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Abstract 
 

Moore’s law originally was the observation that the number of transistors on integrated 
circuits doubles roughly every 18 months. However, many other areas of technology 
progress with a similar exponential growth. For instance, can one find an analogous 
law in the context of super-computing? The aim of this paper is to answer this 
question by showing how a variant of Moore’s law emerges from an analysis of the 
“Top 500” lists of super computers from 1993 to 2013. 

http://www.tech.plym.ac.uk/Research/applied_mathematics/people/tom_heinzl.htm
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1 Introduction 
 
“The number of transistors on integrated circuits doubles approximately every two 
years” [1]. 
 
This is an observation made by, and named after, Intel co-founder Gordon E. 
Moore in 1965 (see Fig. 1). Despite the name, it should be viewed as an observation 
and an informed prediction, rather than a law. There is no fundamental law that states 
how powerful a newly made integrated circuit will be at any given time. Moore wrote 
an internal paper in which he drew a straight line through five points representing the 
number of components per square inch on an integrated circuit. He noticed that the 
number of transistors had doubled every year since the invention in 1958, up until 
1964.  His paper, “Cramming more components onto integrated circuits”, was pub- 
lished in 1965 by Electronics magazine [2]. Since then, his law has been generalised 
to the claim that computer power is doubling every 18 months. 

 

 
 

Figure 1: Gordon Moore at Fairchild R & D in 1962 [3]. 
 

 
 

Moore’s law predicts that this trend will continue into the foreseeable future. So far, 
this prediction has proven to be quite accurate. Because Moore’s law suggests 
exponential growth, it is however unlikely to continue forever.  Some studies have 
shown that within the next few years physical limitations could be reached, meaning 
the law may become infeasible, unless it is modified. 
 
Some theoretical physicists believe that the rate of increase is already starting to slow 
[4]. Silicon computer power can no longer maintain the exponential rise as we have 
reached such a high measure of computer performance that will be extremely hard to 
improve. Due to this many physicists argue that Moore’s Law could flatten out 
completely by 2022.  It is extremely unlikely that transistors could be made smaller 
and smaller forever, and eventually the limits of miniaturization at atomic levels would 
be reached. If we went beyond these limits processors would just overheat. We may 
have another 10 to 20 years before we reach this fundamental (quantum) limit. 
 
There are two main problems we encounter if we make silicon chips too small, heat 
and leakage.  Today a chip has a layer almost down to 20 atoms across, but when 
that layer gets down to about 5 atoms across major complications will occur. 
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The heat generated will be so intense that the chip will melt and begin to disintegrate. 

 
Also we will have no idea where the electron is, meaning it could be outside the chip, if 
quantum theory takes over.  To summarise: There is an ultimate limit set by the 
laws of quantum mechanics as to how much computing power you can achieve with 
silicon. 
 

 

2 Regression analysis of Top 500 list of super 
computers 
 

The information gathered for this regression has been collated from the TOP500 list of 
supercomputers [5], extending over a 20 year period (1993-2013). Over this period of 
time we are looking to assess if the performance of supercomputer behaves in a way 
as described by Moore addressing ’the rate of increase of the number of transistors 
on an integrated circuit’. We will fit a least squares model to the top 3 supercomputer 
over this time period, at two intervals per year. 
 
For our statistical analysis of supercomputers, we shall be considering 3 sepa- rate 
factors: Rmax being the observed power, Rpeak the theoretical power of which the 

supercomputer can reach and the total number of cores within a computer. All the 
proceeding graphs have been plotted in Rstudio [6]. 
 

 
 

Figure 2: Plot of Rmax values for top 3 supercomputers in Top500 list since 1993. 
 

 
 

2.1 Regression analysis of Rmax 

 

We measure computer power in terms of flops, that is floating point operations per  
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second.  A few years ago, computers had reached a performance of more than a 

Petaflops (Pflops), where the prefix ‘Peta’ denotes 1015. In what follows we will choose 

Teraflops (Tflops) as our units (1 Tflop = 1012 flops). 
 

Let us denote the maximum performance by Rmax. Figure 2 shows a plot of Rmax 

against time, starting from the first list of June 1993. Rmax is the fundamental quantity 

on which the Top 500 ranking system is based on. 

 

As expected one can see a relatively tiny growth between 1993 and 2009 com- pared 
to the last 4 year which, taken on their own, would have noticeable exponential growth. 
It should be noted that we are trying to find a trend and the most logical way of doing 
so is to linearise the variable in y i.e. take the natural logarithm of the Rmax values. 

The result is displayed in Fig. 3. 

 

 
 

Figure 3: Logarithmic plot of Rmax values for top 3 supercomputers in Top500 list since 

1993 
 

 
 

By linearising in the y variable we can fit a least squared estimator, visualised as the 
blue line [12][13], the idea being to minimise the sum of the squared residuals. From 
observation, we can say there is a linear increase in ln(Rmax) over time. Com- paring 

actual data to the linear trend line for (ln(Rmax)), patterns are easily noticed. In 

particular, we identify a step pattern within the data suggesting that there are sudden 
leaps in power followed by periods of stagnation. It is particularly obvious for the top 
computer (blue dots in Fig. 3) and may be rather straightforwardly be explained by 
new technology becoming available every few years. If one averages over each sam- 
ple of size 3 the pattern persists. We expect, though, that the steps will less distinct 
for larger samples (say upon averaging over the top 10 computers of each list). 
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One particular statistic to note is the R-squared value. The R-squared value is a 
means by which you can tell how well fit your least squares estimator is fit to the data

points and it is calculated as  

 

R 2 = 1 − 

 
S Sr e s 

S St ot 

 

 

, (1) 

where S Sr e s  is the sum of squared residuals and S St ot  is the total sum of squares. A 

value of R-squared close to 1 suggests that the model is a good fit and we can be 
confident in our result(s). Our R-squared value of 0.9796 suggests that our model is a 
very good fit. Using the summary command in R for this particular model, we obtain the 
linear equation 

 
ln Rmax = y = 0.05349x + 3.439 , (2) 

 

which shall be used later to discover the doubling time. 
 

 

2.2 Regression analysis of Rpeak 

 

Rpeak is the theoretical speed at which the computer can run (measured in Tflops). 

This is always going to be greater than the Rmax value, but by not too big a margin. 

Therefore, it seems logical to expect that the graphs will be rather similar.  This is 
indeed borne out by Fig. 4. Clearly, the graphs of Fig. 2 and Fig. 4 look rather similar 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Plot of Rpeak values for top 3 supercomputers in Top500 list since 1993. (as 

the observables on the y axes are closely related).  Again we linearise the y 

variable by taking the logarithm of Rpeak to identify any trends in the data. The result 

is shown in Fig. 5. 
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Figure 5: Logarithmic plot of Rpeak values for top 3 supercomputers in Top500 list 
since 1993. 
 
 

 
As expected Figure 5 is very similar to Figure 3 reflecting the similarity of Rmax and 

Rpeak. We also see the step pattern again here. The similarity can be quantified by 

looking at the equation for the least squares model fit, which is 
 

ln Rpeak = y = 0.05248x + 3.926 , (3) 
 

to be compared with (2). Both coefficients in the equation are rather similar, in partic- 
ular the slopes which coincide to one significant figure. Here the R-squared value is 

0.9812, slightly closer to 1 than for the Rmax data. Again, we can be confident that the 

fit (3) accurately represents (the trend of) our data. 
 

 

2.3 Regression analysis of the total amount of cores within a 
supercomputer 
 

The total number of cores within a super computer may not seem like an obvious 
predictor for us to set a least squares model on our data, given that the computers 
are ranked by Rmax in the top500 list.  Some computers ranked 2 or 3 for Rmax can 

be ranked higher than position 1 for the number of cores. But here we are not using 
the rankings as predictor variables, so are not interested in the interaction between 
rank, core and Rmax. It thus makes sense to have a look at the time evolution of core 

number by plotting it against time, see Fig. 6.  We still seem to find an exponential 
pattern emerging.  To check, we again linearise in y by considering the log of total 
core number and plot the result in Fig. 7. Compared to Rmax and Rpeak raw data (Fig.s 

3 and 5), the data points are more spread out, both horizontally and vertically. This 
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Figure 6: Plot of Total Cores for top 3 supercomputers in Top500 list since 1993 
 
 

 
spread could be reduced by considering averages, but in this way we would of course 
coarse-grain the information. From the raw data, it seems fair to conclude that core 
number is not as strongly correlated with computing power as Rmax or Rpeak. This will 

be quantitatively corroborated in what follows. To measure the correlation we again 

 

 
 

Figure 7: Logarithmic plot of Total Cores for top 3 supercomputers in Top500 list since 

1993 
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perform a linear regression resulting in the line 

 
ln (core number) = y = 0.03129x + 5.767 , (4) 

 
with slope and intercept different from those in (2) and (3), but still in the same ball 
park.  The R-squared value of this least squares model, however, is 0.845, hence 
significantly less than the previous values (0.9796 and 0.9812). Obviously, the linear 
correlation is somewhat weaker, but still reasonably strong in view of the amount of 
data points (d = 63).  Taking this figure as the number of degrees of freedom, the 
critical value for R , below which one would reject the hypothesis of linear correlation, 
is only about 0.25. So we are on fairly safe ground to assume a linear relationship 
also for log core number against time, hence exponential increase of core number 
with time. 
 

 

2.4 Doubling time 
 

To calculate the doubling time Td  from the linear models we use the standard relation, 

 

   
  ( )

 
  

 
where m is the slope in the straight-line fit equations, y = mx + c , associated with the 
logarithmic plots. Our findings can be summarised as follows: 

 
• For Rmax the value of m is 0.05349, therefore the doubling time is 12.96 months. 
 

• For Rpeak the value of m is 0.05248, therefore the doubling time is 13.21 months. 
 

• For total core number the value of m is 0.03129, therefore the doubling time is 

22.15 months. 
 

 
 

3 Conclusion 
 
Fitting linear regression models to our logarithmic plots of Rmax, Rpeak and the total core 

number unveils strong linear relationships with R-values close to unity. Hence, we can 
assume with confidence that the indicators in question indeed grow exponentially, 
consistent with Moore’s law. It thus makes sense to calculate the respective doubling 
times. 
 
Our findings are that Rmax and Rpeak (measured and theoretical performance) both 

double at a rate of once every 13 months. This is a large growth rate compared to 
others in technological development. For example, alternative forms of Moore’s Law 
forecast the number of transistors on integrated circuits doubling every 18 months [7]. 

 
 

(5) 
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When the rate of increase begins to seriously slow, fitting a linear regression line to 
the logarithmic plot would produce a weak R squared value. This would lead us to 
conclude that exponential growth was no longer being realised. But as we have found 
large R squared values there is no indication (yet) that the growth has started to slow. 
As said in the introduction, the exponential growth rate is bound to eventually de- 
crease – unless there is an unforeseen major advancement in computing technology 
in the coming years.  Gordon Moore himself stated: “It can’t continue forever.  The 
nature of exponentials is that you push them out and eventually disaster happens” 
[8].  Heat dissipation and power usage are currently the main obstacles for the ad- 
vancement of supercomputing technology. Supercomputers are housed in massive 
facilities, with a large amount of specially designed cooling systems and power trans- 
formers to keep the behemoths in check. Regarding power consumption, we note that 
the current record holder for performance, the Tianhe 2 supercomputer, uses 17,808 
kW of power [5]. This is a massive amount of power equivalent to the power usage of 
roughly 5000 homes [9]. 
 
One way in which supercomputers could maintain an exponential rate of increase is by 
forming a larger “grid” of supercomputers, in which multiple supercomputers work 
together.  This is likely to be costly, however, as it requires a large amount of 
expensive fibre optic cables between remote supercomputer sites [10]. 
 
Nevertheless, despite these infrastructure related barriers, the future of super- 
computing still looks positive. The next major milestone to reach is a supercomputer 
capable of operating at an exascale level. Exascale computing refers to a capability 
of operating at 1 Exaflop (1 Eflop) or more, an Eflop being 1000 Pflops, or 1 Eflop 

= 1018 flops.  Intel hopes to be able to deliver this technology by 2018.  Many other 

governmental agencies across the world have similar plans for the development of 
exascale supercomputers before 2020 [11]. 
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