-Based

Routing Framework for Elephant and Mice Flows Using Unsupervised Machine

Learning, Network, 3(1), pp.218-238, 2023.

