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Abstract –The critical temperature beyond which photosynthetic machinery in tropical trees 35 
begins to fail averages ~46.7°C (Tcrit) 1.  However, it remains unclear whether leaf temperatures 36 
experienced by tropical vegetation approach this threshold or soon will under climate change. 37 
We found that pantropical canopy temperatures independently triangulated from individual leaf 38 
thermocouples, pyrgeometers, and remote sensing (ECOSTRESS) have midday-peak 39 
temperatures of ~34°C during dry periods, with a long high-temperature tail that can exceed 40 
40°C.  Leaf thermocouple data from multiple sites across the tropics suggest that even within 41 
pixels of moderate temperatures, upper-canopy leaves exceed Tcrit 0.01% of the time. Further, 42 
upper-canopy leaf warming experiments (+2, 3, and 4°C in Brazil, Puerto Rico and Australia) 43 
increased leaf temperatures non-linearly with peak leaf temperatures exceeding Tcrit 1.3% of the 44 
time (11% >43.5°C, 0.3% >49.9°C).  Using an empirical model incorporating these dynamics 45 
(validated with warming experiment data), we found that tropical forests can withstand up to a 46 
3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, 47 
but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the impact of 48 
leaf death on tree death could drastically change this prediction.  The 4.0°C estimate is within the 49 
“worst case scenario” (RCP-8.5) of climate change predictions2 for tropical forests and therefore 50 
it is still within our power to decide (e.g., by not taking the RCP 6.0 or 8.5 route) the fate of these 51 
critical realms of carbon, water, and biodiversity 3,4. 52 

 53 

 54 
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 56 

Introduction 57 

Tropical forest mean temperatures are high, and their diel and seasonal variations are relative 58 
small,  thus even a small change in temperature could more greatly impact tropical plant species 59 
than a large temperature change in other global regions 5.  Average temperatures have risen by 60 
0.5 °C per decade in some tropical regions, and temperature extremes are becoming more 61 
pronounced (e.g. the El Niño of 2015 was 1.5 °C warmer than the El Niño of 1997)6,7.  Since 62 
temperatures in tropical forests are near or above the temperature optimum for photosynthesis8, 63 
further increased temperatures may close stomata, reducing transpirational cooling and exposing 64 
leaves to damaging temperatures.   More than 150 years ago, Sachs (1864) first reported that 65 
leaves from different plant species could withstand temperatures up to 50 °C, but would die at 66 
temperatures even slightly higher 9. In the era of climate change, this finding is still relevant. 67 
How close are forests to a high temperature threshold such as the one proposed by Sachs? 68 
Nowhere is such a question more pressing than in tropical forests, which serve as critical stores 69 
and sinks of carbon, play host to most of the world’s biodiversity, and may be more sensitive to 70 
increasing temperatures than other ecoregions 3,4.     71 

More recently, techniques to determine the ability for leaves to withstand high temperatures have 72 
advanced to focus on Tcrit, or the temperature at which irreversible damage to the photosynthetic 73 
machinery occurs.  Over the past few years, Tcrit data have become increasingly available for 74 
tropical forests, specifically measured as the temperature at which the ratio of variable 75 
fluorescence yield to maximum fluorescence yield (Fv/Fm), reflecting photosystem II 76 
functioning, starts to decline 1,10.  The decline in Fv/Fm is often followed by development of 77 
necrosis and leaf death11. Heat tolerance, measured by Tcrit, varies minimally among tropical 78 
species, mainly due to differences in growing environment and leaf traits.  For instance, among 79 
147 tropical tree species, the average Tcrit was found to be 46.7 °C (5th–95th percentile: 43.5–49.7 80 
°C) 1.  They also found that older tree lineages that experienced higher temperatures in the 81 
distant past did not have higher Tcrit and thus, were not better acclimated to higher temperatures 82 
today.   Across the planet, heat tolerance generally increases with higher mean growing 83 
temperatures.  For example, as average temperatures increase by ~20 °C from the Arctic to the 84 
Tropics, heat tolerance was 9 °C greater in tropical plants than arctic plants 12. Similarly, as 85 
temperatures decrease by 17 °C along a tropical elevation gradient, heat tolerance decreases by 86 
~2 °C 10.  Heat tolerance also increases with increasing leaf mass area (LMA), suggesting that 87 
heat tolerance may be linked to construction costs of the leaves and their mean leaf lifetime 1. 88 

With a much-improved understanding of Tcrit across the Tropics, it is now important to know 89 
how close tropical leaves are to experiencing and surpassing these critical temperatures.  In the 90 
past, tropical forest leaf and canopy temperatures were difficult and time consuming to measure, 91 
but new technologies like drones and thermal cameras are making the process much easier 13.  92 
More recently, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 93 
(ECOSTRESS) sensor on the International Space Station (ISS) can provide unique high temporal 94 
and spatial resolution measurements of land surface temperatures at the global scale 14.  95 
ECOSTRESS is an improvement over previous thermal satellite land surface temperature (LST) 96 
sensors because it has 5 spectral bands, a 70 m spatial resolution, and multiple diel overpass 97 
times, as well as improved algorithms.   98 



Here we use data from the new ECOSTRESS sensor to estimate peak pantropical forest canopy 99 
temperatures.  We begin by ground truthing the satellite data with tower-based pyrgeometer data.  100 
We then use these data to determine what causes variation in peak temperatures at the canopy 101 
scale and show similar trends driving peak temperatures across all of the Tropics.  Critically, we 102 
show that for a given canopy temperature, individual leaf temperatures display a “long tail” of 103 
values in the distribution, where the temperatures of a few individual leaves far exceed that of 104 
the overall canopy, and that this skewed distribution persists under leaf warming experiments of 105 
2, 3 and 4 °C.  Finally, we develop a simple empirical model to explore the implications of 106 
observed leaf temperatures on the fate of tropical forests under future climate change.  107 

  108 



 109 

Ground validation using pyrgeometer data- We first ground-truth ECOSTRESS and find similar 110 
peak temperatures between a 3-year, 30-minute averaged canopy temperature pyrgeometer 111 
dataset for a lowland tropical rainforest site near the Tapajos River (KM 83) in Brazil and a 112 
broad region (Fig ED1a red box) of the Amazon Basin (Fig 1a; r2 = 0.75, N=16, P < 0.0001, with 113 
ECOSTRESS having a slight cool bias (Fig ED2d) matching previous findings15).  The 114 
pyrgeometer data at that site indicate that midday sunny canopy temperatures in the dry season 115 
(July to Dec) averaged 33.5 °C compared to 31.0 °C in the wet season (Jan to June) (Fig 1a).  116 
Sampling frequency (Fig ED3), latent heat flux (Fig ED 2c), air temperature (Fig ED2b), and soil 117 
moisture (Fig ED2a) all impacted canopy temperatures. The tower-mounted pyrgeometer 118 
inherently averages spatially (over an 8,000 m2 footprint) and thus amalgamates individual peak 119 
leaf temperatures.  Therefore, we used leaf thermocouples on three canopy tree species at the 120 
same site to assess individual leaf temperatures. The mean temperatures for 11 individual sun-121 
exposed leaves over 54 sunny 20-minute periods also averaged ~33.2 °C (similar to that 122 
measured by the pyrgeometer) but with a “long tail” of high temperatures (> 40 °C) in the 123 
distribution (Fig 1b).   124 

We then aggregated similar upper-canopy leaf thermocouple datasets from Brazil1617, Puerto 125 
Rico18, Panama19 and Australia20 and all had “long tail distributions” (Fig 1c and ED4-5) with 126 
upper limits ~44 °C (43-48) (but see Fig ED5c for a cooler Atlantic forest example16).  When we 127 
zoom in on the long tail of each dataset (insets in Fig ED4-5), the curve shows statistical 128 
regularity, which allows us to estimate Tcrit as a percent of all canopy top leaves.  For instance, 129 
when all data are aggregated across sites, we estimate that 0.01% (0.03% >43.5°C) of all leaves 130 
will surpass Tcrit at least once a season (Fig 1c).  Although infrequent, the occurrence of extreme 131 
temperatures may have a catastrophic effect on a leaf’s physiology and may be thought of as a 132 
low probability, high impact event.   133 

We then aggregated data from three in situ upper-canopy warming experiments where leaves 134 
were heated by 2, 3, and 4 °C (in Brazil17, Puerto Rico18, and Australia20 respectively).  Warmed 135 
leaf peak temperatures ranged between 51-54 °C (Fig ED4), an increase of ~8 °C above ambient 136 
highs (mean ~45 °C-; Fig ED4).  The percentage of warmed leaves exceeding Tcrit at least once a 137 
year increased to 1.3% of all warmed leaves (11% >43.5°C, 0.3% >49.9°C) (Fig 1c), because of 138 
a non-linear relationship between leaf and air temperatures in the warming experiments (Fig 1d).  139 
During the Brazilian warming experiment, individual leaves exceeded Tcrit and T50 with 140 
noticeable signs of leaf necrosis, some for a duration of >8 mins (Fig ED6), and following this, 141 
net transpiration in warmed branches decreased significantly (P<0.0001) by an average of 27% 142 
(Fig 3a).  In the warming experiments, leaves exceeded Tcrit for extended periods (>8 minutes) 143 
0.2% (0.6% for >6 minutes) of the time over the course of a season (Fig ED6), events that can 144 
cause leaf browning and necrosis. 145 

Remote sensing data – We analyze ECOSTRESS LST data along with comparisons to VIIRS 146 
and MODIS, as well as SMAP soil moisture. At the landscape scale (Fig ED1 red box), peak 147 
ECOSTRESS LST (~36 °C) using all data corresponded with periods of low SMAP-measured 148 
soil moisture (~0.3 m3 m-3) (Fig 2a and b).  A linear extrapolation of our pyrgeometer data to a 149 
soil moisture of 0.3 m3 m-3 would predict a similar canopy temperature (~36 °C) (Fig ED2a).  For 150 
the warmest datapoint (Fig 2c and d), we then expanded the area (Fig ED1 blue box) and applied 151 
the highest quality data flags (~6% of the data used – see methods and SI for an extensive 152 



discussion of this), which reduced the median value to 34 °C. These average temperatures do not 153 
reflect the extremes, as 0.5% of the data is >38 °C and 0.1% is > 40 °C (Fig 2d and Table 1).  154 
We show the long tail distribution of temperatures (with a log10 scale) for Amazonia in Fig 2d.  155 
Using less restrictive or no quality flags generally resulted in higher tails > 40 °C (Table S2). We 156 
compare ECOSTRESS to other LST satellites (VIIRS, MODIS) (Fig ED9-10 and Table S1-2) 157 
and show similar results, but with greater fidelity and ability to capture long tails with 158 
ECOSTRESS.  LST for Central Africa (Fig 2e and Fig ED7) and SE Asia (Fig 2f and Fig ED8) 159 
during similar peak dry periods had similar peak temperatures (with data flags; Table 1).  We 160 
then estimated the highest temperatures during dry periods if temperature increased by 2 °C (to 161 
simulate climate change) and found that the percent of time above threshold temperatures would 162 
increase by an order of magnitude in all three regions. For example, the percent time Amazon 163 
canopies spend at temperatures ≥ 38.0 °C would increase from 0.5 to 5% and the percent time ≥ 164 
40.0 °C would increase from 0.1 to 1% (Table 1).      165 

Model results - An empirical model to explore the temperature thresholds of tropical trees was 166 
parameterized using the temperature distributions of warmed and non-warmed leaves (Fig 1c) 167 
from the combined tropical datasets (N=5). Assuming leaf death at Tcrit, and evaporative cooling 168 
as a linear function of the number of leaves, we show that enhanced warming could tip the forest 169 
towards the death of all leaves and possible tree mortality (Fig 3b and Table 2).  The modelled 170 
impact of warming on reduced transpirational cooling approximately matched the measured 171 
values; a 26 (± 28) % (N=30 simulations) reduction of modelled evaporative cooling with ~2 °C 172 
warming, versus a measured 27% average reduction after ~2 °C warming during the Brazilian 173 
warming experiment (Fig 3a).  The decline in transpiration occurred after leaf temperatures 174 
exceeding both Tcrit for >8 mins (Fig 3a inset) and T50.  Mean initial modelled canopy 175 
temperature was 33.7 ± 0.4 °C, matching the measured canopy average (33.5 °C) during peak 176 
temperature periods (sunny, midday). When run using the most likely parameters, including a 177 
Tcrit of 46.7 °C1, the model showed that most forests could withstand up to 3.9 ± 0.5 °C warming 178 
before the death of all leaves and potential tree death (n =30 simulation runs; Fig 3b and Table 179 
2), but a series of sensitivity studies give a temperature distribution between 2-8 °C (Table 2).  180 
Due to the stochastic nature of droughts in our model, total leaf loss ranged over a wide 181 
timespan.  For instance, if temperatures increase by 0.03 °C per year, we estimate that the mean 182 
time to leaf death would be 132 years, but extensive canopy leaf mortality could occur as early as 183 
102 years and as late as 163 years (Fig 3b and Table 2).   184 

 185 

186 



Discussion 187 

Several lines of remotely sensed, tower-based, and in situ evidence (ECOSTRESS, 188 
VIIRS, pyrgeometer, leaf thermocouples) suggest that hot periods in tropical forests with low 189 
soil moisture lead to canopy temperatures that average ~34 °C, with some pixels exceeding 40 190 
°C 8,21.  Even within a given LST pixel, there is a long tail distribution with individual leaf 191 
temperatures exceeding 40 °C.  Currently, 0.01% of upper canopy leaves from in situ 192 
measurements exceed Tcrit at least once a season (N=5 sites); warming experiments (N=3) 193 
suggest 1.4% will exceed Tcrit under future warming conditions (Figs S7-9).  We posit that 194 
capturing the higher tail temperatures may be important for future climate change predictions in 195 
tropical forests because as individual leaves exceed Tcrit, they die, thus reducing the net 196 
evaporative cooling potential for the canopy, as suggested in Fig 1d and 3a).  This is supported 197 
by branch warming experiments where noticeable signs of leaf damage and a reduction of 198 
transpiration by 27% followed periods where leaf temperatures exceeded Tcrit for extended 199 
periods (Fig 3a).  Certain tropical regions, such as the Southeast Amazon, may already be 200 
experiencing critical thresholds22.  Many recent large-scale drought studies have shown that the 201 
largest, most sun-exposed trees die disproportionately 23,24.  Moreover, there has been a recent 202 
increase in continental mortality rates across the Amazon basin (although not in the Congo basin 203 
and Table 1 shows the Congo basin experiences lower peak temperatures than the Amazon) 4 and 204 
carbon uptake across the basin has been reduced 25. We propose that high leaf temperatures may 205 
play a role (along with carbon starvation and hydraulic limitation34) in those recent mortality 206 
events.   207 

We make several assumptions in our model related to the broader tipping point results.  208 
The first key assumption is that within a given LST pixel, there is a long tail of high individual 209 
tropical leaf temperatures following Fig 1c.  This is supported by several leaf thermocouple 210 
datasets (N=5, Fig 1, (Figs S7-9)), all of which show a long-tail, as well as first principles (SI 211 
text).  Critically, warming experiments show non-linear trends (Fig 1c and d) where temperature 212 
increases of 2, 3, and 4 °C increase maximum leaf temperatures by larger amounts (+8.1 °C, +6.1 213 
°C, 8.0 °C, respectively; Fig ED4).  Many other studies have documented individual leaf 214 
temperatures approaching 46.7 °C 8,11,16,19.    215 

The second assumption is that water-stressed pantropical median canopy temperatures 216 
can average ~34 °C with a spatial tail exceeding 40 °C (Fig 2). In other words, RS data suggest 217 
entire canopies and forests getting very warm and (our first assumption) that within these pixels, 218 
there is a long-tail distribution of individual leaf temperatures.  ECOSTRESS and VIIRS LST 219 
data are both >1 °C warmer (34.7 and 33.9 °C) than older LST sensors like MODIS (32.7 °C) 220 
(ECOSTRESS has ~0.75 °C cold bias compared to VIIRS 15).   We assume ECOSTRESS and 221 
VIIRS will be more accurate than MODIS because there are more thermal bands, vegetation can 222 
be identified with emissivity (for ECOSTRESS and VIIRS, but not MODIS), and an improved 223 
algorithm 26 can accurately estimate temperatures within 1 K for many surfaces 27.  We further 224 
found that adding 2 °C (to replicate climate change) to the measured ECOSTRESS satellite data 225 
would increase the occurrence of high tail temperatures by about an order of magnitude (e.g., 226 
from 0.1 to 1% > 40 °C) (Table 1).  Therefore, the change in percentage of time when 227 
temperatures exceeded >40 °C in response to a simple addition of 2 °C was not a simple linear 228 
change.   229 

The third assumption is that leaves at temperatures > Tcrit will die, and thus stop 230 
contributing to future transpiration (although transpiration often stops at temperatures lower than 231 



Tcrit), and that the sum of evaporative cooling is a linear function of the total number of 232 
transpiring leaves.  Our Tcrit value is based on Slot et al. (2021), who found the mean (Tcrit) was 233 
46.7 °C (5th–95th percentile: 43.5–49.7 °C) and the temperature when Fv/Fm had decreased by 234 
50% (T50) was 49.9 °C (47.8–52.5 °C)1.  Tcrit variation is important because ~50% of the species 235 
from Slot et al. (2021) had a Tcrit <46.7 °C with negative consequences at lower temperatures for 236 
those species.  Incorporating this variation in our model demonstrated those consequences can 237 
exacerbate conditions for other species as they die and their evaporative cooling is reduced, 238 
leading to less future warming (~0.1 °C) needed to achieve leaf death when such variation is 239 
included (Table 2).  Branch warming experiments in Brazil showed large (27%) decreases in 240 
transpiration when leaves reached either T50 or Tcrit for an extended period (>8 minutes) (Fig 3).  241 
It was not possible to determine which (T50, extended Tcrit, or a different variable) was more 242 
critical for the decrease in transpiration in our dataset (but another recent study found leaf death 243 
when leaf temperatures exceeded Tcrit for between 10 and 40 minutes28).  If a longer time is 244 
necessary to exceed Tcrit prior to leaf death, Tcrit will be exceeded less often and our model 245 
suggests that the forest canopies could resist an additional 0.7 °C increase in air temperatures 246 
prior to leaf death (Table 2). Prior work had suggested that irreversible damage will often occur 247 
at 45–60 °C 29.   248 

Tcrit was the largest source of uncertainty in the model and changed the tipping point 249 
temperatures by between 2-8 °C (Table 2).  Tcrit has been adopted because it is relatively easy to 250 
measure and can be standardized across ecosystems.  However, the impact of Tcrit on plant 251 
hydraulics still needs more research30.  Other uncertainties include the importance of Tcrit vs T50 252 
on enzyme denaturation and how long exposure to high temperatures is needed for enzyme 253 
denaturation to occur1. We also assumed that Tcrit does not acclimate to warming—acclimation 254 
has been observed in temperate species31, but the few studies that examined acclimation in 255 
tropical species, found no, or very limited evidence for upregulation of Tcrit 11, 32 (although warm 256 
selected tropical trees in Biosphere 2 did show acclimation of Tcrit

33).  In a sensitivity study we 257 
allowed acclimation by enabling leaves to increase Tcrit by 0.5 °C or 1°C, which increased forest 258 
resistance to warming by similar amounts (by 0.5 °C and 1°C). 259 

An additional assumption was that if all leaves die at Tcrit, the tree will die. However, 260 
tropical trees may use non-structural carbohydrate (NSC) 34,35 reserves to reflush leaves in later 261 
years, but this is highly uncertain. Given these uncertainties, we made the simple assumption that 262 
leaf level Tcrit is a general signal of enzyme denaturation (supported by 36), which will have a 263 
range of other impacts including reducing evaporative cooling and possibly leading to tree death. 264 
It is clear that further studies are needed. However, in a sensitivity study, we tried to account for 265 
high NSCs by allowing trees to reflush an LAI of 2 (e.g. increase total LAI to 7) which slightly 266 
increased resilience by 0.2 °C (SI text).  We also assume that all sunlit leaves have an equal 267 
chance of dying, but leaf orientation likely impacts both leaf temperatures and Tcrit and only 268 
further studies may address this.   If the assumptions above are robust, then our model suggests 269 
that tropical forests may be approaching a high temperature threshold.   270 

How close are future predictions of temperature increases in tropical forests to our 271 
predictions of leaf death?   An ensemble of CMIP5 models (with similar results from CMIP637), 272 
the “worst case scenario” (RCP 8.5), predicts temperature increases of 3.3 ± 0.6 °C by  2081–273 
2100 for tropical regions with land regions heating by ~5 °C by 2181 in RCP 6.0 and by 2081 in 274 
RCP 8.5 2.  This level of climate change is within the range of our most likely scenario of 3.9 ± 275 
0.50 °C of temperature increases that lead to a tipping point.  However, the 4 °C is out of the 276 



range of the “best case scenario” (RCP 2.6) of 0.9 ± 0.3 °C, or 1.4 ± 0.5 °C for the land surface.  277 
Tree death could come earlier through a combination of mechanisms and their interactions (e.g., 278 
carbon starvation, hydraulic limitation, fire, etc.).  Further, even at lower temperatures, partial 279 
canopy death can negatively affect CO2 uptake feedbacks, which could accelerate climate change 280 
effects.  Our sensitivity study (Table 2) shows temperature ranges leading to leaf death between 281 
~ 2.0 and 8.1 °C (the lowest and highest scenarios plus error).  Scenario uncertainty due to the 282 
change in drought prevalence played a relatively small role, shifting our best estimate by ~0.4 283 
°C.  Most of this uncertainty is methodological (Tcrit value and high temperature duration), which 284 
could be reduced with further studies and method standardization of Tcrit measurements.   285 

Conclusion –Our work suggests that a tipping point in metabolic function in tropical forests 286 
could occur with 3.9 ± 0.5 °C of additional warming, which is more than expected for tropical 287 
forests under RCP 2.6, but less than under RCP 6.0 or 8.5.  We use Tcrit to simplify an 288 
enormously complex process and we want to emphasize that even our great uncertainty (2-8 °C) 289 
estimates may ignore critical feedbacks such as sensitivity of reproduction to high temperatures, 290 
hydraulic failure due to embolisms, and more generally, other unexplored positive feedback 291 
loops.  Recent literature suggests a resilience of tropical forests to how warming impacts carbon 292 
uptake 33 (but see 25) and long-term drought 38.  However, Tcrit acts as an absolute upper limit and 293 
it seems that, if our assumptions in the model are correct, crossing such a threshold is within the 294 
range of our most pessimistic future climate change scenarios (RCP 6.0 or 8.5). In addition, 295 
deforestation and fragmentation can amplify local temperature changes39. The combination of 296 
climate change and local deforestation may already be placing the hottest tropical forest regions 297 
close to, or even beyond, a critical thermal thresholds40. Therefore, our results suggest the 298 
combination of ambitious climate change mitigation goals and reduced deforestation can ensure 299 
that these important realms of carbon, water, and biodiversity3,4 stay below thermally critical 300 
thresholds.     301 

  302 
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Figures 400 

 401 

Fig 1 – In situ and warming experiment leaf temperatures compared to canopy 402 
temperatures - (A) Diurnal temperature patterns for the dry season (DS) for a region (SI Fig 1a) 403 
of the Amazon basin using ECOSTRESS data (green).  Average canopy (solid line) and 40 m air 404 
temperatures (circles) from the km 83 eddy covariance tower for the dry season (red) and the wet 405 
season (blue) for sunny periods (when solarin/solarin,max >90% for the hour). (B) A histogram of 406 
individual canopy top leaf thermocouples from 11 individual leaves from the same site as “A” 407 
over 54 sunny periods lasting 20 minutes (measurements taken every 2 min) and the average of 408 
these data (33.2 °C).  Tcrit is the temperature when the photosynthetic machinery breaks down 409 
and is shown as a red line. (C) We aggregated all leaf thermocouple data from SI Figure 7 for 410 
ambient (blue) and warmed leaves (red) and show the percentage of leaves at +2 (Brazil), +3 411 
(Puerto Rico), and +4 °C (Australia) warming that were >Tcrit.  (D) Air temperature versus leaf 412 
temperature for a warming experiment for individual leaves (red dots), average leaf temperatures 413 
(blue circles), and one-to-one line (blue dotted).  414 



 415 

Figure 2 –Remotely sensed peak canopy temperature across the tropics - Seasonal patterns 416 
of (A) soil moisture using SMAP and (B) canopy temperatures using ECOSTRESS for the 417 
Amazon basin (Fig ED1a red).  For the hot dry period shown by the arrows, we show a larger 418 
spatial distribution (Fig ED1a green) (C) and log10 histogram focusing on the long tail of the 419 
data (D) using only the highest quality data flag.  We show trends for periods of low soil 420 
moisture for (E) Southeast Asian region (Fig ED8) and (F) Central Africa (Fig ED7).  G shows a 421 
world map with focal areas boxed in red. 422 



 423 

Figure 3 – Modelled impact of future warming on tropical forests - (top) Warmed branch sap 424 
flow (N=9 branches) minus non-warmed (N=4 branches) sap flow (blue line)  ± propagated error 425 
(blue dotted line) for sunny (irradiance >1200 mmol m-2 s-1) midday periods (10:30–14:00 h 426 
local time) on six tree species using passive black plastic heaters in a heating experiment 427 
conducted at Floresta National do Tapajos, Brazil.  Maximum daily temperatures for individual 428 
leaves (red stippled line) from a co-occurring leaf warming experiment during the same time 429 
period.  Horizontal red lines indicate Tcrit (dashed) and T50 (dotted).  The subset figure shows the 430 
duration of warm periods for day 276 and 279 (marked as vertical red and blue lines).  Around 431 



this period (between 276 and 279) transpiration decreases in warmed branches relative to the 432 
non-warmed branches. (bottom) Dead leaves as a ratio of total leaves over time with climate 433 
change for 30 simulations (one color per simulation). (Inset) Diagram of our model showing 434 
impact of Tcrit on change in average canopy temperature as temperatures increase over time, 435 
where LH is latent heat.   Tree image is from canva.com under a free content license. 436 

 437 
 438 
 439 
 440 
 441 
 442 
Table 1– Current and future temperature extremes across the tropics.  The percent of time 443 
that canopy temperatures are estimated to exceed thresholds of ≥ 38.0, 40.0 and 45.0 °C for low 444 
soil moisture regions of the Amazon, Central Africa, and Borneo.  We then increase temperature 445 
by 2 °C to estimate the impact of climate change and show the same estimates for the three 446 
regions. Canopy temperatures are observed by ECOSTRESS and are limited to only the highest 447 
quality data.   448 
 449 
  ≥ 38.0 °C ≥ 40.0 °C ≥ 45.0 °C  

  Current +2 °C  Current +2 °C  Current +2 °C  
South America 0.50% 5% 0.10% 1% 0.00% 0.10% 

Central Africa 0.60% 2% 0.06% 0.60% 0% 0.01% 

SE Asia (Borneo) 3% 8% 1% 3% 0.01% 0.30% 
 450 
 451 

  452 



Table 2 –Results from model sensitivity studies. An individual-based model showing 453 
estimated amount of climate change under different scenarios before leaf death.  We first show 454 
results from the “most likely scenario”  with an LAI of 5, 10% drought probability, 46.7 °C Tcrit, 455 
Tcrit range=0, Tcrit duration=1, a soil moisture exponent of -33.6, and maximum evaporative 456 
cooling of 4.4 °C.  We then show the results of contrasting extreme scenarios as a means of a 457 
sensitivity analysis where we keep all other variables as in the “most likely scenario”, but vary 458 
the one mentioned. Temperature increase results represent means ± 1 SD, while time-scale 459 
results represent means and range in parentheses (n = 30 simulation runs).  460 

Most likely scenario 
(Tcrit=46.7) 

Drought Tcrit 
Tcrit range 

Tcrit 

duration 

Soil 
moisture 

coefficient 

Max 
evap 

cooling 

  LAI 5 20% 5% 45 °C 49.9 °C 
46.7 ±2 

°C  
>3 

periods 
-38.2 

3.7 °C 

Total 
temperature 
increase (°C) 

3.9 ± 
0.5 

3.6 ± 
0.7  

4.9 ± 
1.1 

2.6 ± 
0.6 

7.3 ± 
0.8 

3.9 ± 0.7 4.7 ± 0.8 4.1 ± 0.7 5.2 ± 0.5 

Time scale until 
leaf death 
(years) 

132 
(102-
163) 

120 
(88-
170) 

163 
(108 - 
238)  

89 
(69-
133) 

244 
(204-
300) 

131 (100 
- 185) 

159 
(129-
220) 

138 (91-
183) 

173 (145-
202) 

 461 
  462 



 463 

Methods 464 

Field Data - We estimate canopy temperature at the km 83 eddy covariance tower in the Tapajos 465 
region of Brazil 1–3 using a pyrgeometer (Kipp and Zonen, Delft, Netherlands) mounted at 64 m 466 
to measure upwelling longwave radiation (L↑ in W m-2) with an estimated radiative-flux 467 
footprint of 8,000 m2 4.  Data were collected every 2 seconds and averaged over 30-minute 468 
intervals between August 2001 and March 2004. We estimated canopy temperature with the 469 
following equation: 470 

Eq 1 – Canopy temperature (°C) = (L↑/(E*5.67e-8))^0.25-273.15 471 

We chose an emissivity value (E) of 0.98 for the tower data, as this was the most common value 472 
used in the ECOSTRESS data (SDS_Emis1-5 (ECO2LSTE.001) and the broader literature for 473 
tropical forests 5.  We compared canopy temperature derived from the pyrgeometer to eddy 474 
covariance derived latent heat fluxes (flux footprint ~1 km2), air temperature at 40 m, which is 475 
the approximate canopy height (model 076B, Met One, Oregon, USA; and model 107, 476 
Campbell Scientific, Logan, Utah, USA) and soil moisture at depths of 40 cm (model 477 
CS615, Campbell Scientific, Logan, Utah, USA).  Further details on instrumentation and 478 
eddy covariance processing can be found in 1,3.  This site was selectively logged, which had a 479 
minor overall impact on the forest 6, but did not affect any trees near the tower. 480 

Leaf thermocouple data - We measured canopy leaf temperature at a 30 m canopy walk-up tower 481 
between July to December of 2004 and July to December of 2005 at the same site. We initially 482 
placed 50 thermocouples on canopy-exposed leaves of Sextonia rubra, Micropholis sp., Lecythis 483 
lurida) (originally published in Doughty and Goulden 2008). Fine wire thermocouples (copper 484 
constantan 0.005 Omega, Stamford, CT) were attached to the underside of leaves by threading 485 
the wire through the leaf and inserting the end of the thermocouple into the abaxial surface. The 486 
thermocouples were wired into a multiplexer attached to a data logger (models AM25T and 23X, 487 
Campbell Scientific, Logan, UT, USA) and the data were recorded at 1 Hz.  Additional upper-488 
canopy leaf thermocouple data from Brazil7, Puerto Rico8, Panama9, Atlantic forest Brazil10 and 489 
Australia11, were generally collected in a similar manner.   490 
 491 
Satellite data - ECOSTRESS data (ECO2LSTE.001) – The ECOsystem Spaceborne Thermal 492 
Radiometer Experiment on Space Station (ECOSTRESS) mission is a thermal infrared (TIR) 493 
multispectral scanner with five spectral bands at 8.28, 8.63, 9.07, 10.6, and 12.05 µm.  The 494 
sensor has a native spatial resolution of 38 m x 68 m, resampled to 70 m x 70 m, and a swath 495 
width of 402 km (53). Data are collected from an average altitude of 400 ± 25 km on the 496 
International Space Station (ISS).  ECOSTRESS is an improvement over other thermal sensors 497 
because no other sensors provide TIR data with sufficient spatial, temporal, and spectral 498 
resolution to reliably estimate LST at the local-to-global scale for a diurnal cycle 12. To ensure 499 
the highest quality data, we used ECOSTRESS quality flag 3520, which identifies the best 500 
quality pixels (no cloud detected), a minimum-maximum difference (MMD) indicative of 501 
vegetation or water13, and nominal atmospheric opacity.  We accessed ECOSTRESS LST data 502 
through the AppEEARS website (https://lpdaac.usgs.gov/tools/appeears/) for the following 503 
products and periods: SDS_LST (ECO2LSTE.001) from a long longitudinal swath of the 504 
Amazon for 25 December 2018 to 20 July 2020 (SI Fig 1a red box) and then a larger area of the 505 



western Amazon for 18 September to 29 September 2019 (SI Fig 1a green box), Central Africa 506 
for 1 August to 30 August 2019 (SI Fig 1b), and SE Asia for 15 January to 30 February 2020 (SI 507 
Fig. 1c).  The dates were chosen as all ECOSTRESS data available at the start of the study for 508 
the smaller regions and for warm periods with low soil moisture for the larger areas.  We 509 
calculated “peak median,” which is defined as the average of the highest three medians of each 510 
granule (i.e., for the Amazon SI Fig. 1a, there were 934 granules) for each hour period. 511 

Comparison of LST data – We compared ECOSTRESS LST to VIIRS LST (VNP21A1D.001) 512 
and MODIS LST (MYD11A1.006). A more detailed comparison and description of these sensors 513 
can be found in Hulley et al 202114.  Details for the sensors and quality flags used are given in 514 
Table S1.  Broadly, G1 for ECOSTRESS and VIIRS is classified as vegetation (using emissivity) 515 
and of medium quality.  G2 is classified as vegetation, but of the highest quality.  MODIS 516 
landcover classifies this region as almost entirely broadleaf evergreen vegetation, but using 517 
MMD (emissivity) only 18% (VIIRS) and 12% (ECOSTRESS) of the data are classified as 518 
vegetation, rather than as soils and rocks (Table S2).  Therefore, we use the vegetation 519 
classification (from MMD) as a very conservative estimate of complete forest canopy cover and 520 
not farms, urban, or degraded forest where rocks or soils are more likely to appear to satellites.  521 

SMAP data – To estimate pantropical soil moisture, we use the Soil Moisture Active Passive 522 
(SMAP) sensor and the product Geophysical_Data_sm_rootzone (SPL4SMGP.005).  SMAP 523 
measurements provide remote sensing of soil moisture in the top 5 cm of the soil 15 and the L4 524 
products combine SMAP observations and complementary information from a variety of 525 
sources.  We accessed SMAP data from the AppEEARS website for the following products and 526 
periods: Amazon for 25 December 2018 to 20 July 2020 (SI Fig 1a), Central Africa for 25 527 
December 2019 to 20 July 2020 (SI Fig 1b), and Borneo for 25 December 2018 to 20 July 2020 528 
(SI Fig 1c). 529 

Warming experiments – For model validation, we used the results of three upper-canopy leaf 530 
and branch warming experiments of 2°C (Brazil)7, 3°C (Puerto Rico)8, and 4°C (Australia)11.  531 
The first experiment (Brazil), were 4 individual leaf resistant heaters on each of 6 different 532 
upper-canopy species at the Floresta National (FLONA) do Tapajos as part of the Large-Scale 533 
Biosphere–Atmosphere Ecology Program (LBA-ECO) in Santarem, Brazil14. On the same six 534 
species, black plastic passively heated branches by an average ~2°C.  Initially, heat balance sap 535 
flow sensors and the passive heaters were added to 40 branches, but we had confidence in the 536 
data from 9 heated and 4 control in the final analysis.  The second experiment (Puerto Rico) had 537 
two species (Ocotea sintenisii (Mez) Alain and Guarea guidonia (L.) Sleumer where leaves were 538 
heated by 3 °C at the Tropical Responses to Altered Climate Experiment (TRACE) canopy tower 539 
site at Sabana Field Research Station, Luquillo, Puerto Rico8.  The final experiment (Australia), 540 
which increased leaf temperatures by 4 °C, was conducted at Daintree Rainforest Observatory 541 
(DRO) in Cape Tribulation, Far North Queensland, Australia11. Leaf heaters were installed using 542 
a pair of 30-gauge copper-constantan thermocouples, one reference leaf and one heated with a 543 
target temperature differential of 4 °C.  There were two pairs in the upper canopy of each tree 544 
crown installed in 2-3 individuals across four species with the thermocouples installed on the 545 
underside of the leaves. Two absolute 36-gauge copper-constantan thermocouples were installed 546 
in each species to measure the leaf temperatures of the reference leaves. Thermocouple wires 547 



connected into an AM25T multiplexer from Campbell Scientific connected to a CR1000 548 
Campbell datalogger.  More details about the experiment and sensors can be found in 16. 549 

 550 

Model – We created a model of individual leaves on a tree (100 by 100 grid where each leaf is a 551 
pixel) using matlab (mathworks version 2022a) to estimate the upper limit of tropical canopy 552 
temperatures with projected changes in climate.  At the start of the simulation, we randomly 553 
applied the measured distribution (ambient Fig 1c) of canopy leaf temperatures >31.2 °C (chosen 554 
to give a mean canopy temperature of 33.2 ± 0.4 °C, matching the canopy average Fig 1b) to the 555 
entire grid.  Each year we increased the mean air temperatures by 0.03°C to simulate a warming 556 
planet. As air temperatures reached +2, 3 and 4°C, we applied the leaf temperature distributions 557 
(but subtracted out the air temperature increases) from the different warming experiments (+2°C 558 
(Brazil), +3°C (Puerto Rico), and +4°C (Australia), respectively (Fig ED4)).  We ran the model 559 
at a daily time step with leaves flushing once a year (all dead leaves reset to living each year).   560 

In addition, to take into account the effect of climate inter-annual variation - specifically drought, 561 
these mean canopy temperatures were further increased or decreased by deviations from mean 562 
maximum air temperatures at 40 m pulled each day from the Tapajos eddy covariance tower1–3 563 
and soil moisture at 40 cm depth  (m3 m-3) which controlled canopy temperatures following 564 
equation 2 (Fig ED3a).   565 

Eq 2 – Canopy temperature (°C)  = 46.5-33.6*soil moisture (m3 m-3)   566 
 567 
For example, in a non-drought year, on a day where max air temperatures were 0.1 °C higher 568 
than average and soil moisture was 0.01 m3 m-3 lower than average (which would add 0.3 °C to 569 
canopy temperatures (Eq 2)), we would add 0.4 °C to the grid canopy temperature that day. 570 
Every year, there was a 10% random probability of either a minor (80% probability) drought 571 
which reduced soil moisture by 0.1 m3 m-3 and increased air temperatures by 0.5 °C or severe 572 
drought (20% probability), which reduced soil moisture by 0.2 m3 m-3 and increased air 573 
temperatures by 1 °C. This is similar to the Amazon-wide temperature increases during the last 574 
El Niño 17.   575 

If an individual leaf temperature increases to above 46.7 °C (Tcrit) the leaf died, following Slot et 576 
al. (2021).  Prior research has suggested that irreversible damage could begin at 45 °C 18 and T50 577 
for tropical species is 49.9 °C 19, and we use these values in a sensitivity study.  We further 578 
explore the impact of duration of Tcrit on mortality in a sensitivity study (ranging between 579 
needing a single exposure to four exposures to Tcrit to die).  Over the season, if a leaf died, then it 580 
did not contribute towards canopy evapotranspiration.  We ran simulations as a 3D canopy with 581 
an LAI of 5 where if the top leaf died, then it was replaced by a shade-adapted leaf with a Tcrit 1 582 
°C lower 20.  If each of the 5 LAIs died, then all leaves in that grid cell were dead and canopy 583 
evaporative cooling decreased by that percentage. Several lines of evidence suggest that under 584 
normal hydraulic conditions, when radiation load increases from ~350 to 1100 W m-2 (e.g. 585 
between shady and sunny conditions) average canopy temperature increases by ~3 °C and 586 
therefore, evaporative cooling for a full 1100 W m-2 is ~4.4°C4,21 (we vary this in a sensitivity 587 
study between 3.7 and 5.1°C).  For example, if, over a year, 1000 leaves (10% of all leaves) 588 
surpass Tcrit and die, evaporative cooling for all leaves in the grid will be reduced by 10% 589 
(1000/(100 by 100 grid)) or 0.44 °C and 0.44 °C will be added to mean canopy temperature.  590 



Therefore, mean canopy temperature could heat up by a maximum of 4.4°C either due to a 591 
reduction of soil moisture or from an increase in dead leaves.  We ran each simulation until the 592 
point where all leaves were dead and repeated this 30 times.  We assumed loss of tree function 593 
following the death of all leaves, but we discuss this further in the discussion.  We then ran 594 
sensitivity studies for several of the key variables (bold indicates the standard model parameter) 595 
including: drought (0.05, 0.1, to 0.2 m3 m-3 decrease in soil moisture), change in Tcrit (Tcrit: 45, 596 
46.7, 49.9 °C), Tcrit range (100 by 100 grid =random distribution of 46.7±2, 100 by 100 grid 597 
=46.7±0) ,  Max evaporative cooling (3.7, 4.4°C), (Tcrit duration (exceed Tcrit once, exceed 598 
Tcrit more than 3 times) and soil moisture coefficient (-33.6 -38.2; i.e. change the slope from Fig 599 
ED2a by ± 1 sd). 600 

  601 



Data availability – We provide key data as an attachment: Fig1leaftempshared.csv, Fig2data.csv, 602 
Fig3data.csv 603 

Code availability - Data and code to produce all figures are available at the following link- 604 
URL:  https://doi.org/doi:10.5061/dryad.fqz612jx1.  605 
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Extended data figure captions 677 

Fig ED 1 – Regions of interest.  Tropical forest regions in A) Amazon, B) Central Africa and C) 678 
SE Asia used for the retrieval of ECOSTRESS LST and SMAP data. The red area was used to 679 
ground-truth ECOSTRESS LST with the pyrgeometer. 680 
 681 
Fig ED 2 – Impacts on canopy temperature.  (A) Linear regression of canopy temperature 682 
versus soil moisture (40 cm depth) at the km 83 eddy covariance tower (r2 = 0.46, P=7e-10, 683 
N=62). (B) Linear regression of canopy temperature as a function of air temperature during 684 
sunny periods during the wet (green circles) and dry (red circles) season at the km 83 eddy 685 
covariance tower in the Tapajos region of Brazil.  Red line shows a linear fit for the dry season 686 
(r2 = 0.96, P=3e-21, N=29) and the lower line is a one-to-one line. (C)  Linear regressions of 687 
canopy temperature as a function of latent heat flux for warm (>30°C) periods (r2=0.50, P=0.009, 688 
N=11) at the km 83 eddy covariance tower in the Tapajos region of Brazil. (D) Linear regression 689 
(r2=0.75, P=2e-5, N=16) using data from Figure 1a comparing ECOSTRESS dry season to 690 
pyrgeometer dry season data from the Tapajos (Km 83).   691 
 692 
Fig ED 3 – Histograms of canopy temperature. Histograms of the canopy temperatures as 693 
(top) 30 min average periods and (bottom) two second instantaneous observations, where total 694 
shortwave energy load is >1000 W m-2, as measured by a downward facing pyrgeometer in the 695 
Tapajos region of Brazil. 696 
 697 
Fig ED 4 – Leaf thermocouple data from warming experiments. Canopy top tropical leaf 698 
thermocouple measurements for normal (blue) and warmed leaves (red) for Brazil (+2°C) (a), 699 
Puerto Rico (+3°C) (b), and Australia (+4°C) (c).  Insets show the long tail distribution of 700 
temperatures and text records the highest leaf temperature. 701 
 702 
Fig ED 5 – Leaf thermocouple data. Canopy top tropical leaf thermocouple measurements for 703 
(top) Brazil km 67, (middle) Panama and (bottom) the Atlantic Forest in Brazil.  Insets show the 704 
long tail distribution of temperatures and text records the highest leaf temperature.  The 705 
resampled assumes a similar number of samples (~N=400) at 38°C for both sites and fits a curve 706 
to extrapolate the long tail.  The Atlantic forest is a cooler forest (at ~1000m) and the median 707 
temperature of the Amazon is ~4°C higher than the Atlantic forest. 708 
 709 
Fig ED 6 –Duration of warming.  Periods when the leaves were warmed by >8 minutes during 710 
the Tapajos warming experiment for individual leaves (thin lines) and averaged (thick red line).   711 
Text in figure indicates the percent of time leaves exceeded Tcrit for greater than 6 and 8 712 
minutes.    713 
 714 
Fig ED 7–Finding African peak temperatures.  Procedure for finding peak canopy 715 
temperatures using ECOSTRESS data for central Africa.  (A) Histogram of temperatures for (B) 716 
a region of Central Africa.  A diurnal curve showing all ECOSTRESS LST data for central 717 
Africa versus (C) time of day and (D) time of year.  (E) SMAP soil moisture (m2 m-2) data 718 
showing periods of (red lines) dry weather.   719 
 720 
Fig ED 8 - Finding SE Asian peak temperatures.  Procedure for finding peak canopy 721 
temperatures using ECOSTRESS data for SE Asia.  (A) Histogram of temperatures for (B) a 722 



region of SE Asia.  A diurnal curve showing all ECOSTRESS LST data for SE Asia versus (C) 723 
time of day and (D) time of year.  (E) SMAP soil moisture data (m2 m-2) showing periods of (red 724 
lines) dry weather.   725 
 726 
Fig ED 9 – Comparison of LST temperature data.  We show the spatial distribution of LST 727 
data for three sensors (VIIRS, MODIS, and ECOSTRESS) for similar time periods (Sept 18-28, 728 
2019) for similar areas in the Amazon basin.  The difference between the left, middle and right 729 
are different data quality flags for no flag (left), QF g1 from Table S1 (middle) and QF g2 730 
(right).  We used three levels of quality flags (ECOSTRESS – G1 - 3522 and 3520, G2 =3520, 731 
VIIRS – G1 – 12001, 15841, 11745, 32225 and G2 = 32225, and MODIS – G1 - 0 and 65 and 732 
G2 -0) for the region depicted in SI Fig 1b during the same period (18 September to 28 733 
September 2019).  Quality flags were complex with 136 for ECOSTRESS and 229 for VIIRS 734 
(but only 8 for MODIS).    735 
 736 
Fig ED 10 – Histogram of LST temperature data.   (top) We show histograms of LST data for 737 
three sensors (VIIRS, MODIS, and ECOSTRESS) for similar time periods (Sept 18-28, 2019) 738 
for similar areas in the Amazon basin.  The difference between the left, middle and right are 739 
different data quality flags for no flag (left), QF g1 from Table S1 (middle) and QF g2 (right).  740 
We used three levels of quality flags (ECOSTRESS – G1 - 3522 and 3520, G2 =3520, VIIRS – 741 
G1 – 12001, 15841, 11745, 32225 and G2 = 32225, and MODIS – G1 - 0 and 65 and G2 -0) for 742 
the region depicted in SI Fig 1b during the same period (18 September to 28 September 2019).  743 
(bottom) - A scaled in comparison for the same dataset showing the much higher resolution of 744 
ECOSTRESS versus VIIRS and MODIS LST. 745 
 746 
 747 


