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Following the Fukushima Daiichi nuclear disaster in 2011,
the decision to release more than 1 million tons of

radioactive water into the ocean by the Japanese government,
with approval from the IAEA, has divided public and scientific
opinion. The discharge began on August 24, 2023, with the
premise that, after removal of long-lived radionuclides (i.e.,
137Cs and 90Sr), tritium (3H), the primary remaining
radionuclide as tritiated water (HTO), will be sufficiently
and safely diluted over a 30-year period.1 Concerns, however,
relate to (a) the safety of seafood and its consumers and (b)
potential long-term consequences on human and environ-
mental health.2,3

■ BEHAVIOR OF TRITIUM IN THE ENVIRONMENT
It is known that 3H (half-life of 12.6 years) in its inorganic
form (i.e., HTO) quickly integrates into biological systems and
can consequently associate with organic molecules [as
organically bound-tritium (OBT)].4,5 The environmental
persistence of OBT, including in sediments and soils, raises
concerns about its potential transfer to the water cycle and its

biomagnification through the food web.3 For example, in the
Severn Estuary (U.K.), it has been suggested that bioaccumu-
lation of anthropogenic OBT by benthic organisms and
demersal fish largely occurs via a pathway of conversion of
dissolved OBT into particulate OBT (through bacterial uptake
and physicochemical processes) and subsequent transfer up
the food web by sediment-dwelling microbes and meiofauna.6

Moreover, the pattern of distribution of OBT among different
tissues in organisms depends on not only the chemical or
biochemical characteristics of each tritiated compound but also
the metabolic activities of different tissues.5,7 Data on HTO
and OBT distribution, behavior, and potential effects are
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available for only a few taxonomic groups and are heavily
biased toward laboratory species (Figure 1). This contributes
to considerable uncertainty in environmental risk assessments
(ERA) for the radionuclide.3

■ RADIATION DOSE ESTIMATIONS AND EFFECTS
ON HUMANS AND NON-HUMAN BIOTA

It has been suggested that doses to biota arising from exposure
to controlled but continuously or intermittently discharged
HTO will be far below the acceptable radiation threshold for
human consumption.1 This assumption is largely based on
external dose estimations, with internal doses and bioaccumu-
lation potential not factored in.
Although it is a β-emitter, the relative biological effectiveness

(RBE) of 3H in tissues is contested. Laboratory studies have
shown that 3H could be as potent as high-energy γ or X-ray
radiation for the induction of chromosomal damage in fish.8 A
precautionary approach has been recommended while dealing
with internal emitters, given that ionizing radiation could
induce many other novel effects that have thus far not been
considered in risk assessments. These include genomic
instability (non-clonal damage), bystander effects, minisatellite
mutations, and epigenetic changes.9 With regard to human
health, higher incidences of chromosomal aberrations have
been reported in workers exposed to 3H compared to
unexposed individuals,10 while higher incidences of childhood

leukemia around nuclear power plants, attributed to 3H
exposures, have been hotly debated in the scientific
community.11

Compared with human health, dose estimation for natural
biota, which exhibit different geometric shapes and sizes, is
challenging and not well-defined.3,12 The external dose
estimation based on energy levels of different qualities of
radiation1 cannot be considered realistic and safe for either
non-human biota or humans exposed through different routes
(e.g., inhalation, food, water, and skin). In this context, chronic
exposure to HTO can induce DNA damage at different life
stages of marine species.3 In particular, an increased level of
chromosomal damage was observed in blue mussels following a
7-day exposure to OBT, at a dose rate of 4.9 μGy h−1;5 this is
lower than the suggested generic (all species) “no effect” dose
rate limit of 10 μGy h−1.13

■ RADIATION ACCIDENTS AND IN SITU STUDIES
The Fukushima Daiichi and Chernobyl accidents are often
directly and erroneously compared without taking into
consideration their different environmental scenarios.1 The
Fukushima Daiichi nuclear power plants are directly adjacent
to the open ocean, whereas Chernobyl is 500−600 km from
the semi-enclosed Baltic and Black Seas. While Fukushima
Daiichi represents the largest accidental release of radio-
nuclides to the ocean in terms of measured radionuclide

Figure 1. Assessment of the behavior of tritium (3H) in the aquatic environment and impacts on biota. (A) Animal groups covered and (B)
biological effects reported according to data compiled by Ferreira et al.3 Abbreviations: HTO, tritiated water; OBT, organically-bound tritium.
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concentrations,14 available reports suggest that HTO was not
released following the Chernobyl accident. In addition,
Fukushima-derived radionuclides have been shown to be
transported long distances by marine fish,15 making the
accident a global concern.
Biological studies carried out in the Chernobyl region are

controversial, and it is by no means conclusive that biota are
resilient.16 For example, histological impacts on fish gonads
and altered expression of genes have been demonstrated 30
years after the accident.17 Significantly, sublethal effects of 3H
in fish inhabiting rivers near a Canadian nuclear site include
DNA damage in blood and gametes; this could affect the
physiological and reproductive fitness and, ultimately, the
genetic diversity of a population.18 To the best of our
knowledge, no study has addressed the impacts of HTO at the
ecosystem level, and studies in areas with above-background
levels of radiation are scarce.

■ CONCLUDING REMARKS

Accumulated radioactive water cannot be stored indefinitely at
Fukushima Daiichi due to the ongoing risk of earthquakes and
tsunamis in the region. However, the environmental behavior
of different forms of 3H, including the mechanisms and rates of
OBT formation, needs to be studied further to better define
and understand its potential long-term impacts. In addition to
regular monitoring, future studies should include more realistic
environmental scenarios in the presence of multiple, emerging
stressors, such as hypoxia, higher temperatures,19 and micro-
plastics.20 The development of modeling approaches to
accurately estimate doses for different radionuclides in biota
is also vital. Given the quantities of HTO discharged globally,1

a fundamental goal should be the minimization of its
production and discharge.
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