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Leco examples from the Lower Cretaceous of Spain
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Stratigraphic Architecture of Jorcas Deltas Mouth Bar Evolution and Abandonment

Facies and architectural analysis

Vertical mouth bar growth flattens and accelerates the jet over the mouth bar crest. The flow erodes the
mouth bar crest, bursts through and begins to deposit a new mouth bar accretion element which down-
laps or off-laps the older accretion element. Growth of a composite mouth bar body and expansion of the
mouth bar into deeper water reduces the capacity of the jet to remain attached to the bed beyond the
mouth bar crest.

New mouth bar
accretion elements

Repeated phases of (B) lead to the formation and addition of multiple bar accretion elements
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The composite mouth bar grows, via the repeated addition of mouth bar accretion elements. Expansion
in to ever deeper water results in a change in mouth bar morphology and processes, from one with The mouth bar becomes a
relatively low angle foresets, dominated by traction at the bed, to a mouth bar characterized by a large composite body

steep front dominated by grainflow deposition.
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[D] Channel avulsion abandons the composite mouth bar
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Abstract

Improved understanding of delta mouth bar morphodynamics, and the resulting stratigraphic architectures, is important for predicting the loci of deposition of
different sediment fractions, coastal geomorphic change and heterogeneity in mouth bar reservoirs.

Facies and architectural analysis of exceptionally well-exposed shallow water (ca. 5 m depth) mouth bars and associated distributaries, from the Xert Formation
(Lower Cretaceous), of the Maestrat Basin (east-central Spain), reveal that they grew via a succession of repeated autogenic cycles.

The formation is part of a mixed clastic-carbonate succession deposited during a time of active faulting and incipient salt tectonism, but in an area away from their
direct influence and where wave and tidal reworking were minimal.

An initial mouth bar accretion element forms after avulsion of a distributary into shallow standing water.

Turbulent expansion of the fluvial jet and high bed friction results in rapid flow deceleration, and deposition of sediment in an aggradational to expansional bar-
form.

Vertical bar growth causes flattening and acceleration of the jet.

The accelerated flow scours channels on the bar top, which focuses further expansion of the mouth bar at individual loci where the channels break through the
front of the mouth bar.

Here, new mouth bar accretion elements form, downlapping and onlapping against a readily recognizable surface of mouth bar reorganization.

Vertical growth of the new mouth bar accretion elements causes flattening and re-acceleration of the jet, leading to channelization, and initiation of the next
generation of mouth bar accretion elements.

Thus the mouth bar grows, until bed-friction effects cause backwater deceleration and superelevation of flow in the feeding distributary.
Within-channel sedimentation, choking and upstream avulsion of the feeding channel, results in mouth bar abandonment.

In this study, mouth bars are formed of at least two to three accretion elements, before abandonment happened.

The results of this study contrast with the notion that mouth bars form by simple vertical aggradation and radial expansion.

However, the architecture and facies distributions of shallow water mouth bars are a predictable product of intrinsic processes that operate to deposit them.



Comparison to experiments and modern deltas

A Phase I-lI
Fig. 12. Flume tank experiment
from Shaw et al. (2018) (A) to (D)
and a modern day example (E)
showing mouth bar growth via
mouth bar elements. (A) Initiation o,
of the mouth bar via vertical hﬁ L \ \ _
: ; min 178 min firstisland

o ion. (8] Hoxtaomtal sxpansion sh

: : aw et al., 2018 flume
of the mouth bar. (C) First instance
of channelization of flow on the
mouth bar top and focusing of
sedimentation at a single locus —
the formation of a new mouth bar
accretion element. (D) A mature
mouth bar, composed of multiple
mouth bar accretion elements, and a
dendritic plan view. Run times and
phases of the experiment of Shaw
el al. (2018) are shown. (E) A
similar morphology to (D) is
expressed at the mouth of the Rio
Garumo River, Panama (9°00'21"N,
82°10'46"W). This river is
depositing a mouth bar into the
Laguna de Chiriqui, which is
protected from open ocean
processes by a reef system, and is

no deeper than 4 m (Herdendorl,
10992)
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. " Mouthbar element

Modern 'back reef lagoon
shallow water moth bar,
Rio Garumo, Panama.




Geological Setting

L Zaragoza_ garceiona

00/ o%

~ Jorcas
Madrid * Maestrat

4600000

4505000

4500000

4495000

L4
-
A
100 km
Key forB |
Cenozoic } Shallow bedding
Upper Cretaceous |- Moderate bedding
Xert Fm. (Barremian) + Sub-vertical bedding
Lower Cretaceous :
. (undifferentiated) d' Overtumed bedding
B Jurassic p Syncline
Triassic é Anticline
Faults = = |sopach lines
Depositional
Koo L ; epositiona ;
ge Lithostratigraphy Environment ] '
Forcall Fm. Open marine | B
Aptian | carbonate
aaaaaaaa dominated
shelf
Xert Fm

Fluvio-deltaic
Open
marine shelf
Restricted
Morella Fm. bay
Fluvial

Artoles Fm. Restricted

Early Cretaceous: Barremian - Aptian 129-120Ma

Camarillas Fm. Fluvial

Key for C
Palaeosol

Sandstone ~== Planar cross-bedding

Sandy limestone  —~ Ripples

| Limestone
| marl 355~ Mouth bar accretion

4490000

N
A

rayete
aaaaaa

685000

Xert Sandstone D
Forcall Fm.
Xert Fm. Other
[ Morella Fm.
oles Fm

o
1
7/

>

Deltaic sandbodies part of transgressive
succession in transition from coastal fluvial
clastics to marine carbonate 'shelf' facies.

Deposition during period of 'mild’ salt
tectonics with associated faulting.

Deltas built into low energy carbonate
'shelf'. (very) limited wave or tide
generated currents.

Jorcas section is 45 degrees to accretion
direction (ESE) and depositional strike



Excellent exposures of shallow marine delta mouth-bar sandbodies

andstones consisting of four main architectural elements:

Terminal Distributary Channel, Mouth bar, Granular transgressive lag & Massive bioturbated sands.

Mean dominant palaeoflow and mouth bar progradation directions are into the outcrop (towards the east) meaning
that the outcrop is orientated (NNW-SSE) slightly oblique to it and combined with the outcrop weathering pattern
(Figure 2) both lateral (perpendicular to flow) and spatial (parallel to flow) change are being observed.

Mouth bar clinoform angle (from palaeohorizontal) shows three distinct sets <5° (upper succession, log 5-4), 5-10°
(lower succession mouth bar & middle succession mouth bar, log 3-1) & 18-25° (Upper succession mouth bar, log 3-
2 & middle mouth bar succession log 1-4) with the angle generallv decreasing with increasing distance.

SE WE R ; 5 b e y e
Maximum measured clinoform height indicates a palaeo-water depth of no more than 4.5m with some as low as
2.5m indicating a very shallow water column (seas surface to sea floor).
The sandstones are split into three successions separated by regionally (at least outcrop length) correlatable
granular, sometimes pebbly, massive sandstones.
Internally, these successions show a predominance of terminal distributary channel architectural elements in the
north that transition in the centre of the outcrop to dominantly mouth bar’s in the south.
Architectural elements are stacked vertically in relatively the same spatial position for each succession with slight
internal variations.



Excellent exposures of shallow marine delta mouth-bar sandbodies
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Architectural analysis
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Fig. 2. Hierarchy of bounding surfaces and architectural elements developed in this study. Modified from Miall
(1985, 1996) and adopted for a fluvio-deltaic setting. Surfaces are shown in bold and elements are shown in italic
text. Scale and geometry are schematic and are not implied. See Figs 4 to 10 and text for specific details of scale
and geometry of architectural elements and their bounding surfaces in the Jorcas case study.



Architectural analysis — Correlation Panels and Virtual Outcrop Jorcas
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Architectural element correlation
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Architectural analysis — Summary
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Fig. 5. Summary cartoon of the architectural elements of the Jorcas Section.



Mouth Bar Aggradation Sub-element
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Fig. 5. Summary cartoon of the architectural elements of the Jorcas Section.

eAn initial mouth bar
accretion element forms after
avulsion of a distributary into
shallow standing water.

eTurbulent expansion of the
fluvial jet and high bed friction
results in rapid flow
deceleration, and deposition
of sediment in

an aggradational to
expansional bar-form.
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Fig. 6. (A) Segment of the virtual outcrop model showing a mouth bar aggradation sub-element. (B) The same part
of the virtual outcrop model with annotations. (A) and (B) show perspective. (C) Architectural sketch based on
the virtual outcrop model, showing bed and coset boundaries (second-order bar accretion surfaces) bidirectionally
downlapping a relatively flat depositional surface, and defining a bell-shape architecture. The underlying surface
represents the (fifth-order) base of the mouth bar. (C) is corrected for perspective. See Fig. 4 for a key. The posi-
tion of the architecture shown in this figure is shown on Fig. 4.



Mouth Bar Aggradation Sub-element
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eVertical bar growth causes
flattening and acceleration of
the jet.

*The accelerated flow scours
channels on the bar top,
which focuses further
expansion of the mouth bar
at individual loci where the
channels break through

the front of the mouth bar.
eHere, new mouth bar
accretion elements

form, downlapping and
onlapping against a readily
recognizable surface of
mouth bar reorganization.
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Fig. 7. (A) Segment of the virtual outcrop model showing mouth bar aggradation, and mouth bar expansion sub-
elements within a single mouth bar accretion element. (B) The same part of the virtual outcrop model with anno-
tations. (A) and (B) show perspective. (C) Sketch based on the virtual outcrop model showing facies distribution
and architecture of mouth bar aggradation and expansion sub-elements within a single mouth bar accretion ele-
ment. Bed and coset boundaries (second-order bar accretion surfaces) in the middle upper part of the sketch
downlap bidirectionally onto an erosional surface which truncates underlying beds and cosets. This is a mouth
bar aggradation sub-element. To the right of the mouth bar aggradation sub-element, beds and cosets systemati-
cally offlap one another towards the right, defining classic clinothems, and represent a mouth expansion sub-ele-
ment. This erosive, underlying (third-order) surface marks an intra-mouth bar episode of hydrodynamic
reorganization. (C) is corrected for perspective. See Fig. 4 for a key. The position of the architecture shown in this
figure is shown on Fig. 4.



Mouth Bar expansion sub-elements
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Fig. 5. Summary cartoon of the architectural elements of the Jorcas Section.

eVertical growth of the
new mouth bar
accretion elements
causes flattening and
re-acceleration of the
jet, leading to
channelization, and
initiation of the

next generation of
mouth bar accretion
elements.
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Fig. 9. (A) Segment of the virtual outcrop model showing mouth bar expansion sub-elements. (B) The same part
of the virtual outcrop model with annolations. (3) and (B) shonw perspective. (C) Sketch based on the virtual out-
crop model showing facies distribution and architecture of mouth bar expansion sub-elements. Clinothems have
short topsets and bottomsets, and relatively long, steeply dipping foresets. Clinothems are dominated by massive
sandstone containing abundant granular laminae tha rainfow avalanches down the mou 5.
Three mouth bar accretion elements (MB2A to MBC) mouth bar, are shown.
(second-order) bar accretion surfaces downlap onto a relatively fat, depositional surface that
of the mouth bar. Topsets and foresels of MB2A bar accretion sur runcated by a (hird-order) mouth bar
reorganization surface. The later s downlapped by bar accretion surfaces of the later mouth bar accretion le-
ment, MB2B. Bar accretion suraces of the youngest mouth bar accretion element, MB2C, downlap and climb
down a mouth bar reorganization surfac, that s largely paralll bar accretion surfaces in MB2B. Note the increase
in inclination of mouth bar accretion foresets from MB2A to MB2C: (C) s comected for perspectiv. See Fig. 4 for
akey. The position of the architecture shown in this figure s shawn on Fg, 4




Fluvial Lateral Accretion Elements
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eThus the mouth bar
grows, until bed-friction
effects cause backwater
deceleration and
superelevation of flow in
the feeding distributary.

e\Within-channel
sedimentation, choking
and upstream avulsion of
the feeding channel,
results in mouth bar
abandonment.
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Fig. 10. (A) Segment of the virtual outcrop model showing fluvial laterally accreting bar elements. (B) The same
part of the virtual outcrop model with annotations. (A) and (B) show perspective. (C) Architectural sketch based
on the virtual outcrop model, showing complex internal structure of cross-cutting bed and coset contacts (second-
order bar accretion surfaces), but systematic downlap of (third-order) surfaces representing reorganization of the
bar onto the basal (fifth-order) erosion surface that marks the basal scour of a major channel: (C) is corrected for
perspective. See Fig. 4 for a key. The position of the architecture shown in this figure is shown on Fig. 4.



Evolution of shallow water mouth bars

Initiation, vertical growth and lateral expansion of a shallow-water mouth bar accretion element
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Comparison to experiments and modern deltas

A Phase I-lI
Fig. 12. Flume tank experiment
from Shaw et al. (2018) (A) to (D)
and a modern day example (E)
showing mouth bar growth via
mouth bar elements. (A) Initiation o,
of the mouth bar via vertical hﬁ L \ \ _
: ; min 178 min firstisland

o ion. (8] Hoxtaomtal sxpansion sh

: : aw et al., 2018 flume
of the mouth bar. (C) First instance
of channelization of flow on the
mouth bar top and focusing of
sedimentation at a single locus —
the formation of a new mouth bar
accretion element. (D) A mature
mouth bar, composed of multiple
mouth bar accretion elements, and a
dendritic plan view. Run times and
phases of the experiment of Shaw
el al. (2018) are shown. (E) A
similar morphology to (D) is
expressed at the mouth of the Rio
Garumo River, Panama (9°00'21"N,
82°10'46"W). This river is
depositing a mouth bar into the
Laguna de Chiriqui, which is
protected from open ocean
processes by a reef system, and is

no deeper than 4 m (Herdendorl,
10992)
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