
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

The Plymouth Student Scientist - Volume 02 - 2009 The Plymouth Student Scientist - Volume 2, No. 1 - 2009

2009

Measures to Control Harmful Algal

Blooms

Secher, S.

Secher, S. (2009) 'Measures to Control Harmful Algal Blooms', The Plymouth Student Scientist,

p. 212-227.

http://hdl.handle.net/10026.1/13864

The Plymouth Student Scientist

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



The Plymouth Student Scientist, 2009, 2, (1), 212-227 

 

 
ISSN 1754-2383 [Online] 

©University of Plymouth  [212] 

 

         

 

Measures to Control Harmful Algal Blooms 
 

Sofie Secher 

2009 

Project Advisor: Murray Brown, School of Biological Sciences, University of Plymouth, 

Drake Circus, Plymouth, PL4 8AA 

 

Abstract 

Harmful algal blooms (HABs) occur globally and are caused by different species of microalgae. They can 
be harmful by producing toxins or by the rapid increase in biomass often leading to discoloration and 
hypoxic conditions. Toxins accumulating in shellfish and fish can cause shellfish poisoning in humans, 
major economical losses, especially damage to aquaculture, and affects on marine life. Bloom events are 
natural phenomena and have been reported for centuries but the recent increase in blooms and their 
global spread, which are often discussed in relation to human influences, has caused concern. In the 
absence of reducing such factors, controlling blooms and mitigating effects are essential. Here, methods 
of controlling HABs by directly targeting the causative algae are reviewed. Studies have shown many 
possible control measures, biological, chemical and physical, but many methods are restricted by cost, 
practicality and environmental toxicity. Research on mortality and cell lysis of algae in the wild has lead to 
studies on biological control by bottom-up and top-down control, but no achievable method has yet been 
suggested. Flocculation by clay appears promising and is currently used in some areas, but global use is 
restricted for practical and economical reasons. Many chemicals have also been suggested of which 
surfactants have received recent attention. Toxicity tests on other, non-target marine organisms are 
necessary before such chemicals can be considered for use in the field. In the absence of successful 
control measures, mitigation to minimize effects is often important and widely employed.  
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Introduction 
 
Harmful algal blooms (HABs) are global occurrences caused by various species of 
microalgae. High densities of algae can, in some cases, cause discolouration of the 
water, misleadingly known as “red-tide”. Of the thousands of species approximately 150 
are toxic or harmful (Landsberg 2002). Species that can be harmful at low algal 
densities are distinguished from non-toxic species, which can cause detrimental effects 
by the extensive growth and high biomass often leading to hypoxic conditions 
(Anderson et al. 2002). Although HABs occur naturally and have been reported for 
centuries, the recent increase in bloom events and extended geographic range has 
caused concern (Fig 1)(Anderson et al. 2002; GEOHAB 2001; Kirkpatrick et al. 2004; 
Millie et al. 1999; Smayda 1989). Several explanations have been suggested to account 
for these observations, many related to human activities, with most attention on nutrient 
enrichment (Anderson et al. 2002; GEOHAB 2001). 
     
By consuming contaminated shellfish, toxins can cause paralytic, neurotoxic, diarrheic, 
amnesic and azaspiracid shellfish poisoning in humans. The toxins can also affect 
wildlife, e.g. massive fish kills and high mortalities in the endangered manatees 
associated with blooms on the west coast of Florida (Boesch et al. 1997). Every year 
economic losses in coastal regions due to reduction in tourism and recreation, costs of 
public health, as well as significant losses to commercial fisheries and aquaculture, are 
estimated at millions of U.S. dollars in several countries (Hoagland et al. 2002). Many 
countries encountering problems with HABs have established organizations and 
research programs to increase knowledge about algal species, bloom dynamics as well 
as to develop monitoring and management tools. But as HABs are globally spread, 
coordinated international programs and workshops are important, e.g. the GEOHAB 
(Global Ecology and Oceanography of Harmful Algal Blooms) (GEOHAB 2001). With 
increasing occurrences of HABs, causing major economic as well as wildlife losses, 
there is a growing need for control measures and mitigation of the impacts. Mitigation 
measures to reduce impacts of HABs on e.g. aquaculture, can be distinguished from 
control actions that aim to minimize the occurrences and spread of HABs. Furthermore, 
the separation of indirect (treating the cause of HABs, e.g. nutrient enrichment) and 
direct control measures (prevention and reduction of blooms by targeting the causative 
algal species) can be identified. This review will focus on the direct control measures, 
referring to previously tested methods, recent advances and development of new 
techniques as well as emphasizing risks and problems with such approaches.  
 

 
Fig 1. Harmful-bloom events in Chinese coastal          
areas (adapted from Zhang et al. 1994). 
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1.    Biological control 
 
For bloom events to occur, the growth rate must exceed losses, through biological and 
physical processes (Caron et al. 1989; Mitra & Flynn 2006; Tillmann 2004). Biological 
techniques use top down grazing and bottom up bacterial and viral infections observed 
in natural populations and examine possibilities to imply such methods for control of 
HABs (Table 1).  
 
1.1  Grazing 
 
A natural biological limitation for phytoplankton is grazing by microzooplankton, which 
may be important in the population dynamics of HABs (Caron et al. 1989; Tillmann 
2004). In situations with large microalgae (2-200µm), growth can exceed the 
consumption rate of the predators, leading to a bloom event (Caron et al. 1989). In 
contrast, bactivorous and herbivorous protozoa can feed at a sufficiently high rate that 
eliminates their prey, A. anophagefferens (Caron et al. 1989). Several studies, both 
laboratory and field based have shown that protozoan species graze on phytoplankton 
in high abundances during bloom events (Tillmann 2004). Effective grazing can thereby 
prevent blooms but where grazing is prevented by defense mechanisms (e.g. change in 
growth pattern, production of toxins), this may favour bloom events (Tillmann 2004). 
Control mechanisms using zooplankton would require cultivation in tanks in preparation 
for when algae biomass increases. According to calculations by Shirota (1989) tanks 
are required to hold a volume of 33 x 103 m3, which is unpractical and expensive. 
    
Planktonic algae are not only consumed by zooplankton but also by other filterfeeding 
animals such as bivalves. For example, in the San Francisco Bay, the invasion of the 
suspension-feeding clam Potamocorbula amurensis has caused decreased summer 
phytoplankton biomass maximum, presumably as a result of grazing (Alpine & Cloern 
1992). With a greater filtration rate than zooplankton, bivalves such as oysters, clams 
and mussels have been considered for HAB control, but again the quantity needed for 
this technique are unrealistic (Shirota 1989). Furthermore, at high densities of algae, 
toxins produced can inhibit the filtration by bivalves, and reduce the filtration rate. 
Bivalves may be capable of controlling the blooms at lower densities and can prevent 
the initiation of blooms, however, if a bloom is to occur, filtration by bivalves is not 
capable of reducing or eliminating blooms (Bricelj et al. 2001). 
 
 
1.2   Viruses and bacteria 
 
There are several bacteria and viruses that have algicidal or algistatic effects on HAB 
species (Brussaard 2004; Hare et al. 2005). Viruses and bacteria are naturally found in 
marine phytoplankton populations and are thought to account for a large proportion of 
natural mortality through cell lysis (Bratbak et al. 1993; Brussaard 2004; Tarutani et al. 
2000). Viruses can both cause accelerated declines in phytoplankton densities as well 
as preventing blooms by restricting population growth (Brussaard 2004; Gastrich et al. 



The Plymouth Student Scientist, 2009, 2, (1), 212-227 

 

 
ISSN 1754-2383 [Online] 

©University of Plymouth  [215] 

 

2004). The effect on an algal population is virus-specific but also strongly influenced by 
the environment and physiology of the host species (Lawrence et al. 2006).  
 
Phytoplankton have several defense mechanisms against viral infections, e.g. change in 
morphotype of the algae, enhanced sinking rate to avoid spread of infection and 
resistance to viral attack (Brussaard 2004). The possible use of a virus (HaV01) to 
control Heterosigma akashiwo was studied by Nagasaki et al (1999). Growth was 
inhibited during laboratory assays but little inhibition was detected in a natural 
population, demonstrating that specificity of the virus is a problem (Nagasaki et al. 
1999) 
     
Bacteria have also been shown to be lethal to certain HAB species (Doucette et al. 
1999; Frazier et al. 2007). In a study by Doucette (1999), an isolate of the bacteria 
strain 41-DBG2 was tested against isolates Karenia brevis (previously Gymnodinium 
breve). The bacteria were effective against four of the toxic strains of K. brevis from 
Florida bay. In a screening of bacteria, Hare et al. (2005) found that Shewanella IRI-160 
had growth-inhibiting effects on three species of dinoflagellates. The absence of effect 
on non-flagellates demonstrates desired specificity and possible use against HABs 
(Hare et al. 2005). Furthermore, Frazier et al (2007) demonstrated algicidal effects of 
several bacteria on Aureococcus anophagefferens and presented a possible use in 
control measures. 
     
Problems that prevent the use of viruses and bacteria in the control of HAB are related 
to the host-specific nature of many viruses, the unspecificity demonstrated in bacteria, 
the documented co-existence of viruses with phytoplankton which may indicate the 
inability to control the algae in nature, and reduced controlling effects in natural mixed 
populations of bacteria (Frazier et al. 2007; Nagasaki et al. 1999). More research is 
needed before it would be possible to release viral particles or bacteria in the field.    
 
2.  Physical control 
 
There have been several earlier studies on the use of physical methods to eliminate 
HAB, in most cases unsuccessful (reviewed in Shirota 1989). In one study conducted in 
the 1970s in Japan, techniques to skim the surface water to remove algae were 
assessed (Shirota 1989). The methods consisted of the generation of fine bubbles 
attaching to the algae, which were then collected by a skimmer. This technique failed in 
many aspects including difficulties in filtration of the algae, and no further studies were 
conducted (Shirota 1989). The use of ultrasonic waves was studied in the laboratory in 
Japan in 1974, but the technique only worked on the top 50 cm of the water and is not 
applicable to lower abundances, therefore the method was not practical (Shirota 1989). 
In a recent study by Xu et al (2007), electrolysis showed a promising method with 
demonstrated inhibition of the growth of the cyanobacterium Microcystis areuginosa. 
They concluded that it may be possible for this method to be used in control of HAB, but 
further research with other species is required (Xu et al. 2007). 
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Table 1. Biological control of HABs.  

 
Control method 

 
Algal species 

 
Results and comments 

 
References 

 
Grazing 

   

- Protozoans- 5 

different species 
Aureococcus 
anophagefferens 

Two of five species able to 
consume algae but 
complicated interactions in 
nature. 

Caron et al. 1989 

- Zooplankton- various 

species 
Various species of 
algae 

Multi predator-prey model 
revealing how HAB species 
compete for nutrients and are 
able to prevent grazing 

Mitra & Flynn 2006 

- Potamocorbula 
amurensis (clam) 

Various species of 
algae 

Invasion by filter feeding clam 
has impact on algal 
abundance in San Francisco 
Bay 

Alpine & Cloern 1992 

- Oxyrrhis marinaI 
(heterotrophic 
dinoflagellate) 

Heterosigma akashiwo Grazing by mass culture of the 
heterotrophic dinoflagellate, 
suggested for use in semi-
closed and closed 
aquaculture.  

Jeong et al. 2003 

Virus    
 Emiliania huxleyi Mortality of algae due to virus 

infection shown important in 
natural systems 

Bratbak et al. 2003 

 Aureococcus 
anophagefferens 

Infection of VLP in natural 
populations and laboratory 
experiments 

Gastrich et al. 2004 

 Heterosigma akashiwo Inhibition and cell lysis due to 
viral infection of HaV, but less 
effects in natural populations 

Nagasaki et al. 1999 

 Heterosigma akashiwo Natural mortality due to HaV, 
but some cells show 
resistance, which will have 
effect on population dynamics 
and composition 

Tarutani et al. 2000 

Bacteria    

- 41-DBG2 Karenia brevis Effective algacide against 4 
strains of K. brevis.  

Doucette 1999 

- Shewanella IR 160 Pfisteria piscicida, 
Prorocentrum 
minimum, 
Gyrodinium uncetenum 

Growth inhibition in 
dinoflagellates, no effect on 
other groups of algae 

Hare et al. 2005 

- Several bacteria 

species 
Aureococcus 
anophagefferens 

Of 32 isolates from field, 6 had 
algicidal effects and 
demonstrated inhibition of 
algae 

Frazier et al. 2007 

- Several bacteria 

species 

Chattonella antiqua Complex system of several 
bacteria, both proliferation and 
inhibition of algae 

Furuki & Kobayashi 
1991 

- HAK-13 
Pseudomonas 
fluorescens 

Heterosigma akashiwo, 
Alexandrium 
tamarense, 
Cochlodinium 
polykrikoides 

Strong suppression of growth, 
causing cell lysis and death of 
algae. Suggested control 
measure, but need of more 
testing.  

Kim et al. 2007 
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3.  Flocculation 
 
A relatively new and promising method is flocculation by clays and various long-chained 
polymers. By using a flocculant, the algal cells are concentrated and clustered together, 
becoming heavier and will eventually sink. Inorganic flocculants such as aluminium 
sulfate and ferrates have been used extensively in the purification of water (Shirota 
1989). The flocculant with greatest potential is clay; it has a natural water clearing 
property (Anderson et al. 2001). Clay particles absorb inorganic and organic materials, 
minute plankton, fragments of plants and animals and form a floc, which sinks to the 
bottom (Shirota 1989). There have been numerous studies on clay flocculation as a 
method to control HABs conducted with different species of algae, but also a wide range 
of clays has been used with varying success (Table 2) (Pierce et al. 2004; Sengco et al. 
2005; Sengco et al. 2001; Yu et al. 2004). Modifications to clays, using polyaluminum 
chloride (PAC), sophorolipid and chitosan-modified sepiolite have demonstrated 
increased removal efficiency of algae (Pierce et al. 2004; Sengco et al. 2005; Sun et al. 
2004a). 
  
Studies have shown that the type of clay, algae species targeted and treatment 
conditions can all influence the removal efficiency of this technique (Pan et al. 2006; 
Sengco et al. 2005; Yu et al. 2004). Clay flocculation have already been put into 
practice in the field to treat natural occurring blooms, e.g. in Japan and Korea (Shirota 
1989). The clay treatments have had great results, but the concern of the cost 
influenced by the local availability and consequent transport, needs to be resolved 
(Shirota 1989).  
     
Also to be considered is the effect on other marine organisms by suspended particles 
and sedimentation. There are different opinions on this matter; with some studies 
showing little or no affect by clay on benthic communities (Anderson et al. 2001; Shirota 
1989). In a study by Howell and Shelton (1970) to investigate the effects of china clay 
waste on the benthic fauna in St Austell and Mevagissey Bays (Cornwall, UK), they 
found increased biomass mainly sedentary polychaetes, and deposit feeding 
lamellibranches. In contrast, harmful effects of suspended particles have been 
demonstrated in the growth, clearance rates, and respiration of filter feeding animals 
(Cranford & Gordon 1992; Grant & Thorpe 1991; Shumway et al. 2003). A study by 
Shumway (2003) demonstrated detrimental effects on filter feeding animals as a 
response to clay and loess, which differed between species (Shumway et al. 2003). 
    
Water flow is an important parameter to consider when predicting the effect of clay 
addition to the seabed (Archambault et al. 2004; Beaulieu et al. 2005). For example, 
Archambault (2004) demonstrated two possible scenarios as a result of adding 
phosphatic clay, a low flow resulting in high sedimentation and formation of a sediment 
layer on the benthos, and a high flow with clay particles kept in suspension, with the 
latter having a more damaging effect on the growth rate of the hard clam, Mercenaria 
mercenaria.  
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The “positive effects”, of increased biomass demonstrated by Howell and Shelton 
(1970) and Shirota (1989), were obtained from studies on deposit feeding organisms, 
whilst the negative effects have mainly been demonstrated using filter-feeding animals 
(e.g Shumway et al. 2003). It is likely that the effects on varying groups of organisms 
will differ, and it is therefore important to broaden the research to a wider range of 
organisms but also to consider the overall impact on the community structure and to 
fully understand the impacts of clays in different environmental conditions. Other areas 
of concern that require more attention include the effects of sedimented and 
resuspended toxins, and possible oxygen depletion with increased nutrient load on the 
benthos (Anderson et al. 2001). 
  
 
Table 2. Flocculation by clay for HAB control.  
 

 
Type of clay 
 

 
Algal species 

 
Results and comments 

 
References 

Phosphatic clay 
(IMC-P4) 

Heterocapsa triquetre Flow environment will have effect 
on removal efficiency of clay, and 
addition of PAC (polyaluminium 
hydroxychloride) will increase 
resuspension.  

Beaulieu et al. 
2005 
 

Phosphatic clay 
and PAC mixture 

Prymnesium parvum Higher removal efficiency against 
nutrient sufficient cultures than 
nutrient deficient.  

Hagström & Granéli 
2005 

26 different types 
of clays 

Microcystis aeruginosa Classification of clays and 
minerals according to 8-h 
equilibrium removal efficiency. 
High efficiency demonstrated for 
spiolite even at lower clay loading.  

Pan et al. 2006 

Phosphatic clay Karenia brevis Successful removal of algae and 
brevetoxins, but 58% of toxins 
were still present in clay after 14 
days.  

Pierce et al. 2004 

25 clays and 
loess clay  

Karenia brevis, 
Aureococcus 
anophagefferens 

Removal efficiencies differed 
between clays but also between 
algal species. Addition of PAC 
decreased amount clay needed 
for successful removal. 

Sengco et al. 2001 

Dry bentonite, 
kaolinite, illite- 
clay minerals 
from Sweden 

Prymnesium parvum Effective clay flocculation only 
under specific conditions. Addition 
of PAC increased removal 
efficiency.  

Sengco et al. 2005 

Kaolinite (H-DP), 
phosphatic clay 
(IMC-P2) 

Aureococcus 
anophagefferens 

Dispersal methods have effect on 
removal efficiency of algae, higher 
success when collision frequency 
was increased, e.g. by mixing.  

Yu et al. 2004 

Yellow clay and 
biosurfactant 
sophorolipid 

Cochlodinium 
polykrikoides, 
Alexandrium tamarense 

Laboratory and filed studies 
revealing higher removal with 
addition of sophorolipid than clay 
alone as well as lower effects on 
other organisms.  

Lee et al. 2007; 
Sun et al. 2004b 
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4.   Chemicals 
 
Pesticides and numerous chemicals have been used extensively in terrestrial 
environments and some argue similar methods for the marine environment are 
appropriate (Boesch et al. 1997). However the use of chemicals to control HABs 
requires specific caution and certain specificity towards target algal species in order to 
exclude detrimental affects on other non-target aquatic organisms (Anderson et al. 
2001). There has been a range of chemicals tested for HAB control with variable 
success, many of which are not discussed in this review (Table 3). Instead this section 
focuses on larger projects and recently discovered and promising methods. 
 
4.1   Early studies 
 
One of the first attempts to control HABs with chemicals occurred in Florida in 1957 
where copper sulfate was sprayed over large areas in order to control Karenia brevis 
(Rounsefell & Evans 1958). For nearshore and shallow water, the treatment was 
successful in extinguishing K. brevis, but the effect was not long lasting and the bloom 
re-established within 10-14 days (Rounsefell & Evans 1958). The authors concluded 
that copper sulfate was too expensive as a control measure but could be used locally to 
provide immediate temporary relief from the airborne toxin associated  
 
with this species. Furthermore, the chemical itself, copper sulfate may cause great harm 
in other aquatic organisms (Anderson et al. 2001) 
     
In an attempt to find a chemical to control HABs without causing harmful effects to the 
aquatic environment the U.S. Fish and Wildlife Service Bureau of Commercial Fisheries 
conducted a major research project in screening chemicals to control K.brevis (Marvin 
1964). The study included testing 4,700 chemicals for their ability to cause high 
mortality in the dinoflagellate at relatively low concentrations and with low toxicity to 
other marine organisms. The results were disappointing with few compounds meeting 
the criterion and additional testing of these compounds revealed high variability in 
natural seawater (Marvin 1964).  
 
4.2   Aponin 
 
Surfactants (surface active agents) are compounds that lower the surface tension 
between liquids, solids and gases (Sun et al. 2004c). Surfactants accumulate at 
interfaces and therefore the cell wall of the target species is important for the effects 
(Ukeles 1965). Species with similar cell wall thickness, composition and structure are 
more likely to react similarly to addition of surfactants. As the variation in cell walls is 
large between algal species, the effects of surfactants are likely to be variable (Ukeles 
1965). 
 
The compound aponin is a sterol surfactant produced by the blue green alga 
Gomphosphaeria aponina and suggested as a control agent for HABs after the 
presence of G. aponina demonstrated reduction of viability and growth, and caused 
cytolysis of K. brevis within 4-10 days (McCoy & Martin 1977). Steidinger (1983) 
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highlights several problems using aponin against HABs, including cost, practicality of 
the large amounts needed and modification of the characteristics of the compound 
required for use in the field. The effect of aponin depends on the algal species, 
armoured flagellate species being less sensitive (Moon & Martin 1981). The effects 
aponin might have on other aquatic organisms have not been studied thoroughly 
although Maestrini and Bonin stated aponin to have “no effect on fishes, crustaceans 
and bacteria” (1981 referenced in Steidinger 1983).  
 
4.3   Other surfactants 
 
Surfactants have recently been considered for controlling HABs, as a result of high 
biodegradability and low toxicity (Baek et al. 2003). One example is the biosurfactant 
sophorolipid (Baek et al. 2003; Sun et al. 2004b). Initial tests on four common HAB 
species by Baek et al (2003) showed high mobility inhibition (90% after 10min) and no 
recovery when adding 20mg/l sophorolipod to algal cultures. The results are consistent 
with other studies and a concentration of 20mg/l has been suggested for mitigation of 
HABs (Baek et al. 2003; Sun et al. 2004b). There is a difference in responses between 
different algal species, especially in relation to cell wall, with lysis occurring more rapidly 
in species lacking cell walls e.g. Heterosigma akashiwo (Sun et al. 2004b). The 
biosurfactant attacks the biological membrane and leakage of nucleotides from algal 
cells, which explains the inability to recover (Sun et al. 2004b).   
     
This appears to be a promising method at this point in time, but further studies to 
evaluate the toxicity, specificity towards algal species and practicality must be studied 
further before sophorolipid could be used in the field. The combination of sophorolipid 
and yellow loess (a flocculant) has shown synergistic effects on removal of 
Cochlodinium polykrikoides, and more cost effective than any method alone (Sun et al. 
2004a). 
 
Several other surfactants have also been evaluated, for example polyoxyethylene alkyl 
esters have been tested against Chattonella marina and C. antiqua and were found to 
be efficient against the algae but also ichthyotoxic against several species of fish, as the 
lysis of the algal cells released endotoxins (Ono et al. 1998).  
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Table 3. Chemicals tested for HAB control.  

 
Chemical 
 

 
Algal species 

 
Results and comments 

 
References 

Copper sulphate Karenia brevis Treatment successful in 
killing algal species, but no 
long lasting effect,  

Rounsefell & Evans 
1958 

Aponin (sterol 
surfactant) 

Karenia brevis 
Prymnesium parvums 

Causing growth inhibition, 
and cell lysis in K. brevis 

McCoy 1977; Moon 
& Martin 1981 
 

Sophorolipid 
(biosurfactant) 

Heterosigma akashiwo 
Scripsiella trochoidea 
Prorocentrum minimum 
Alexandrium tamarense 
Cochlodinium polykrikoides 

High mobility inhibition, and 
cell lysis. High 
biodegradability and low 
cost, also synergistic 
effects with loess 
treatment.  

Baek et al. 2003 
Sun et al 2004a 
Sun et al. 2004b 
 

Cocamidopropyl 
betaine (CAPB, 
surfactant) 

Cochlodinium polykrikoides 
Alexandrium tamarense 

High mobility inhibition and 
cause of cell lysis. Further 
studies required.  

Sun et al. 2004c 

Polyoxyethylene 
alkyl esters 
(surfactants) 

Chattonella marina 
Chattonella antiqua 

Destroyed cultured algal 
cells, but also increased 
ichthyotoxicity.  

Ono 1998 

Anionic, non-ionic 
and cationic 
surfactants 

12 species of algae Inhibition of algae by 
surfactant was species 
specific. Cationic 
surfactants have greater 
effect 

Ukeles 1965 

Biocides- SeaKleen 
®, Peraclean ® 
Ocean, Vibre ® 

Gymnodinium catenatuni 
Alexandrium catenella 
Protoceratium reticulatum 

Use against dinoflagellates 
cysts in ballast water, 
Peraclean ® Ocean 
greatest effect 

Gregg & Hallegraeff 
2007 

Hexadecyltrimethyl- 
amine bromide 
(HDTMAB) 

Alexandrium spp. The addition of HDTMAB 
contributed to cupric 
glutamate toxicity 

Li et al. 2006 

Cystein compounds Gymnodinium mikimotoi 
Gymnodinium cf 
maguelonnense 

Mitigation of cytotoxicity 
and rheotoxicity which 
causes fish mortality 

Jenkinson & Arzul 
2001 
 

Sodium hopchlorite 
(NaOCl) 

Various species of 
dinoflagellates 

NaOCl produced by 
electrolysis of seawater 
mostly effective against 
dinoflagellates, but also 
non target heterotrophic 
dinoflagellates 

Jeong et al. 2002 

Ozone Various species Successful use in ballast 
water treatments, and in 
aquaculture.  

Herwig et al. 2006; 
Rosenthal 1981 

Hydrogen peroxide Alexandrium tamarense 
Alexandrium catenella 
Polykrikos schwartzii 

Potential use for 
extermination of 
dinoflagellate cysts in 
ballast water 

Ichikawa et al. 1993 

 
 
In a recent study that screened several surfactants, the chemically synthesized 
amphoteric surfactant cocamidopropyl betaine (CAPB) appeared most promising (Fig 
2)(Sun et al. 2004c). It’s high biodegradability, low cost and relative high removal rate of 
Cochlodinium polykrikoides and Alexandrium tamarense encourages further studies 
(Sun et al. 2004c). However, toxicity testing of CAPB is essential if this surfactant is to 
be considered for use in the field, as its effects on non-target species are unknown.   
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One issue of using chemicals in HAB control is the consequence of possible cell lyses 
of toxic algal cells, as endotoxins will be released into the water, possibly causing more 
harm. This has been highlighted as a concern in the review by Steidinger (1983) for use 
of copper and aponin, and the study on polyoxyethylene alkyl esters (Ono et al. 1998), 
but has not been considered in the use of the surfactants sophorolipid and CAPB (Sun 
et al. 2004b; Sun et al. 2004c). It may be important to agree on whether cell lysis of 
algal cells is an acceptable strategy, and whether the losses due to release of 
endotoxins are causing more harm than benefit.  
 
 
Conclusions and further studies 
 
The increase in HAB occurrences and global spread is a known fact and many 
countries suffer severe economic and ecological losses as a consequence. Although 
there is debate as to whether such effects should be treated (Steidinger 1983), 
numerous studies have looked at methods to eliminate and reduce algal blooms. The 
study of natural losses of phytoplankton has lead to investigations of top-down control in 
the form of grazing as well as algicidal affects of bacteria and viruses, but many issues 
need to be resolved if any biological measures are to be used as a control against 
HABs. Flocculation by clay is one of the few methods already put in to practice and has 
proven to be efficient. Problems with cost and availability of suitable clay are restraining 
the use in some places. On land, chemicals have long been used for fighting pests and 
unwanted growth, and the search for chemicals for use in the marine environment has 
been a long and still ongoing process. Recent advances have concentrated on the use 
of surfactants as these have often demonstrated high degradability and low toxicity. 
Toxicity tests are often conducted on commercially important species, especially if 
chemicals are considered for use in aquaculture, but a wider range of organisms used 

Fig 2. Inhibition rations of 11 surfactants on HAB 

organisms (surfactants: 10mg/l, contact time 5 min). 
Bar= SD, n=3. (From Sun et al. 2004c) 
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for toxicity tests is needed and should be examined carefully before tests in the field are 
possible.  
    
At this point in time, there is no existing method to control HABs, but several promising 
methods are being investigated. The ultimate control would be treating the cause of the 
increased blooms such as limiting nutrient enrichment, although this is a longer process 
and will not give any rapid relief. In the absence of effectively controlling HABs, 
mitigation of the effects is commonly applied, especially in aquaculture. 
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