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9 The presence of strong electromagnetic fields adds huge complexity to QED Feynman diagrams, such
10 that new methods are required to calculate higher-loop and higher-multiplicity scattering amplitudes. Here
11 we use the worldline formalism to present “master formulas” for all tree level amplitudes of two massive
12 particles and an arbitrary number of photons, in a plane wave background, in both scalar and spinor QED.
13 The plane wave is treated without approximation throughout, meaning in particular that our formulas are
14 valid in the strong-field regime of current theoretical and experimental interest. We check our results
15 against literature expressions obtainable at low multiplicity via direct Feynman diagram calculations.
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17 I. INTRODUCTION

18 Strong fields can generate nonlinear and nonperturbative
19 effects in particle interactions. Strong electromagnetic
20 fields may be generated terrestrially by several means,
21 including by ultraintense lasers [1,2]. QED processes in the
22 presence of these fields acquire an intensity dependence
23 characterized by a coupling which typically exceeds unity,
24 and which must therefore be treated without recourse to
25 perturbation theory. Several upcoming experiments aim to
26 observe nonlinear effects in the scattering of electrons [3–5]
27 and photons [6,7] on intense lasers.
28 The standard theory approach to “strong field QED” is
29 based on the Furry expansion, or background field pertur-
30 bation theory. The strong (e.g., laser) field is described as a
31 fixed background, the coupling of which to matter is treated
32 exactly. Interactions between particles scattering on this
33 background are then treated in perturbation theory as usual,
34 see [8] for a recent review. There are, however, several
35 topics in strong field QED which require the development
36 of new theoretical methods.
37 First, the majority of progress to date has been made for
38 the special, highly symmetric laser model of a plane wave

39background, for which the Furry expansion can be practi-
40cally realized. It is a long-standing challenge to account
41analytically for realistic pulse geometry, and the new
42phenomenology this brings [8]. Second, while plane wave
43results can be extended to realistic fields via local approx-
44imations (e.g., [9–11]), and so implemented in numerical
45codes, those codes must still be benchmarked against
46theory. This has been performed for first-order (i.e. low
47multiplicity) processes, but benchmarking higher-order
48processes is made challenging by, in part, a lack of analytic
49results; the state of the art in the plane wave model is, at tree
50level, only four-point scattering. Third, if we consider
51higher-loop corrections, it has been conjectured [12–14]
52that at very high background field strengths the loop
53expansion must be resummed in order to provide reliable
54physical predictions (at least in the low frequency, “con-
55stant crossed field” limit). Doing so is a formidable
56challenge [15–17].
57To attack these problems one can use approximations
58that do not rely on weak coupling [18], develop exactly
59solvable models which capture some physics of interest
60[19], or use alternative methods to simplify Furry-picture
61quantities. One potential method is the worldline formal-
62ism, which casts quantum field theory (QFT) in terms of
63path integrals over relativistic point particle trajectories. Its
64roots can be traced back to Feynman [20,21], though its use
65as a serious alternative to the standard QFT formalism was
66first advocated by Strassler [22], following [23,24]. One of
67the main advantages of the worldline approach is that it
68automatically sums over all Feynman diagrams which
69contribute at fixed multiplicity and loop order, thus greatly
70simplifying the combinatorics which comes with higher
71numbers of scatterers and/or loops.
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72 The worldline formalism was initially developed for one-
73 loop (and then higher loop) processes in vacuum and in
74 background fields, and a common output of the approach is
75 “master formulas”; these are all-multiplicity formulas for
76 correlation functions of a chosen set of fields, at fixed loop
77 order. Such master formulas, which would be extremely
78 challenging to reproduce using Feynman diagrams, have
79 been obtained for processes in vacuum [22,25,26], in
80 constant electromagnetic backgrounds [27–32], and in
81 plane wave backgrounds [33,34]. The worldline approach
82 has also been applied to the calculation of effective actions
83 in background fields via numerical implementations [35],
84 the Casimir effect [36], vacuum birefringence [37], tadpole
85 corrections [38–40], and nonlinear Breit-Wheeler pair
86 production [41]. A long-standing focus of the approach
87 has been the investigation of nonperturbative effects via
88 worldline instantons [42–48]. For reviews see [49,50].
89 Only recently has much attention been paid to worldline
90 master formulas for processes with external matter lines, or
91 processes at tree level [51–56]. Furthermore, while external
92 photon lines typically appear in the worldline formalism
93 already Lehmann-Symanzik-Zimmermann (LSZ) ampu-
94 tated, matter lines do not, and it has not yet been fully
95 established how one should perform the required LSZ
96 amputationwhich turns correlation functions into amplitudes.
97 We fill in some missing pieces of this puzzle in this
98 paper, which is organized as follows. In Sec. II we construct
99 worldline master formulas for all tree level (N þ 2)-point

100 correlation functions describing the emission of N photons
101 from a massive particle in a background plane wave, in both
102 scalar and spinor QED. In Sec. III we turn to the LSZ
103 amputation of the master formula, converting it into an all-
104 multiplicity formula for the corresponding N-photon emis-
105 sion/absorption amplitudes from a massive particle in a
106 plane wave background. Example calculations in which we
107 compare with known literature results at low multiplicity
108 are presented in Sec. IV. We conclude in Sec. V. The
109 Appendix contains additional checks on our results.
110 Conventions. We set ℏ ¼ c ¼ 1. We work throughout
111 in Minkowski space with light front coordinates, so that
112 ds2 ¼ dxþdx− − dx⊥dx⊥ where x⊥ ¼ ðx1; x2Þ are the
113 “transverse” directions. We introduce a null vector nμ
114 which projects onto the “light front time” direction, that
115 is n · x ¼ xþ. The covariant derivative is Dμ ¼ ∂μ þ ieAμ.

116II. MASTER FORMULAS FOR (2 +N)-POINT TREE
117LEVEL CORRELATORS IN PLANE WAVE
118BACKGROUNDS

119The goal of this section is to write down and evaluate the
120worldline path integral master formulas for tree level
121correlation functions ofN photons and two charged particles
122in the presence of a plane wave background, valid for
123arbitrary N. We will do this in both scalar and spinor QED.
124Our plane wave background may be described by the
125potential eAμðxÞ ¼ aμðxþÞ ¼ δ⊥μ a⊥ðxþÞ, a transverse func-
126tion of light front time xþ. We may always choose
127a⊥ð−∞Þ ¼ 0, but then a⊥ð∞Þ≕ a∞⊥ is in general nonzero
128(and carries an electromagnetic memory effect [57–59]).
129The corresponding field strength is fμνðxþÞ ¼ nμa0νðxþÞ −
130nνa0μðxþÞ, where a prime denotes an xþ derivative.

131A. Scalar QED

132In the master formulas we derive in this section, the N
133external photons will be LSZ-amputated, but the matter
134lines not, and thus our correlation functions carry spacetime
135indices x and x0, as well as a dependence on the N-photon
136momenta fkig and polarizations fεig. We hide the latter
137dependencies, denoting the partially reduced correlators, or
138dressed propagators as they are called in the worldline
139literature, by Dx0x

N ; see Fig. 1. We take all photons to be
140outgoing; other configurations are trivially obtained by
141sending k → −k.
142The worldline representation of such correlation func-
143tions is given in terms of a path integral over relativistic
144point particle trajectories, denoted xμðτÞ with τ the proper
145time of the trajectory. The trajectories obey Dirichlet
146boundary conditions xμðTÞ ¼ x0μ, xμð0Þ ¼ xμ, correspond-
147ing to the spacetime dependence of the dressed propagator.
148The trajectories have length T, which is ultimately also
149integrated out, respecting reparametrization invariance of
150the path integral [60,61]. To write down this path integral,
151we start from the worldline action that minimally couples a
152relativistic point particle to an arbitrary gauge field Aμ,
153namely

SWL½xðτÞ; A� ¼ −
Z

T

0

dτ

�
ẋ2

4
þ eAðxðτÞÞ · ẋðτÞ

�
; ð1Þ

F1:1 FIG. 1. We consider tree level scattering amplitudes of two massive charges andN photons, as illustrated on the right (for scalar QED).
F1:2 The double line represents the presence of a plane wave background, the coupling to which is treated exactly. Amplitudes are obtained
F1:3 by LSZ reduction of the corresponding correlation functions. In the worldline approach, a natural starting pointing is the partially
F1:4 amputated correlator, or “dressed propagator,” in which the photons are already reduced out, but the matter fields are not. This is
F1:5 illustrated on the left. Thus LSZ reduction is still required for the external matter lines.
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154155 where overdots denote proper-time derivatives, and where
156 the unusual normalization of the kinetic term has become
157 standard in the worldline literature, so we preserve it here.
158 SWL enters the path integral for the scalar field propagator,
159 call it Dx0x, via

Dx0x ¼
Z

∞

0

dT e−im
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞ eiSWL½xðτÞ;A�: ð2Þ

160161 Note that Aμ is not integrated over, rather it appears as a
162 given field—it is well known (see, for example [62]) that
163 correlation functions with N external photons in vacuum
164 can be extracted from (2) by fixing Aμ to be a sum over
165 asymptotic photon wave functions with momenta ki and
166 polarizations εi:

AμðxÞ → Aγ
μðxÞ ¼

XN
i¼1

εμieiki·x; ð3Þ

167168 and then expanding the dressed propagator (2) to multi-
169 linear order in the polarization vectors. The additional
170 complication here is the presence of the background gauge
171 potential in (6). This is, however, easily included; we
172 simply split the gauge field into a semiclassical part
173 representing the plane wave background and a “quantized”
174 part representing scattering photons:

eAμðxÞ → aμðxÞ þ eAγ
μðxÞ: ð4Þ

175176 Inserting this into (2) and expanding to multilinear order,
177 the path integral to be performed is

Dx0x
N ¼ ð−ieÞN

Z
∞

0

dT e−im
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞ eiSB½xðτÞ;a�

×
YN
i¼1

Vx0x½εi; ki�; ð5Þ

178179 in which the weight is now given by the reduced action

SB½xðτÞ; a� ¼ −
Z

T

0

dτ

�
ẋ2

4
þ aðxðτÞÞ · ẋðτÞ

�
; ð6Þ

180181 while the N external photons appear (following the
182 expansion to multilinear order) through the vertex functions

Vx0x½ε; k� ≔
Z

T

0

dτ ε · ẋðτÞ eik·xðτÞ: ð7Þ

183184 [We leave implicit a causal and IR convergence factor
185 expð−ϵTÞ under the dT integral in (5).]
186 Our task is to evaluate the integrals in (5). Let us first
187 consider the xμ integrals, and in particular the Dirichlet
188 boundary conditions (BCs). To deal with these we follow
189 the standard procedure used for the evaluation of such

190integrals in vacuum, and expand xμðτÞ into a straight line
191trajectory and a fluctuation qðτÞ according to

xμðτÞ ¼ xμ þ zμ
τ

T
þ qμðτÞ; zμ ≔ x0μ − xμ: ð8Þ

192193The fluctuation must satisfy the homogeneous Dirichlet BCs
194qð0Þ ¼ qðTÞ ¼ 0 [with measure DxðτÞ → DqðτÞ]. For the
195analog problem in vacuum ðaðxþÞ → 0Þ the path integral is
196Gaussian in qμ and can thus be computed analytically.1 Here,
197however, the fluctuation appears inside the background field
198aðxþðτÞÞ ¼ aðxþ þ zþτ=T þ qþÞ, and this has an arbitrary
199functional form. At first glance this seems to destroy the
200Gaussianity of the path integral, and prohibit its evaluation.
201However, it has been shown for one-loop photon-scattering
202processes (meaning no external matter lines, and a path
203integral with periodic rather than Dirichlet BCs) that the
204properties of the plane wave background mean the integral
205is still effectively Gaussian [33,37]. It is thus crucial to
206demonstrate that the hidden Gaussianity of the path integral
207is also present here.
208To do so we follow the approach of [34], introducing a
209Lagrange multiplier χðτÞ and auxiliary field ξðτÞ into the
210path integral through the equality

e−i
R

dτ aðxþðτÞÞ·q̇ ¼ e−i
R

dτ aðxþþzþ τ
TþqþÞ·q̇

¼
Z

DξDχei
R

dτ½χðξ−qþÞ−aðxþþzþ τ
TþξÞ·q̇�: ð9Þ

211212These auxiliary integrals render that over qðτÞ to be
213Gaussian. The crucial point, as we show below, is that
214after evaluating the q integral, the remaining integrals
215over ξ and χ can still be evaluated, for a plane wave
216background.
217We now compute the fluctuation integral. As is usual in
218this “string-inspired” approach, it is convenient to manipu-
219late the vertex operators as follows. We exponentiate the
220polarization-dependent factor, so that it appears linearly in
221an exponent in the operator, with the understanding that the
222result should later be expanded to linear order in (each of)
223the εi, so we write

Vx0x½ε; k� →
Z

T

0

dτ eik·xþε·ẋ

����
lin:ε

: ð10Þ

224225The result of this is that all dependence on the particle
226trajectory xðτÞ, or rather the fluctuation qðτÞ to be inte-
227grated out, now appears linearly under the path integral.
228The integrals to be evaluated are now

1This is also the case for a constant background in Fock-
Schwinger gauge [54].
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Dx0x
N ¼ ð−ieÞN

Z
∞

0

dT e−im
2T−iz2

4T

×
YN
i¼1

Z
T

0

dτi e
P

N
j¼1

ikj·ðxþz
τj
T Þþεj·

z
T

Z
DξDχ

×
Z

qðTÞ¼0

qð0Þ¼0

DqðτÞ ei
R

dτ½−q̇2

4
−J ·q�

����
lin:ε1…εN

;

229230 in which J μðτÞ is an effective (operator valued) source

J μðτÞ ≔ aμðxþ þ zþτ=T þ ξÞ d
dτ

þ χðτÞnμ

þ i
XN
i¼1

�
ikμi − εμi

d
dτ

�
δðτ − τiÞ: ð11Þ

231232 Since the fluctuation integral is now Gaussian, it is easily
233 computed in terms of the worldline Green function
234 Δðτi; τjÞ, that is the inverse of 2d2=dτ2 with Dirichlet
235 BCs, which is found to be

Δij ≔ Δðτi; τjÞ ¼
1

2
jτi − τjj −

1

2
ðτi þ τjÞ þ

τiτj
T

: ð12Þ

236237 It is easily checked that Dirichlet BCs hold: Δð0; τiÞ ¼
238 ΔðT; τiÞ ¼ Δðτj; 0Þ ¼ Δðτj; TÞ ¼ 0. With this, the fluc-
239 tuation integral becomes

Z
qðTÞ¼0

qð0Þ¼0

DqðτÞ ei
R

T

0
dτ½−q̇2

4
−J ·q� ¼ −ið4πTÞ−2

× exp

�
−i

Z
T

0

dτidτjJ μðτiÞΔijJ μðτjÞ
�
: ð13Þ

240241This defines the fundamental contraction for the fluctuation
242variable,

hqμðτÞqνðτ0Þi ¼ 2iημνΔðτ; τ0Þ; ð14Þ

243244and the free path integral normalization is recovered by
245setting J ¼ 0. To proceed, we wish to write out the
246exponent in (13) explicitly. Note, though, that Δij is not
247proper time-translation invariant due to the boundary
248conditions [51], hence left and right proper-time derivatives
249must be distinguished. We denote these as follows:

•Δij ≔
d
dτi

Δij; Δ•
ij ≔

d
dτj

Δij;

••Δij ≔
d2

dτ2i
Δij; etc: ð15Þ

250251With this, we write out the exponent of (13), using that the
252background is transverse and on-shell (n · a ¼ 0 andn2 ¼ 0)
253to simplify. We find, writing ai ≡ aðxþ þ zþτi=τ þ ξðτiÞÞ,

254255 Z
J · Δ · J ¼

Z
dτidτjai · aj•Δ•

ij þ 2i
XN
j¼1

Z
dτið•Δ•

ijai · εj þ i•Δijai · kjÞ

þ 2i
XN
j¼1

Z
dτiχi½Δ•

ijε
þ
j þ iΔijk

þ
j � −

XN
i;j¼1

½•Δ•
ijεi · εj þ 2i•Δijεi · kj − Δijki · kj�: ð16Þ

256257 The trivial dependence on χ means that this field can now be integrated out, yielding a δ-functional:Z
DξDχei

R
dτχ½ξ−2i

P
N
j¼1

ðΔ•
ττj

εþj þiΔττj
kþj Þ� ¼

Z
Dξδ

�
ξðτÞ − 2

XN
j¼1

ðiΔ•
ττjε

þ
j − Δττjk

þ
j Þ
�
: ð17Þ

258259 This δ-functional has the effect of shifting the argument of the background field, such that from here on we have
260

aμi ≡ aμðτiÞ≡ aμ
�
xþ þ zþ

τi
T
þ 2

XN
j¼1

½−Δijk
þ
j þ iΔ•

ijε
þ
j �
�
: ð18Þ

261 The dynamical fluctuation is thus replaced by a coupling of
262 the plane wave to the N scattering photons [33,37]. This
263 is particular to plane wave backgrounds because (a) for
264 n2 ≠ 0 Eq. (16) picks up a contribution quadratic in χ,
265 while (b) for n · a ≠ 0 there is an additional term linear in χ
266 that depends on the background; instead of (18) one would
267 have obtained via (17) only an implicit equation for aμ.
268 All remaining background-dependent terms in (17)
269 may be expressed in terms of just two worldline

270structures, namely the worldline average and the periodic
271integral

⟪f⟫≔ T−1
Z

T

0

dτfðτÞ; IμðτÞ≔
Z

τ

0

dτ0½aμðτ0Þ−⟪aμ⟫�;

ð19Þ
272273respectively. These would have to be computed for a given
274background once the functional form of aμ has been fixed.
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275 At this stage the path integral has (at least formally) been
276 computed. Gathering everything together we obtain our
277 master formulas for the N-photon dressed propagator

Dx0x
N ¼ ið−eÞN

Z
∞

0

dTð4iπTÞ−2e−iz24T
YN
i¼1

Z
T

0

dτi

×e−iM
2ðaÞTP̄x0xðε1;…εNÞ

×e−iz·⟪a⟫þi
P

N
j¼1

ðxþz
Tτj−2IðτjÞÞ·kj−i

P
N
i;j¼1

Δijki·kj

����
lin:ε1…εN

;

ð20Þ

278279 in which M2ðaÞ ≔ m2 − ⟪a2⟫þ ⟪a⟫2 is analogous to the
280 Kibble “mass” [63] which typically appears in pulsed plane
281 waves [64], while P̄x0x is defined by

P̄x0xðε1;…εNÞ
≔ iNe

P
N
i¼1

εi·
z
Tþ2

P
N
i¼1

ð⟪a⟫−aiÞ·εiþi
P

N
i;j¼1

½2i•Δijεi·kjþεi·εk•Δ•
ij�:

ð21Þ

282283 We emphasize that this master formula holds for any
284 multiplicity N ≥ 0; it would be extremely challenging to
285 obtain this starting from the Feynman rules. Evaluating in
286 specific cases we can check against the literature; forN ¼ 0,
287 for example, we recover a one-parameter (proper-time)
288 representation of the scalar Volkov propagator:

Dx0x
0 ¼ ie−iz·⟪a⟫

Z
∞

0

dTð4iπTÞ−2e−iM2ðaÞTe−i
z2
4T: ð22Þ

289290Observe that in this case aμðτÞ≡ aμðxþ þ zþ τ
TÞ so that,

291changing variables to u ¼ τ
T, the worldline average becomes

292T-independent and can be taken outside theT integral. Itmay
293be written as a spacetime average (see [37]),

⟪aμ⟫ ¼
Z

1

0

du aμðxþ þ zþuÞ

¼ 1

x0þ − xþ

Z
x0þ

xþ
dy aμðyÞ≡ haμi; ð23Þ

294295and as such M2ðaÞ ¼ m2 − ha2i þ hai2 now corresponds
296exactly to the Kibble mass.
297Equation (22) is equivalent to the standard momentum-
298integral representation of the Volkov propagator, and offers
299a concise version of the position-space propagator in
300[65,66]. For N ¼ 1 we recover the (two-scalar one-photon)
301three-point function, and so on. Since the correlators
302themselves are not of immediate interest, we will present
303these checks later, implicitly, as part of our checks on the
304corresponding formula for scattering amplitudes.
305The actual computation of the dressed propagator (and,
306later, the amplitudes) is greatly simplified by observing that
307we can choose the gauge n · ε ¼ εþ ¼ 0. This removes the
308polarization vectors from the argument of aμ, and thus
309extraction of the multilinear piece of (24) reduces to the
310expansion of P̄ðε1;…εNÞ alone. We adopt this gauge from
311here on in order to present the simplest possible expressions
312and also match to the strong-field QED literature, where
313this gauge is common. Doing so, then, we can write the
314master formula in this gauge as

315316

Dx0x
N ¼ ið−eÞN

Z
∞

0

dTð4iπTÞ−2e−iz24T
YN
i¼1

Z
T

0

dτie−iM
2ðaÞTP̄x0x

N e−iz·⟪a⟫þi
P

N
i¼1

ðxþz
Tτi−2IðτiÞÞ·ki−i

P
N
i;j¼1

Δijki·kj ; ð24Þ

317318 where the polynomial P̄x0x
N is defined by the expansion of the polarization-dependent terms to multilinear order:

P̄x0x
N ≔ iNe

P
N
i¼1

εi·
z
Tþ2

P
N
i¼1

ð⟪a⟫−aiÞ·εiþi
P

N
i;j¼1

½2i•Δijεi·kjþ•Δ•
ijεi·εj�

���
lin:ε1…εN

: ð25Þ

319320 These polynomials generalize those defined for closed worldlines in vacuum (PN) in [49], for open lines in vacuum (P̄N) in
321 [31], and for the closed loop in a background field (PN) in [33] (in position space for the time being). For convenience let us
322 write out the first few terms:

P̄x0x
0 ¼ 1; ð26Þ

323324
P̄x0x

1 ¼ i

�
z
T
þ 2ð⟪a⟫ − a1Þ − 2•Δ11k1

�
· ε1; ð27Þ

325326

P̄x0x
2 ¼ −

�
z
T
þ 2ð⟪a⟫ − a1Þ − 2•Δ11k1 − 2•Δ12k2

�
· ε1

×

�
z
T
þ 2ð⟪a⟫ − a2Þ − 2•Δ21k1 − 2•Δ22k2

�
· ε2 − 2i•Δ12

•ε1 · ε2: ð28Þ
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327328329 B. Spinor QED

330 We now turn to the computation of the analogous N-photon dressed propagators in spinor QED, denoting these by Sx0x
N .

331 Due to the spin degrees of freedom this is a Dirac matrix-valued function, but we suppress the corresponding indices for
332 brevity. Referring the reader to [51,67] for details, we begin by writing down the analog of the “propagator” (2) in an
333 arbitrary background, but now accounting for the spin of the fermion:

Sx0x ¼ ð−i=Dx0 −mÞKx0xðaÞ; ð29Þ
334335

Kx0xðaÞ ¼
Z

∞

0

dTe−im
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞeiSWL½xðτÞ;A�2−D

2 symb−1
I
A=P

DψðτÞeiS̃WL½ψðτÞ;xðτÞ;A�; ð30Þ

336337
S̃WL½ψðτÞ; xðτÞ; A� ¼

Z
T

0

dτ
�
i
2
ψ · ψ̇ þ ieðψðτÞ þ ηÞ · FðxðτÞÞ · ðψðτÞ þ ηÞ

�
: ð31Þ

338339 The kernel Kx0x contains an integral over relativistic particle trajectories, as for the scalar case, and also a path integral over
340 Grassmann-valued fields ψðτÞ, obeying antiperiodic (A/P) BCs ψð0Þ ¼ −ψðTÞ. These represent the spin degrees of
341 freedom of the fermion and are minimally coupled to A through its field strength FðxðτÞÞ appearing in the action S̃WL.
342 An additional Grassmann variable η also appears; the Dirac-matrix structure of the propagator is produced by acting on this
343 variable by the (inverse of the) symbolic map, defined by

symbfγ½μ1γμ2…γμn�g ¼ ð−i
ffiffiffi
2

p
Þnημ1ημ2…ημn : ð32Þ

344345 This map converts between antisymmetric combinations of Dirac matrices (a combinatorial factor of 1=n! factor is
346 assumed) and products of Grassmann variables η. Use of the symbol map avoids lengthy Dirac-matrix algebra as it
347 automatically produces the kernel in the (even subalgebra of the) Clifford basis of the Dirac algebra. Note that all
348 η-dependence in (30) and (31) or any of our expressions vanishes after evaluation of the inverse map; it is therefore
349 pragmatic to state once and for all the results relevant to us in (3þ 1) dimensions as

symb−1f1g ¼ I4; symb−1fημηνg ¼ −
1

2
γ½μγν� ¼ −

1

4
½γμ; γν�;

symb−1fημηνηαηβg ¼ 1

4!
½fγ½μγν�; γ½αγβ�g − fγ½μγα�; γ½νγβ�g þ fγ½μγβ�; γ½νγα�g� ¼ iγ5ϵμναβ: ð33Þ

350351 Now, taking A as in (3) to introduce both our background plane wave and the N external photons, we expand (29) to
352 multilinear order in the photon polarizations to obtain the N-photon dressed propagator
353

Sx0x
N ¼ ð−i∂x0 þ aðx0þÞ −mÞKx0x

N ðaÞ þ e=Aγðx0ÞKx0x
N−1ðaÞ;

Kx0x
N ðaÞ ¼ ð−ieÞN

Z
∞

0

dTe−im
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞeiSB½xðτÞ;a�2−D

2 symb−1
I
A=P

DψðτÞeiS̃B½ψðτÞ;xðτÞ;a�
YN
i¼1

Vx0x
η ½εi; ki�; ð34Þ

354 where S̃B½ψðτÞ; xðτÞ; a� is given by replacing eFðxðτÞÞ in
355 S̃WL½ψðτÞ; xðτÞ; A� with fðxðτÞÞ. In the “N-photon kernel”
356 Kx0x

N ðaÞ, the proper time and bosonic integrals are the same
357 as in the scalar case—these represent the orbital degrees of
358 freedom which remain unchanged. In the so-called sub-
359 leading term involving Kx0x

N−1, for each term in the sum in
360 =Aγðx0Þ we remove the corresponding photon from the
361 kernel to maintain the projection onto the multilinear
362 sector. Finally, writing f̃iμν ¼ kiμεiν − kiνεiμ for the linear-
363 ized field strength associated with the ith photon, the vertex
364 operator is now given by

Vx0x
η ½εi; ki�≔

Z
T

0

dτ½εi · ẋðτiÞ

þ ðψðτiÞ þ ηÞ · f̃i · ðψðτiÞ þ ηÞ�eiki·xðτiÞ; ð35Þ

365366in which the second term represents the spin coupling of the
367external photons to the particle trajectories.
368Despite the obvious added complexity from the spin
369coupling to the photon fields, we stress that the same
370hidden Gaussianity is present here as in the scalar case.
371Consider again the path integral over xμ; we treat it as we
372did above, introducing auxiliary fields to yield a Gaussian

COPINGER, EDWARDS, ILDERTON, and RAJEEV PHYS. REV. D XX, 000000 (XXXX)

6



373 path integral in the fluctuation qμ. While there is now an
374 additional dependence on the background fμν introduced
375 by the spin factor, this behaves in the same way as above
376 when integrating out the auxiliary fields, i.e. f in the spin
377 factor is ultimately evaluated at a shifted argument,

fμνi ≡ fμνðτiÞ≡ fμν
�
xþ þ zþ

τi
T
− 2

XN
j¼1

Δijk
þ
j

�
; ð36Þ

378379 just for aμ earlier (recall we have gauged εþi ¼ 0 for
380 convenience). In short, and as is natural, the only real
381 difference compared to the scalar case lies in the evaluation
382 of the Grassmann path integral, which is the focus of the
383 remainder of this section.
384 Observe that the vertex operators (35) introduce factors
385 of ψηðτÞ≡ ðψðτÞ þ ηÞ under the Grassmann integral. This
386 motivates us to introduce the following functions,

Wηðf̃i1 ;…; f̃iSÞ ≔ hψηðτi1Þ · f̃i1 · ψηðτi1Þ…ψηðτiSÞ
· f̃iS · ψηðτiSÞi ð37Þ

387388
¼ 2−

D
2

I
A=P

DψðτÞψηðτi1Þ · f̃i1 · ψηðτi1Þ…ψηðτiSÞ

· f̃iS · ψηðτiSÞei
R

T

0
dτ½i

2
ψ ·ψ̇þiψηðτÞ·fðτÞ·ψηðτÞ�; ð38Þ

389390 which generalize the expectation values of the spin part of
391 the vertex operator introduced in vacuum [Wðf̃i1 ;…; f̃iSÞ
392 on the loop in [49] and Wηðf̃i1 ;…; f̃iSÞ for open lines in
393 [51] ] and for one-loop amplitudes in the plane wave
394 background [Wðf̃i1 ;…; f̃iSÞ in [33] ]. We generate the
395 insertions under the path integral by derivatives with
396 respect to a fictitious Grassmann source θ (anticommuting
397 with ψ and η), from which follows

Wηðf̃i1 ;…; f̃iSÞ¼
δ

δθi1
· f̃i1 ·

δ

δθi1
�� � δ

δθiS
· f̃iS ·

δ

δθiS
2−

D
2

×
I
A=P

DψðτÞei
R

T

0
dτ½i

2
ψ ·ψ̇þiψη·f·ψηþiθ·ψη�

����
θ¼0

;

ð39Þ
398399 and the corresponding spin factor is produced through

Spinðf̃i1 ;…; f̃iSÞ ≔ symb−1Wηðf̃i1 ;…; f̃iSÞ: ð40Þ

400401 To compute the integral in (39) we require the (spinor)
402 worldline propagator in the field,Gμνðτ; τ0Þ. This will define
403 the fundamental contraction between the Grassmann fields,

hψμðτÞψνðτ0Þi ¼ 1

2
Gμνðτ; τ0Þ: ð41Þ

404405 From the quadratic part of the operator appearing in the path
406 integral action, G must obey

�
1

2
ημσ

d
dτ

þ fμσðτÞ
�
Gσνðτ; τ0Þ ¼ ημ

νδðτ − τ0Þ; ð42Þ

407408as well as antiperiodic boundary conditions Gð0; τ0Þ ¼
409−GðT; τ0Þ and Gðτ; 0Þ ¼ −Gðτ; TÞ. Observe that G has
410the antisymmetric property Gμνðτ; τ0Þ ¼ −Gνμðτ0; τÞ. The
411general homogeneous solution of (42) for arbitrary fðτÞ
412is written conveniently in terms of an auxiliary func-
413tion Oðτ; τ0Þ, which takes care of the ordering of τ and τ0,
414defined by

Oðτ; τ0Þ ¼ P⋆e−2
R

τ

τ0 dσfðσÞ; ð43Þ

415416where Θ is the Heaviside step function, P⋆ ≡ P⋆ðτ; τ0Þ ¼
417Θðτ − τ0ÞP þ Θðτ0 − τÞP̄ with P (P̄) denoting (anti)path
418ordering in proper time and we have made use of a matrix
419form for the Lorentz indices (with respect to which O is
420orthogonal). With the homogeneous solution, we can then
421find the general solution to (42)with appropriate antiperiodic
422boundary conditions as

Gðτ; τ0Þ ¼ sgnðτ − τ0ÞOðτ; τ0Þ

þOðτ; 0Þ 1 −OðT; 0Þ
1þOðT; 0ÞOð0; τ0Þ: ð44Þ

423424However, there are notable simplifications in our particular
425case thatf is a planewave because, as iswell known, the field
426strength is then nilpotent of order 3. Further, f evaluated at
427different τ commute. The Green function thus reduces to2

Gðτ; τ0Þ ¼ e−2
R

τ

τ0 dσfðσÞ
�
sgnðτ − τ0Þ þ tanh

�Z
T

0

dσfðσÞ
��
ð45Þ

428429
¼ sgnðτ − τ0Þ

�
1 − 2

Z
τ

τ0
dσfðσÞ þ 2

�Z
τ

τ0
dσfðσÞ

�
2
�

þ T⟪f⟫

�
1 − 2

Z
τ

τ0
dσfðσÞ

�
: ð46Þ

430431Equipped with the Green function, we compute the integral
432in (39) by completing the square, using the shift ψ̃ðτÞ ¼
433ψðτÞ þ R

dτ0Gðτ; τ0Þ · ðfðτ0Þ · ηþ 1
2
θðτ0ÞÞ The integral over

434ψ̃ then generates the determinant Detð1
2
d
dτ þ fÞ (for antiperi-

435odic boundary conditions) which because of the nilpotency
436of f simply gives a factor of 2

D
2 , being the number of degrees

437of freedom of the fermion inD (even) spacetime dimensions
438(this should be contrasted with the constant field case, where
439the normalization picks up a nontrivial field depend-
440ence [27,29]).

2This is an alternative way of writing the Green function given
in Eq. (45) of [33], with the advantage of being manifestly gauge
invariant. There Gμν was written in terms of periodic integrals of
the derivative of aðτÞ which made its antiperiodicity easier to see.
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441 Gathering all of the above together, the Grassmann integral as defined in (39) becomes

Wηðf̃i1 ;…; f̃iSÞ ¼
δ

δθi1
· f̃i1 ·

δ

δθi1
� � � δ

δθiS
· f̃iS ·

δ

δθiS
e−

R
T

0
dτ½η·fðτÞ·ηþθðτÞ·η�−

R
T

0
dτdτ0½η·fðτÞ·Gðτ;τ0Þ·θðτ0Þþ1

4
θðτÞ·Gðτ;τ0Þ·θðτ0Þ�

����
θ¼0

: ð47Þ

442443444 The Grassmann path integral is therefore formally computed. In particular,

Wηð0Þ ¼ e−
R

T

0
dτη·fðτÞ·η; ð48Þ

445446
Wηðf̃i1Þ ¼

�
−
1

2
tr½f̃ðτi1Þ ·Gðτi1 ; τi1Þ� þ η ·GT ðτi1Þ · f̃ðτi1Þ ·Gðτi1Þ · η

	
e−

R
T

0
dτ η·fðτÞ·η; ð49Þ

447448
Wηðf̃i1 ; f̃i2Þ ¼

��
−
1

2
tr½f̃ðτi2Þ ·Gðτi2 ; τi2Þ� þ η ·GT ðτi2Þ · f̃ðτi2Þ ·Gðτi2Þ · η

�
× ½τi2 → τi1 �

−
1

2
tr½f̃ðτi1Þ ·Gðτi1 ; τi2Þ · f̃ðτi2Þ ·Gðτi2 ; τi1Þ�

þ 2η ·GT ðτi2Þ · f̃ðτi2Þ ·Gðτi2 ; τi1Þ · f̃ðτi1Þ ·Gðτi1Þ · η
	
e−

R
T

0
dτη·fðτÞ·η; ð50Þ

449450 where GμνðτiÞ ≔ ημν −
R
T
0 dτ½Gðτi; τÞ · fðτÞ�μν and T denotes the transpose in Lorentz indices—in particular we

451 have GT
μνðτiÞ ¼ ημν −

R
T
0 dτ½fðτÞ ·Gðτ; τiÞ�μν.

452 Putting all of this together, the N-photon dressed propagator can be written in a “spin-orbit decomposition” by summing
453 over assignation of the N external photons to either the spin or bosonic part of the vertex [33], as follows:

Sx0x
N ¼ ð−i∂x0 þ aðx0þÞ −mÞKx0x

N ðaÞ þ e=Aγðx0ÞKx0x
N−1ðaÞ; ð51Þ

454455

Kx0x
N ðaÞ ¼

XN
S¼0

X
fi1∶ iSg

Kfi1∶iSgx0x
NS ðaÞ; ð52Þ

456457
Kfi1∶iSgx0x

NS ðaÞ ¼ ið−eÞN
Z

∞

0

dTð4πiTÞ−2e−iM2ðaÞT−iz2
4T−iz·⟪a⟫

×
YN
i¼1

Z
T

0

dτiSpinðf̃i1 ;…; f̃iSÞP̄fi1∶iSgx0x
NS ei

P
N
i¼1

½xþz
Tτi−2IðτiÞ�·ki−i

P
N
i;j¼1

Δijki·kj : ð53Þ

458459 The sum on the second line runs over the allocation of S, out of the N, photons to the spin part of the vertex operator, Vx0x
η ,

460 which subsequently appear in Spinðf̃i1 ;…; f̃iSÞ. Then the remaining N − S photons appear in the polynomial P̄fi1∶ iSgx0x
NS ,

461 defined by
462

P̄fi1∶iSgx0x
NS ≔ iN−Se

P
N
i¼1

εi·
z
Tþ2

P
N
i¼1

½ð⟪a⟫−aiÞ·εi�þi
P

N
i;j¼1

½εi·εk•Δ•
ijþ2i•Δijεi·kj�

���εi1…εiS¼0

εiSþ1
…εiN

; ð54Þ

463 where the notation on the far right means that the
464 polarization vectors εi1 to εiS should be put to zero before
465 the remaining expression is expanded to multilinear order
466 in the εiSþ1

to εiN . These polynomials generalize those

467 introduced in vacuum (P̄fi1;iSg
NS ) in [51] and satisfy

P̄fgx0x
N0 ¼ P̄x0x

N ; P̄f1∶Ngx0x
NN ¼ 1: ð55Þ

468469 Again, these are position-space expressions, but below we
470 shall transform to momentum space for the purpose of

471evaluating scattering amplitudes. Although this master
472formula appears lengthy, it is important to emphasize that
473it represents a formal evaluation of the path integral for an
474arbitrary number of photons inserted along the background-
475dressed propagator, conveniently split into contributions
476from the vertex function representing orbital interactions

477(in P̄fi1∶ iSgx0x
NS ) and spin interactions [in Spinðf̃i1 ;…; f̃iSÞ].

478All of these insertions are integrated along the particle
479trajectories, so that the master formula represents a sum
480over all Feynman diagrams contributing to the dressed
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481 propagator that differ by permutation of the external
482 photons. Obtaining such a formula from the standard
483 formalism (Furry picture, say) of strong-field QED would
484 be a significantly more complicated task.
485 For completeness, we note that the N ¼ 0 case provides
486 a worldline representation of the well-known Volkov
487 propagator as a one-parameter integral

Sx0x ¼ ið−ið∂x0 þ iaðx0þÞÞ −mÞe−iz·hai

×
Z

∞

0

dTð4πiTÞ−2e−iM2ðaÞT−iz2
4Tþ T

zþ½naðx0þÞþaðxþÞn �;

ð56Þ

488489 where we used Spinð0Þ ¼ 1þ T
2
γ · hfi · γ ¼ 1þ Tnha0i,

490 computed the integral in the average explicitly, and
491 reexponentiated using n2 ¼ 0. This is again equivalent to
492 other representations of the Volkov propagator [8,65,66].

493 III. LSZ FOR SCATTERING AMPLITUDES

494 The objective of this section is to take the master
495 formulas for the dressed propagators Dx0x

N and Sx
0x
N above

496 and produce from them equivalent master formulas for
497 (2-scalar) N-photon scattering amplitudes (for N ≥ 1). To
498 do so we must perform LSZ reduction on the two massive,
499 external legs of the dressed propagators.
500 In previous worldline literature, amputation was often
501 done “by hand,” by obtaining the N-point correlation
502 functions in momentum space and then—once the
503 proper-time integral had been computed—removing exter-
504 nal legs with the appropriate inverse matter propagators
505 [51,52]. Only then could the external particles be taken on-
506 shell—the proper-time integral produces the pole structure
507 of the correlation functions with respect to external matter
508 legs and so is divergent in the on-shell limit. This is a
509 notable example where the Feynman diagram prescription
510 to omit external propagators had appeared less trivial from
511 a worldline perspective. Recently, however, [68,69] showed
512 how amputation can be achieved under the proper-time
513 integral for scalar matter legs, with the inverse propagators
514 simply modifying the bounds on the proper-time and
515 parameter integrals. This exposes the on-shell residue of
516 the correlation functions without the need to carry out
517 amputation by hand. We will here generalize this approach
518 to spinor theories, and also show it is unspoiled by the plane
519 wave background.
520 To perform LSZ we draw the external legs out to
521 asymptotic times and Fourier transform. Alternatively,
522 we can Fourier transform to momentum space and find
523 the residues of the dressed propagator as the momenta are
524 taken onto the mass-shell. Starting with scalar QED, the
525 amplitude takes the form

Ap0p
N ¼ − lim

p02;p2→m2

Z
d4x0d4xeiðp0þa∞Þ·x0−ip·x½ð∂x0

þ ia∞Þ2 þm2�½∂2x þm2�Dx0x
N ð57Þ

526527¼ lim
p02;p2→m2

− ðp02 −m2Þðp2 −m2ÞDp̃0p
N ; ð58Þ

528529where in the second line we defined p̃0 ¼ pþ a∞ and

530introduced the momentum-space propagator Dp0p
N , defined

531by

Dp0p
N ≔

Z
d4x0d4xeip0·x0−ip·xDx0x

N : ð59Þ

532533The expression (57) is (almost) textbook-standard LSZ in
534position space but to compensate for the fact that our
535potential becomes pure gauge in the far future, the on-shell,
536outgoing momentum p0 in the Fourier kernel is shifted to
537p̃0 ¼ p0 þ a∞ [57,63]. The expression (58) makes it clear

538that the amplitude Ap0p
N is the residue of Dp̃0p

N at on-shell

539momenta. In our conventions Ap0p
N describes N-photon

540emission from a particle traversing the plane wave.
541Absorption and pair-production/annihilation amplitudes
542are of course obtained by crossing.
543Similarly for the spinor case, starting from the master
544formula for the dressed propagator (51), we can extract the

545spin-polarized amplitude Mp0p
Ns0s as

Mp0p
Ns0s ¼ i lim

p02;p2→m2

Z
d4x0d4xeip̃0·x0−ip·xūs0 ðp0Þ

× ði∂x0 − a∞ −mÞSx0x
N ð−i⃖∂x −mÞusðpÞ; ð60Þ

546547in which ūs0 ðp0Þ and usðpÞ are free Dirac spinors. We now
548proceed to perform the LSZ reduction explicitly, starting
549with scalar QED.

550A. Scalar QED

551We begin by evaluating the momentum-space propagator
552via direct Fourier transform of the master formula (24):

Dp̃0p
N ¼

Z
d4x0d4xeip̃0·x0−ip·xDx0x

N : ð61Þ

553554The integrals over x0⊥;− and x⊥;− generate,3 as in the vacuum
555case, four δ-functions, explicitly δ3⊥;−ðp̃0 þ K − pÞ×
556δðxþ − x0þ þ 2gþ þ 2p0þTÞ, where we write K ¼
557

P
N
i¼1 ki to compactify notation. The first three δ-functions

558describe the (expected) conservation of light front three-
559momentum in the plane wave background. The final

3To evaluate similar integrals in the existing literature it was
found to be convenient to change variables to end-point center of
mass and relative separation (z). However, for our later LSZ
amputation of the external legs it is more useful to integrate
separately with respect to the end-point coordinates.

MASTER FORMULAS FOR N-PHOTON TREE LEVEL … PHYS. REV. D XX, 000000 (XXXX)

9



560 δ-function allowsus to trivially perform, e.g., thex0þ integral,
561 so that we can replace x0þ → xþ þ 2gþ þ 2p0þT in what
562 remains; in particular, the classical trajectory on which the
563 gauge field depends throughout Dx0x

N , as in (18), is modified
564 to, where g≡ gðfτigÞ ≔

P
N
i¼1ðkiτi − iεiÞ,

xþclðτÞ ¼ xþ þ gþ þ ðp0 þ pÞþτ −
XN
i¼1

kþi jτ − τij: ð62Þ

565566Thus we can do all but one of the Fourier integrals, which
567eventually yield

568569

Dp̃0p
N ¼ ð−ieÞNð2πÞ3δ3⊥;−ðp̃0 þ K − pÞ

Z
∞

0

dTeiðp02−m2þi0þÞT
Z

∞

−∞
dxþeiðp0

þþKþ−pþÞxþ

×
YN
i¼1

Z
T

0

dτie
−2ig·⟪a⟫−2iTp0·⟪δa⟫þiT⟪δa2⟫−2i

P
N
i¼1

½ki·IðτiÞ−iεi·I0ðτiÞ�

× e
ig·ð2p̃0þKÞ−i

P
N
i;j¼1



jτi−τj j

2
ki·kj−isignðτi−τjÞεi·kjþδðτi−τjÞεi·εj

�����
lin:ε1…εN

; ð63Þ

570 in which we have defined δaðxþÞ ≔ aðxþÞ − a∞ and
571 aðτÞ≡ aðxþclðτÞÞ. Note that in the vacuum limit aμ → 0

572 we can carry out the x̂þ integral to complete the con-
573 servation of 4-momentum and so recover one version of the
574 master formula given in [27,51].
575 To convert (63) into a master formula for the amplitudes,
576 we have to perform LSZ on each massive scalar leg (these
577 are produced by the parameter and proper-time integrals).
578 To do so we observe that (58) has, using (63), the following
579 form, writing down only the relevant structures:

−iðp02 −m2 þ i0þÞ
Z

∞

0

dTeiðp02−m2þi0þÞTFðTÞ: ð64Þ

580581 The on-shell limit p2 → m2 − i0þ therefore returns the
582 residue of the mass-shell pole of the function defined by the
583 integral. To isolate this pole we proceed as in [68–70]
584 where LSZ was considered for, e.g., theN-graviton-dressed
585 propagator in vacuum.4 We integrate by parts (off-shell) in
586 order to expose the residue, as so:

− iðp02 −m2 þ i0þÞ
Z

∞

0

dTeiðp02−m2þi0þÞTFðTÞ

¼ Fð0Þ þ
Z

∞

0

dTeiðp02−m2þi0þÞT d
dT

FðTÞ: ð65Þ

587588We can now take p02 → m2 and 0þ → 0 (in either order),
589upon which the integral becomes exact, and we have

lim
p02→m2

− iðp02 −m2 þ i0þÞ
Z

∞

0

dTeiðp02−m2þi0þÞTFðTÞ

¼ Fð∞Þ: ð66Þ

590591Ultimately, then, performing the first amputation on (63) is
592equivalent to dropping the integral over proper time T and
593its accompanying mass-shell exponent, and taking the limit
594T → ∞ of what remains (this is the same argument as in
595vacuum, which we comment on further after performing the
596second amputation, below). We thus find

597598

lim
p02→m2

− iðp02 −m2 þ i0þÞDp0p
N ¼ ð−ieÞNð2πÞ3δ3⊥;−ðp̃0 þ K − pÞ

Z
∞

−∞
dxþeiðp0

þþKþ−pþÞxþ
YN
i¼1

Z
∞

0

dτi

× e
−i
R

∞
0
½2p0·δaðτÞ−δa2ðτÞ�dτ−2i

P
N
i¼1

½
R

τi
0

ki·aðτÞdτ−iεi·aðτiÞ�þig·ð2p̃0þKÞ−i
P

N
i;j¼1



jτi−τj j

2
ki·kj−isgnðτi−τjÞεi·kjþδðτi−τjÞεi·εj

�����
lin:εi…εN

: ð67Þ

599 We note that all terms with worldline averages have
600 ultimately been replaced with (convergent) integrals over
601 Rþ. This was the advantage of having computed the
602 Fourier integrals with respect to the individual end points

603as discussed above. Equation (67) is the one-side ampu-
604tated propagator.
605Turning to the amputation with respect to p, at this stage
606it is advantageous to introduce the mean and deviation
607proper-time variables as follows:

τ0 ≔
1

N

XN
i¼1

τi; τ̄i ≔ τi − τ0: ð68Þ
4We note in passing that the same “trick” is useful in exposing

the connection between gauge invariance and infrared behavior of
amplitudes in background plane waves [71].
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608609 The reason for this change of variable is that it allows us to
610 reexpress (67) in a form which renders the second LSZ
611 amputation immediate. To achieve this, we first rewrite the
612 proper-time integrals appearing in (67) in terms of the new
613 variables as [note the factor of 1

N in the δ-function is missing
614 in (3.18) of [69] ]

YN
i¼1

Z
∞

0

dτi ¼
Z

∞

0

dτ0
YN
i¼1

Z
∞

−∞
dτ̄iδ

�XN
j¼1

τ̄j
N

�
: ð69Þ

615616 We also make a change of variable for the xþ-integration,
617 x̄þ ≔ xþ þ ðp0 þ pþ KÞþτ0 þ gþðfτ̄igÞ, and it is conven-
618 ient to change variables in all dτ integrals from τ to
619 τ̄ ≔ τ − τ0, such that the background gauge field now
620 appears as

aðτ̄Þ≡ a

�
x̄þ þ ðp0 þ pÞþτ̄ −

XN
i¼1

kþi jτ̄ − τ̄ij
�
: ð70Þ

621622In terms of the shifted variables fx̄þ; τ0; τ̄ig, the once-
623amputated propagator (67) takes the form

ð−ieÞNð2πÞ3δ⊥;−ðp̃0 þ K − pÞ
Z

∞

−∞
dx̄þeiðKþp0−pÞþx̄þ

×
Z

∞

0

dτ0eiðp
2−m2Þτ0

Z
∞

−∞

YN
i¼1

dτ̄iδ

�XN
i¼1

τ̄i
N

�
Gðτ0Þ; ð71Þ

624625in which the function appearing in the factor is
626627

Gðτ0Þ ¼ e
−ið2p0þa∞Þ·a∞τ0−i

R
∞
−τ0

dτ̄½2p0·δaðτ̄Þ−δa2ðτ̄Þ�−2i
P

N
i¼1

½
R

τ̄i
−τ0

dτ̄ki·aðτ̄Þ−iεi·aðτ̄iÞ�

× e
iðp̃0þpÞ·g−i

P
N
i;j¼1



jτ̄i−τ̄j j

2
ki·kj−isgnðτ̄i−τ̄jÞεi·kjþδðτ̄i−τ̄jÞεi·εj

�
:

����
lin:ε1;…εN

ð72Þ

628629 Note that the factor −ið2p0 þ a∞Þ · a∞τ0 in the exponential diverges in the τ0 → ∞ limit, but can be absorbed into
630 the Volkov-like term, also divergent in the same limit, to yield the convergent factor −i

R
0
−τ0 ½2p̃0 · aðτ̄Þ−

631 a2ðτ̄Þ�dτ̄ − i
R∞
0 ½2p0 · δaðτ̄Þ − δa2ðτ̄Þ�dτ̄. After this rearrangement, one finds that the dependence on fp2 −m2; τ0g in

632 (71) and (72) exactly mirrors the dependence on fp02 −m2; Tg in the original expression, before the first amputation. Thus
633 we can simply repeat the previous LSZ argument but applied to fp2 −m2; τ0g in order to extract the pole at the incoming
634 mass-shell; effectively this removes the integral over τ0 and takes τ0 → ∞ in the remainder, yielding our final master
635 formula for the 2-scalar N-photon scattering amplitudes:
636

Ap0p
N ¼ ð−ieÞNð2πÞ3δ⊥;−ðp̃0 þ K − pÞ

Z
∞

−∞
dxþeiðKþp0−pÞþxþ

Z
∞

−∞

YN
i¼1

dτiδ

�XN
j¼1

τj
N

�

× e
−i
R

0

−∞
½2p̃0·aðτÞ−a2ðτÞ�dτ−i

R
∞
0
½2p0·δaðτÞ−δa2ðτÞ�dτ−2i

P
N
i¼1

hR
τi
−∞

ki·aðτÞdτ−iεi·aðτiÞ
i

× eiðp̃
0þpÞ·g−i

P
N
i;j¼1

ðjτi−τj j
2

ki·kj−isgnðτi−τjÞεi·kjþδðτi−τjÞεi·εjÞ
����
lin:ε

; ð73Þ

637 where aðτÞ is as in (70), and we have simply relabeled
638 x̄þ → xþ, and τ̄; τ̄i → τ; τi.
639 There are several features of this all-orders formula
640 worth discussing. First, as a consistency check, it is
641 straightforward to check that in the vacuum limit
642 (a → 0) the xþ integral can again be performed and one
643 recovers the known results in [54,69,72]. Second, similarly
644 to [69], a short set of rules summarizes the LSZ reduction.
645 The first three are shared with the vacuum case [69]:

646 (i) drop the T integral, (ii) insert δðPN
j¼1 τj=NÞ, and

647 (iii) take the dτi and dτ integrals over R. Here, beyond
648 the vacuum case, there are additional rules: (iv) drop all
649 worldline averages and (v) “introduce” the divergent factor
650

R
0
−∞ −2ip̃0 · a∞dτ into the exponential, which ensures that

651the proper-time integral is convergent in the asymptotic
652past—we stress that this by hand addition only occurs at the
653level of these rules, it emerges naturally as part of LSZ
654reduction, as described above.
655Third, the change in integration range for the dτi
656integrals can be understood as manifesting the fact that

657Ap0p
N is an asymptotic quantity, while the purpose of

658δðPN
j¼1 τj=NÞ is to “gauge” the proper-time translational

659symmetry of the system. Clearly neither of these features
660should be particular to any choice of background that tends
661to at most a constant asymptotically, and indeed they are the
662same in our plane wave background as in vacuum.
663Finally, we observe that xþclðτÞ in (70) solves the classical
664worldline equation of motion with the boundary conditions
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665
1
4
ẋþð−∞Þ ¼ p− and 1

4
ẋþð∞Þ ¼ p0

−. It is natural for this
666 solution to appear in the amplitudes because, although it
667 may not be obvious, the stated boundary conditions are
668 (particular components of) those in play for the momen-
669 tum-space propagator, from which the amplitude is con-
670 structed. We will show this in the following subsection, in
671 which we briefly digress from the master formula in order
672 to investigate how the Volkov wave functions arise from
673 worldline path integrals.

674 B. Mixed boundary conditions
675 and the Volkov wave function

676 Before moving on to the spinor case, we remark that one
677 can, in fact, compute the momentum-space propagator
678 without going explicitly via the position-space representa-
679 tion. Returning to the original expression (5) for Dx0x

N , we
680 immediately perform the Fourier transform (59). Now, the
681 exponent p0 · x0 − p · x in the Fourier kernel is, under
682 the path integral, the same as p0 · xðTÞ − p · xð0Þ, and
683 the spacetime integrals d4x0d4x can be interpreted as
684 d4xðTÞd4xð0Þ. Hence, taking the Fourier transform of (5)
685 is equivalent to performing a path integral with a free
686 boundary, i.e. no apparent restriction on the end points of
687 the worldline. There is though an alternative, but equiv-
688 alent, perspective; consider the change of the total action,
689 δS, under the variations of the end points of the worldline,
690 xð0Þ → xð0Þ þ δx0 and xðTÞ → xðTÞ þ δxT :

δS≡ δSB þ δðp0:xðTÞ − p:xð0ÞÞ

¼
�
1

2
ẋð0Þ þ aðxð0ÞÞ − p

�
· δx0

−
�
1

2
ẋðTÞ þ aðxðTÞÞ − p0

�
· δxT: ð74Þ

691692 Integrating over δxT and δx0 therefore returns delta
693 functions which impose the vanishing of the terms in
694 square brackets of (74); these are Robin boundary con-
695 ditions which relate the worldline end-point momenta ẋ to
696 the end-point positions x and the external asymptotic
697 momenta. It follows that the momentum-space propagator
698 can be computed alternatively from the path integral
699 expression

Dp0p
N ¼ ð−ieÞN

Z
∞

0

dTe−im
2T

×
Z

ẋðTÞþ2aðxðTÞÞ¼2p0

ẋð0Þþ2aðxð0ÞÞ¼2p
DxðτÞeiSB½xðτÞ�

YN
i¼1

V½εiki�: ð75Þ

700701 In the previous section we carried out the Fourier transform

702 of Dx0x
N literally, to obtain Dp0p

N . Expression (75) shows a
703 more “direct” approach to deriving the master formula in
704 (63), through a modification of the boundary conditions on

705the path integral. This fits in more naturally with the
706“worldline philosophy” of incorporating all information
707into the worldline path integral. Note that evaluation of (74)
708requires a worldline propagator with different boundary
709conditions. Indeed, this helps explain a puzzle arising
710in [26] (Section 3, footnote 3), where a version of the
711momentum space master formula was given that involves a
712Green function with mixed boundary conditions: by
713expanding about a suitable reference trajectory, (75) can
714be cast into a path integral for the fluctuation variable
715that must satisfy the mixed boundary conditions
716q̇ð0Þ ¼ 0 ¼ qðTÞ.
717This discussion prompts us to study the propagator Dxp

N
718with mixed boundary conditions which, examining (75), is
719given by the integral

Dxp
N ¼ ð−ieÞN

Z
∞

0

dTe−im
2T

Z
xðTÞ¼x

ẋð0Þþ2aðxð0ÞÞ¼2p
DxðτÞeiSB½xðτÞ�

×
YN
i¼1

V½εiki�: ð76Þ

720721To see the significance of the mixed propagator, consider
722the case N ¼ 0, that is the tree level two-point function for
723the scalar field, with mixed boundary conditions. In
724Feynman diagram language, this is just an external leg,
725Fourier transformed at one end. Taking the momentum at
726this end onto the mass-shell, i.e. performing LSZ reduction,
727we must recover the scalar Volkov wave functions. These
728are solutions of the Klein-Gordon equation in a plane wave
729background which reduce to e�ip:x in the asymptotic past/
730future and thus represent incoming and outgoing particles
731in scattering amplitudes.
732To confirm this, we first compute the path integral in (76)
733for N ¼ 0 (we drop the product of vertex operators). We
734do not dwell on this step; the entire integral turns out,
735unsurprisingly given the nature of the Volkov solutions and
736hidden Gaussianity of the worldline path integral, to be
737equal to its semiclassical value exp½iSclðTÞ�, i.e. the
738exponential of the classical action evaluated on the classical
739path obeying the mixed boundary conditions, which is

SclðTÞ ¼ ðp2 −m2 þ i0þÞT − p · x

−
Z

xþ

xþ−4p−T
ds

2p · aðsÞ − a2ðsÞ
4p−

: ð77Þ

740741The final step is to take p2 → m2 and identify the on-shell
742residue via

lim
p2→m2

− iðp2 −m2 þ i0þÞ
Z

∞

0

dTe−im
2TeiSclðTÞ: ð78Þ

743744Of course it is clear from the preceding calculations how to
745proceed; we perform the same manipulations as for the
746master formula, in particular taking the T → ∞ limit,
747immediately finding
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lim
p2→m2

− iðp2 −m2ÞDxp

¼ exp

�
−ip · x − i

Z
xþ

−∞
ds

2p · aðsÞ − aðsÞ2
4p−

�
≡φin

p ðxÞ:

ð79Þ

748749 The right-hand side is precisely the incoming scalar Volkov
750 wave function φin

p ðxÞ which reduces to e−ip·x in the
751 asymptotic past. A similar amputation of the propagator
752 Dpx

0 (where the boundary conditions are swapped) yields
753 the outgoing Volkov wave functions, i.e. those which
754 reduce to eþip̃0·x in the asymptotic future. Of course the
755 same procedure can be applied to the spinor propagator,
756 wherein the path integral with mixed boundary conditions
757 produces the spinor Volkov wave functions. Worldline path
758 integrals analogous to (76), with mixed boundary con-
759 ditions, have also been used before, in a similar context, to
760 recover the exact solutions of the Klein-Gordon equation in
761 a constant external electromagnetic field [73]. For numeri-
762 cal studies of open line instantons see [41].

763 C. Spinor QED

764 Turning to LSZ reduction in spinor QED, we proceed
765 from (60), writing Sx0x

N in terms of the kernels appearing in
766 (51) and evaluating the ∂x0 , ∂x derivatives (using integration
767 by parts) in (60) to find

Mp0p
Ns0s ¼ i lim

p02;p2→m2

Z
d4x0d4xeip̃0·x0−ip·xūs0 ðp0Þð=p0 −mÞ

×

�
ð−=p0þδaðx0þÞ−mÞKx0x

N þ e
XN
i¼1

εieiki·x
0
Kx0x

N−1

	

× ð=p−mÞusðpÞ: ð80Þ

768769 Next, following [52] we use the on-shell relation
770 ūs0 ðp0Þð=p0 þmÞ−1 ¼ ūs0 ðp0Þð2mÞ−1, (which is allowed
771 since it does not remove the associated pole, or affect the
772 final expression), and likewise for ð=pþmÞ−1usðpÞ to find

Mp0p
Ns0s¼ i lim

p02;p2→m2

1

2m

Z
d4x0d4xeip̃0·x0−ip·xūs0 ðp0Þðp02−m2Þ

×

��
−1þ 1

2m
δaðx0þÞÞ

�
Kx0x

N

þ e
2m

XN
i¼1

εieiki·x
0
Kx0x

N−1

	
ðp2−m2ÞusðpÞ: ð81Þ

773774 Due to the worldline approach being based on the
775 second-order formalism of QED, the exponent under the

776proper-time integral of the spinor amplitude contains
777the same terms as for the scalar amplitude—in particular
778the parameter and proper-time integrals produce (free) scalar
779propagators. Hence it suffices to revise the scalar case for
780this argument. The difference lies in the spin factor of the
781kernel, the subleading contibutions (those proportional to
782KN−1), and the δaðxþ0Þ factor from the covariant derivative.
783However the differences do not impede processing theT, and
784later τ0, proper time integrals as for scalars. The result is that
785the LSZ amputation is realized in precisely the sameway, by
786taking T; τ0 → ∞ as in Eqs. (64)–(69). Moreover, after
787taking the Fourier transform, the conservation of momenta
788enforced by δðxþ − x0þ þ 2gþ þ 2p0þTÞ sends

aðx0þÞ → að2Tp0þ þ xþ þ 2gþÞ: ð82Þ

789790The LSZ truncation projects onto asymptotic late time,
791taking aðx0þÞ → a∞ when T → ∞, canceling the field-
792dependent term in square brackets of (81). One may then
793express (81) in terms of the momentum-space kernel

Mp0p
Ns0s ¼ i lim

p02;p2→m2

1

2m
ūs0 ðp0Þðp02 −m2Þ

×

�
−Kp̃0p

N þ e
2m

XN
i¼1

εiK
ðp̃0þkiÞp
N−1

	

× ðp2 −m2ÞusðpÞ: ð83Þ

794795796Now we address the subleading terms. These are seen to
797have poles not in the required mass-shell p02 −m2, but
798rather in ððp0 þ kiÞ2 −m2Þ. Contributions involving these
799shifted poles hence vanish after taking the on-shell limit of
800ðp02 −m2Þ=ððp0 þ kiÞ2 −m2Þ. This is a remarkable gener-
801alization of the vacuum case [52]. We can be more precise
802with how this cancellation comes about. In the kernel of the

803subleading terms,Kðp̃0þkiÞp
N−1 , one must first remove an εi and

804ki, and then replace a∞ with a∞ þ ki in (73). This operation
805leaves p̃0 þ K invariant, but it does affect the term
806

R
∞
0 dτp0 · δaðτÞ, which was convergent as τ → ∞, but

807now produces a rapidly oscillating phase; noting that the
808proper-time integral calculates the Laplace transform of the
809function FðTÞ in (64), the Abelian final value theorem can
810be invoked to confirm that the subleading contributions
811must vanish.
812Since the manipulations are similar to the scalar case, let
813us simply record the spinor amplitude in its final form as

Mp0p
Ns0s ¼

XN
S¼1

X
fi1∶ iSg

Mfi1∶iSgp0p
NSs0s ; ð84Þ

814815
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816

Mfi1∶iSgp0p
NSs0s ¼ ð−ieÞNð2πÞ3δ⊥;−ðp̃0 þ K − pÞ

Z
∞

−∞
dxþeiðKþp0−pÞþxþ

Z
∞

−∞

YN
i¼1

dτiδ

�XN
j¼1

τj
N

�

× e−i
R

0

−∞
½2p̃0·aðτÞ−a2ðτÞ�dτ−i

R
∞
0
½2p0·δaðτÞ−δa2ðτÞ�dτ−2i

P
N
i¼1

½
R

τi
−∞

ki·aðτÞdτ−iεi·aðτiÞ�

× eiðp̃
0þpÞ·g−i

P
N
i;j¼1

ðjτi−τj j
2

ki·kj−isgnðτi−τjÞεi·kjþδðτi−τjÞεi·εjÞ
����εi1…εiS¼0

εiSþ1
…εiN

×
1

2m
ūs0 ðp0ÞSpinðf̃i1∶iSÞusðpÞ: ð85Þ

817818 After LSZ reduction, the argument of the exponential in the spin factor, (47), takes the following form
819

−
Z

∞

−∞
dτ½η · f · ηþ θ · η� −

Z
∞

−∞
dτ

Z
∞

−∞
dτ0

�
η · fðτÞ ·Gðτ; τ0Þ · θðτ0Þ þ 1

4
θðτÞ ·Gðτ; τ0Þ · θðτ0Þ

�
; ð86Þ

820 the worldline average in the fermion Green function is also
821 now understood to be T⟪f⟫ ¼ R∞

−∞ dτfðτÞ. Also, the
822 background gauge potential, a, and field strength, f, are
823 understood to be functions of the classical solution xþclðτÞ as
824 shown in (70). Finally, the sums in the first line of (84)
825 are—as usual—over the assignation of S photons out of N
826 to the spin part of the vertex operator.

827 IV. EXAMPLES

828 In this section we provide checks on our amplitude
829 master formulas (73) and (84), showing by comparison
830 with the existing literature that they are consistent with
831 results expected from Furry-picture perturbation theory.

832 A. N = 1, nonlinear Compton scattering in scalar QED

833 The case N ¼ 1 describes single photon emission from a
834 (scalar) electron in a plane wave background, which is the
835 well-studied process of “nonlinear Compton scattering.” In
836 this case, several parts of the master formulas (73) simplify
837 immediately. First, the delta function fixes τ1 ¼ 0. Next, the
838 gauge field is evaluated as

aðτÞ ¼
�
aðxþ þ 2pþτÞ; τ < 0;

aðxþ þ 2p0þτÞ; τ > 0:
ð87Þ

839840 This form facilitates an easy conversion of integrals over
841 proper time τ to integrals over light front time xþ, which are
842 expected in the standard formalism (see also [37]).
843 Specifically, we can conveniently treat the positive and
844 negative τ regions separately. The field-dependent terms in
845 the exponent of the master formula then reduce to

− i
Z

0

−∞
dτ½2p̃0 · aðτÞ − a2ðτÞ�

− i
Z

∞

0

dτ½2p0 · δaðτÞ − δa2ðτÞ� − 2i
Z

0

−∞
dτk1 · aðτÞ;

ð88Þ

846847
¼ −i

Z
xþ

−∞
dsþ

2p · aðsþÞ − a2ðsþÞ
2pþ

− i
Z

∞

xþ
dsþ

2p0 · δaðsþÞ − δa2ðsþÞ
2p0þ ; ð89Þ

848849in which we simply inserted (87) and used momentum
850conservation in the transverse directions to eliminate k1 in
851favor of p0 and p. With this, expanding (73) for N ¼ 1 to
852linear order in ε1, and using the Fourier representation of
853the momentum conserving δ-functions shows that the
854amplitude is equivalent to

Ap0p
1 ¼ −ie

Z
d4xfp̃0

μ þ pμ − 2aμðxþÞg

× εμ1e
ik1:xφout

p0 ðxÞφin
p ðxÞ; ð90Þ

855856where φin
p is the incoming scalar Volkov wave function

857of (79) while φout
p0 is the outgoing wave function,

φout
p0 ðxÞ ¼ eip̃

0·x exp

�
−i

Z
∞

xþ
dsþ

2p0 · δaðsþÞ − δa2ðsþÞ
2p0þ

�
:

ð91Þ

858859Expression (90) is precisely the expected result for non-
860linear Compton scattering in scalar QED, providing a
861positive check on our master formula.
862We stress that the method we employed above to process
863the worldline integrals was meant only to allow direct
864comparison with existing results. It is not the approach we
865wish to take in future work; instead, we will use the
866worldline representation to deal directly with the τ inte-
867grals. Since the major advantages of the worldline approach
868include that (a) one does not have to split amplitudes into
869sectors according to permutations of external legs, and
870(b) internal momentum integrals are recast in terms of the
871proper-time integral, we expect this to provide some
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872 advantage over the standard formalism, at least in various
873 physical limits of interest. This will be discussed elsewhere.

874 B. N = 1, nonlinear Compton scattering in spinor QED

875 Let us now confirm the N ¼ 1 case for spinor QED,
876 which requires expanding the master formula (84) to linear
877 order in ε1. Since the field dependence of the exponent in
878 for spinor QED contains that of scalar QED one may write
879 the resulting amplitude using the scalar Volkov wave
880 functions, (91), as

Mp0p
1s0s ¼ −ie

1

2m

Z
d4xeik1·xφout

p0 ðxÞφin
p ðxÞūs0 ðp0Þ

× ½ðp̃0 þ p − 2aðxþÞÞ · ε1Spinð0Þ
þ Spinð ef1Þ�usðpÞ; ð92Þ

881882 requiring only the evaluation of the spin factor (we have
883 again used the Fourier representation of the δ-functions).
884 Before embarking upon the comparison to the standard
885 formalism, we should emphasize that the approach outlined
886 here, namely writing in terms of spacetime averages with
887 steps to follow, is necessary to make the connection to the
888 perturbative Furry picture with Volkov wave functions.

889However, this would be inefficient for practical worldline
890calculations.
891The spin factors are determined using (48) and (49)
892under the LSZ reduction (86) and the inverse symbol
893map, (33). Because of the nilpotency of f one has,
894under the inverse symbol map, expð− R

∞
−∞ dτη · f · ηÞ ¼

8951 −
R
∞
−∞ dτη · f · η, and therefore the factor without photon

896insertion is readily determined to be

Spinð0Þ ¼
�
1 −

1

2p0þ nδaðxþÞ
��

1þ 1

2pþ naðxþÞ
�
; ð93Þ

897898where we have already transformed the parameter integral
899to a spacetime average and computed its value. This is
900simply the Dirac-matrix structure necessary to construct the
901spinor Volkov wave functions.
902Let us next treat the single photon spin factor, Spinðf̃1Þ.
903Beginning with the Grassmann integral with one photon
904insertion, provided in (49) we apply the inverse symbolic
905map in (33) and realize the LSZ reduction according
906to (86). The various worldline averages are then trans-
907formed into their corresponding spacetime averages as was
908done in the N ¼ 1 scalar case, to find

909910

Spinðf̃1Þ ¼ −
1

2
½k1; ε1� þ kþ1 ε1 ·

�
−
δaðxþÞ
2p0þ þ aðxþÞ

2pþ

�
þ ε1 ·

�
δaðxþÞ
2p0þ þ aðxþÞ

2pþ

�
1

2
½k1; n�

þ kþ1
1

2

�
ε1;

δaðxþÞ
2p0þ þ aðxþÞ

2pþ

�
þ
�
k1 ·

�
δaðxþÞ
2p0þ þ aðxþÞ

2pþ

�
þ 2kþ1

�
δaðxþÞ
2p0þ ·

aðxþÞ
2pþ

��
nε1

þ 2kþ1
2p0þ2pþ ε1 · ½aðxþÞδaðxþÞ þ δaðxþÞaðxþÞ�nþ ðk1 þ a∞Þμε1νnα

�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�
β

iγ5ϵμναβ: ð94Þ

911912 Next, we express the photon momentum, k1, in terms of the electron momenta and asymptotic value of the background
913 field. For theþ;⊥ components we can use momentum conservation, kþ;⊥

1 ¼ ðp − p̃0Þþ;⊥. The k−1 component requires us to
914 carry out an integration by parts with respect to xþ. We illustrate this step, to be applied to the various k1 terms in (94), with
915 the following manipulation:
916

Z
d4xeik1·xkμ1φ

out
p0 ðxÞφin

p ðxÞ ¼
Z

d4xeik1·x
��

2p · aðxþÞ − aðxþÞ2
2pþ −

2p0 · δaðxþÞ − δaðxþÞ2
2p0þ

�
nμ þ pμ − p̃0μ

�
φout
p0 ðxÞφin

p ðxÞ;

ð95Þ

917 In fact, if additional factors of aðxþÞ appear under the
918 above integral, in turns out that the additional derivatives
919 produced by integrating by parts always contract away.
920 Therefore (95) can be used throughout (94). Moreover,
921 applying the above procedure to k1 in the γ5 term of (94),
922 one can see that in effect kμ1 → pμ − p̃0μ, since the two nμ

923 contract to zero against the Levi-Civita tensor. In fact the
924 only term in which the nμ part of (95) survives after these
925 replacements is the first term on the RHS of (94).

926Last, since we are taking the on-shell limit we may
927use the Dirac equation for the sandwiching spinors so as
928to send their corresponding =p and =p0 to m, anticommu-
929tating where necessary. Again, illustrating this step with
930the γ5 term in (94) we rewrite γ5 in terms of products of
931four matrices using (33). After acting on the spinor
932solutions at most three matrices will remain. After this
933process, the γ5 term, as it appears in the amplitude (92),
934becomes
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ðk1 þ a∞Þμε1νnα
�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�
β

iγ5ϵμναβ ¼ ðpþ þ p0þÞ 1
2

�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ ; ε1

�
þ ðpþ p0Þ · ε1n

�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�

þ ðpþ p0Þ ·
�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�
ε1n −m

�
ε1; n

�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�	
:

ð96Þ

935936 Using the above steps to replace kμ1 in the remaining terms of (94), after some algebra one may gather terms to
937 find that
938

us0 ðp0Þfðp̃0 þ p − 2aðxþÞÞ · ε1Spinð0Þ þ Spinð ef1ÞgusðpÞ ¼ 2mus0 ðp0Þ
�
ε1 −

1

2p0þ nδaðxþÞε1 þ
1

2pþ ε1naðxþÞ
	
usðpÞ;

ð97Þ

939 and hence

Mp0p
1s0s ¼ −ie

Z
d4xeik·xΨout

p0;s0 ðxÞε1Ψin
p;sðxÞ; ð98Þ

940941 where we have used the spinor Volkov wave functions,
942 which read

Ψin
p;sðxÞ ¼

�
1þ 1

2pþ naðxþÞ
�
usðpÞφin

p ðxÞ; ð99Þ

943944

Ψout
p0;s0 ðxÞ ¼ ūs0 ðp0Þ

�
1 −

1

2p0þ nδaðxþÞ
�
φout
p0 ðxÞ: ð100Þ

945946 This successfully verifies that the worldline approach
947 reproduces the known amplitude for the N ¼ 1 process.

948 C. N = 2, double nonlinear Compton scattering
949 in scalar QED

950 To complete our discussion of the relevant structures in
951 scalar QED we must also consider the case N ¼ 2, where
952 the so-called seagull vertex (the four-point scalar-photon-
953 photon-scalar vertex) first appears. We will describe the
954 way this works briefly here, as the calculations proceed
955 largely as for N ¼ 1, leaving the details for the Appendix.
956 Expanding (73), there are now two τ integrals, with one,
957 say τ2, fixed by the worldline delta function in (73), and the
958 other, say τ1, remaining. The mapping onto Feynman
959 diagrams is most natural: the contributions from τ1 > 0
960 and τ1 < 0 recover one each of the expected contributions
961 from the two diagrams with two three-point vertices, with
962 τ1 being mapped to the light front time of one vertex. The
963 seagull contribution is picked up from the term in (73)
964 which goes like ε1 · ε2; this comes with a delta function
965 with support at exactly τ1 ¼ 0, hence leaving only a single
966 unevaluated integral, as expected. The full calculation is
967 presented in the Appendix.

968V. CONCLUSIONS

969We have presented worldline master formulas for all-
970multiplicity tree level scattering amplitudes of two massive
971charged particles and N photons, in a plane wave back-
972ground, in both scalar and spinor QED. The background
973field may have arbitrary strength and functional profile,
974and is treated without approximation throughout. This is
975particularly relevant as the target application of our results
976is to laser-matter interactions in the high intensity regime
977where the field is characterized by a dimensionless strength
978(the coupling to matter) larger than unity, and hence must
979be treated without recourse to perturbation theory.
980Our master formulas have been derived using the world-
981line approach to quantum field theory. While several
982previous publications have derived wordline master for-
983mulas for various correlation functions in vacuum, or even
984at higher loop level in background fields, our focus here has
985been on scattering amplitudes involving external matter. As
986such it was necessary to identify the worldline description
987of LSZ reduction in a plane wave background. We found
988this to be a fairly direct generalization of the known
989worldline prescription for LSZ amplitudes in vacuum
990[68,69]. A second notable generalization from known
991results in vacuum holds for the spinor case: namely that
992in the second-order formalism, which implies a split into
993“leading” and “subleading” terms, only the former survives
994the on-shell limit once the LSZ prescription is imposed.
995Furthermore, the background-field-dependent part of this
996leading term also drops out in the asymptotic limit. This
997allows for a large number of terms to be discarded (and in
998the vacuum case allowed for the gauge invariance of the
999amplitudes to be manifest).

1000We have checked our results against the existing liter-
1001ature, which contains only low-multiplicity amplitudes
1002derived using Feynman rules. Explicitly, these are the
1003cases N ¼ 1 and N ¼ 2, or single and double nonlinear
1004Compton scattering. Moving beyond scattering amplitudes,
1005we have also seen how to recover off-shell quantities,
1006in particular the scalar and spinor correlation functions
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1007 dressed by the background and the Volkov wave functions,
1008 from worldline path integrals. The latter is a particularly
1009 interesting case as it exposes the relevance of mixed
1010 boundary conditions; the relevant path integrals carry
1011 Dirichlet conditions at one limit, representing the local
1012 spacetime argument of the wave function, and Robin
1013 boundary conditions at the other limit, encoding the
1014 asymptotic momentum characterizing the Volkov solution.
1015 It is fair to say that the master formulas for amplitudes we
1016 have derived here still require, for a chosen number of
1017 photons N, some processing in order to extract all their
1018 physical content. In future work we will pursue methods of
1019 evaluating the remaining proper-time integrals in an effi-
1020 cient manner, or in an approximate manner relevant to
1021 interesting physical regimes. Here, benefit should be gained
1022 by not breaking the parameter integrals into ordered sectors
1023 corresponding to photon permutations, which will max-
1024 imally exploit the calculational efficiency. Constructing
1025 observables from our amplitudes at N > 2 (which are
1026 lacking in the literature) will help to benchmark numerical
1027 codes which approximate multiphoton processes using
1028 sequential single photon emissions. It would be revealing
1029 to compare our expressions with the compact all-multi-
1030 plicity results of [74,75]. We also plan to generalize our
1031 results to higher-loop orders, in order to pursue the Ritus-
1032 Narozhny conjecture on the behavior of loop corrections at
1033 very high intensity, see [8,14] for reviews.
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1039 APPENDIX: MASTER FORMULA CHECK
1040 FOR N = 2

1041 In this appendix we confirm that the master formula (73)
1042 correctly reproduces, at N ¼ 2, the amplitude for “double
1043 nonlinear Compton scattering” [76,77] in scalar QED, that
1044 is the emission of two photons from a particle in a plane
1045 wave background. (By crossing symmetry this is directly
1046 related to the amplitude for the Compton effect in the
1047 background.) Recall that in scalar QED, the standard
1048 approach would require evaluation of three separate
1049 Feynman diagrams—conveniently combined into one cal-
1050 culation on the worldline—one of which contains the four-
1051 point seagull vertex.
1052 Starting from (73) with N ¼ 2, the LSZ factor δðτ1=2þ
1053 τ2=2Þ means that we have only one nontrivial proper-time

1054integral, over, say, τ1. It is convenient to split this integral
1055into three pieces and analyze each separately; we split the
1056integration range into −∞ < τ1 < 0−, 0− < τ1 < 0þ and
10570þ < τ1 < ∞, and refer henceforth to the corresponding

1058contribution to the amplitudes as Ap0p
2− , Ap0p

2δ and Ap0p
2þ ,

1059respectively.

10601. τ1 ∈ ð0;∞Þ
1061When τ1 > 0, the field-independent terms in the expo-
1062nential of (73) reduce to

iðp̃0 þ pÞ · ðk1 − k2Þτ1 þ ε1 · ðp̃0 þ p − k2Þ
þ ε2 · ðp̃0 þ pþ k1Þ − 2iτ1k1 · k2

þ iðKþ þ p0þ − pþÞxþ: ðA1Þ

10631064The gauge field at the interaction points�τ1 (indicating the
1065insertion point of photon with momentum k1) takes the
1066values

aðτ1Þ ¼ aðxþ þ τ1ð2p0þ þ kþ1 − kþ2 Þ; ðA2Þ
10671068

að−τ1Þ ¼ aðxþ − τ1ð2pþ þ kþ1 − kþ2 Þ: ðA3Þ

10691070This motivates us to make the change of variable
1071xþ → xþ − τ1ð2pþ þ kþ1 − kþ2 Þ, such that the field-
1072independent terms (A1) transform to

T 0 ≡ ið4ðpþ þ k1þÞqþ − 2q2⊥ − 2m2 þ i0þÞτ1
þ ε1 · ð2p̃0 þ k1Þ þ ε2 · ðp̃0 þ pþ k1Þ
þ iðKþ þ p0þ − pþÞxþ − ið2p0 þ a∞Þa∞τ1; ðA4Þ

10731074where we have defined q ¼ p − k2 and used the fact the
1075momenta are on-shell to simplify. We shall shortly need the
1076last term −ið2p0 þ a∞Þa∞τ1 to simplify some of the field-
1077dependent terms. Before going into that, we return to the
1078exponent of (73) and note that the following field-depen-
1079dent term is already sufficiently simplified:

T 1 ≡ −2
XN
i¼1

εi · aðτiÞ → −2ε1 · aðxþÞ

− 2ε2 · aðxþ þ 4qþτ1Þ: ðA5Þ

10801081The rest of the field-dependent terms combine with
1082−ið2p0 þ a∞Þa∞τ1 from (A4) to yield
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1083

T 2 − ið2p0 þ a∞Þa∞τ1 ≡ −2i
XN
i¼1

Z
τi

−∞
dτki · aðτÞ − i

Z
0

−∞
dτ½2p̃0 · aðτÞ − a2ðτÞ�

− i
Z

∞

0

dτ½2p0 · δaðτÞ − δa2ðτÞ� − ið2p0 þ a∞Þ · a∞τ1

¼ −2i
XN
i¼1

Z
τi

−∞
dτki · aðτÞ − i

Z
τ1

−∞
dτ½2p̃0 · aðτÞ − a2ðτÞ� − i

Z
∞

τ1

dτ½2p0 · δaðτÞ − δa2ðτÞ�: ðA6Þ

10841085 We now use the dependence of aμðxclðτÞ on the classical solution to transform the proper-time integrals into spacetime
1086 integrals and simplify the above terms as

−2i
XN
i¼1

Z
τi

−∞
dτki · aðτÞ − i

Z
τ1

−∞
dτ½2p̃0 · aðτÞ − a2ðτÞ� − i

Z
∞

τ1

dτ½2p0 · δaðτÞ − δa2ðτÞ� ðA7Þ

10871088
¼ −i

Z
xþ

−∞

2p:aðsÞ − a2ðsÞ
2pþ ds − i

Z
xþþ4qþτ1

xþ
ds

2q · aðsÞ − a2ðsÞ
2qþ

− i
Z

∞

xþþ4qþτ1
ds

2p0 · δaðsÞ − δa2ðsÞ
2p0þ ; ðA8Þ

10891090 where we have used momentum conservation to replace p̃⊥ þ K⊥ with p⊥, and p̃⊥ þ k1⊥ with q⊥. The contributionAp0p
2þ to

1091 the amplitude from τ1 > 0 can then be written as

Ap0p
2þ ¼ 2ð−ieÞ2ð2πÞ3δ⊥;−ðp̃0 þ K − pÞ

Z
∞

−∞
dxþ

Z
∞

0

dτ1eT 0þT 1þT 2

����
lin:ε

: ðA9Þ

10921093 We are now going to show that the right-hand side of the above expression is equivalent to one of the three Feynman
1094 diagram contributions to double nonlinear Compton, namely that containing two three-point vertices in which photon k1 is
1095 emitted on the outgoing leg. The Feynman rules give this contribution as

ð−ieÞ2
Z

d4x0d4xeik1·x0 ½φout
p0 ðx0Þðε1 ·Dx0

↔ ÞGðx0; xÞðε2 ·Dx

↔ Þφin
p ðxÞ�eik2·x; ðA10Þ

10961097 whereD denotes the background-covariant derivative andGðx0; xÞ ¼ Dx0x
0 is the scalar particle propagator in the plane wave

1098 background (the double arrow indicates the right-left alternating derivative). We then observe that this is equivalent toZ
d4x0d4xφout

p0 ðx0 − iε1Þeik1·x0−2ε1·aðx0ÞGðx0 þ iε1; x − iε2Þeik2·x−2ε2·aðxÞφin
p ðxþ iε2Þ

����
lin:ε1…εN

: ðA11Þ

10991100 Taking this expression, we start by using the Fourier representation of Gðx0; xÞ to rewrite it asZ
d4x0d4xφout

p0 ðx0 − iε1Þeik1·x0−2ε1·aðx0ÞGðx0 þ iε1; x − iε2Þeik2·x−2ε2·aðxÞφin
p ðxþ iε2Þ

¼
Z

d4r
ð2πÞ4 d

4x0d4xφout
p0 ðx0 − iε1Þeik1·x0−2ε1·aðx0Þ

ie−ir·ðx
0−xþiε1þiε2Þ−i

R
x0þ
xþ

2r·aðsÞ−a2ðsÞ
4r−

ds

r2 −m2 þ i0þ
eik2·x−2ε2·aðxÞφin

p ðxþ iε2Þ: ðA12Þ

11011102 We can easily evaluate the x0−;⊥; x−;⊥, and r−;⊥ integrals and rewrite the propagator denominator using a standard
1103 Schwinger proper-time integral to obtain

ð2πÞ3δ⊥;−ðp̃0 þ K − pÞep·ϵ1þq:ε2

Z
∞

−∞
dx0þeiðpþþk1þ−rþÞx0þ−2ε1·aðx0þÞe−i

R
∞
x0þ

2p0 ·δaðsÞ−δa2ðsÞ
2pþ ds

× 2

Z
∞

−∞
dxþe−2ε2·aðxþÞe−ixþqþ

Z
∞

0

dτ1

Z
drþ
2π

eirþðxþ−x0þþ4qþτ1Þe−2iτ1½q2⊥þm2−i0þ�e−i
R

x0þ
xþ ds2q·aðsÞ−a

2ðsÞ
2qþ −i

R
xþ
−∞

ds2p·aðsÞ−a
2ðsÞ

2pþ : ðA13Þ
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11041105 The rþ integral can now be evaluated to give 2πδðxþ−
1106 x0þ þ 8q−τ1Þ. The remaining x0þ integral is therefore

1107 trivialized and effects the replacement x0þ → xþ þ 8q−τ1.

1108 Taking the multilinear limit, one recovers precisely the
1109 right-hand side of (A9) as promised.

11102. τ1 ∈ ð−∞; 0− Þ
1111For τ1 < 0, one recovers the Feynman diagram contri-
1112bution in which photon k2 is emitted from the outgoing leg.

1113The proof of this follows exactly the same steps as forAp0p
2þ

1114above. Hence we simply state that
11151116

Ap0p
2− ¼ ð−ieÞ2

Z
d4x0d4xeik2·x½φout

p0 ðx0Þðε2 ·Dx0
↔ ÞGðx0; xÞðε1 ·Dx

↔ Þφin
p ðxÞ�eik1·x: ðA14Þ

11171118
1119 3. τ1 ∈ ð0− ; 0+ Þ
1120 In this range, the field-independent term in the exponent of (73) going like δðτ1Þϵ1 · ϵ2 cannot be neglected. Noting that
1121 this term is already linear in both ϵ1 and ϵ2, the corresponding contribution to the amplitude is immediately seen to be
1122 proportional to the τ1 → 0 and ϵ1;2 → 0 limit of the integrand of the proper-time integral:

Ap0p
2δ ¼ −2ð−ieÞ2ð2πÞ3δ⊥;−ðp̃0 þ K − pÞ

×
Z

∞

−∞
dxþðiε1 · ε2ÞeþiðKþp0−pÞþxþ−i

R
0

−∞
½2p̃0·aðτÞ−a2ðτÞ�dτ−i

R
∞
0
½2p0·δaðτÞ−δa2ðτÞ�dτ−2i

R
0

−∞
K·aðτÞdτ: ðA15Þ

11231124 By inspection, this is equivalent to

Ap0p
2δ ¼ −2ið−ieÞ2ε1 · ε2

Z
d4xeiðk1þk2Þ·xφout

p0 ðxÞφin
p ðxÞ; ðA16Þ

11251126 which is indeed the seagull vertex contribution to double nonlinear Compton scattering. Summing (A9), (A14), and (A16)
1127 recovers the full amplitude.
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