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Abstract 

Predator-prey interactions are a fundamental feature of ecological communities. The majority 
of studies have focussed on the consequences of predators reducing the abundance of their 
prey through direct consumption (density-mediated interaction, DMIs). However, predators 
can also interact with prey by inducing costly behavioural and/or physiological defence 
strategies such as reduced foraging, anti-predator behaviour and investment in defensive 
structures. Evidence suggests that the cost of these phenotypic responses, termed trait-
mediated interactions (TMIs), may be greater than that of DMIs. The strength of TMIs may 
depend on the environmental context in which prey must decide between food and safety. 
Because temperature can alter metabolic and foraging rates, particularly in ectotherms, this 
additional physiological stress may determine how prey balance this trade-off. Observations 
were made of the effect of predator cues and temperature on the foraging behaviour of the 
intertidal snail, Littorina littorea Both temperature and predation cue had independent effects 
on the amount of Ulva lactuca consumed, although there was no interaction between these 
factors. The addition of predation cue water caused L. littorea to consume 77% less Ulva 
compared to control treatments whereas the increased temperature resulted in 2.5 times more 
Ulva being consumed.    

The results suggest that non-consumptive effects can play an important role in shaping 
intertidal communities and that the effects of warming may result in intertidal consumers 
trading energy gain for safety when under predation risk. Understanding the direct and indirect 
effects of temperature and predation risk on species interactions will provide greater insights 
into prey dynamics and cascading trophic interactions.   
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Introduction 
In any given ecosystem, species exist within a community of other potentially 
interacting species. Each species within this community consumes resources and is 
itself consumed by other species. This predator-prey interaction is the fundamental 
building block from which complex food webs and food chains can be constructed 
(Mittelbach 2012). Studies of the effects predator-prey interactions have on community 
composition have been heavily influenced by the work of Paine (1966). He illustrated 
how the removal of predatory starfish, Pisaster ochraceus, which preys upon the 
mussel Mytilus californicus, resulted in a dramatic decline in species diversity on the 
rocky shores of Makah Bay. The bay's rocky intertidal zone normally hosts a 
community of mussels, barnacles, algae, and limpets. Removing the predatory starfish 
increased the abundance of the competitively dominant mussel, which crowded out 
the co-existing species, resulting in a negative indirect effect on the abundance of 
barnacles, algae and limpets. Within a year the habitat became a monoculture of 
mussels. This study was the foundation of the trophic cascade concept, which now 
supports an abundance of literature. A trophic cascade occurs when top predators 
control the density or alter the behaviour of their prey, resulting in an increase of lower 
trophic levels (Pace et al. 1999). Cascades are widespread, occurring in a range of 
latitudes from the poles to the tropics, and across a variety of ecosystems including 
terrestrial (Halaj & Wise 2002), freshwater (Carpenter et al. 2001) and marine (Estes 
& Duggins 1995). Furthermore, cascades have been shown to radiate through up to 
four trophic levels (Power 1990; Sitvarin et al. 2016). The majority of trophic cascade 
studies have focussed on the consequences of predators directly consuming their 
prey, known as density mediated interactions, ('DMIs',-) (Preisser et al. 2005; Trussell 
et al. 2008). However, evidence suggests that trophic cascades are not soley driven 
by DMIs. Predators can also have strong effects on their prey without consuming them 
by eliciting a fear response (Brown et al. 1999) known as trait-mediated interactions, 
('TMIs',-). TMIs can induce phenotypic plasticity in prey and prey frequently respond 
to predation risk by modifying traits such as behaviour (Preisser & Bolnick 2008), 
morphology, and life history (Preisser et al. 2005; Okuyama and Bolker 2007; Mowles 
et al. 2011; Trussell et al. 2011; Paterson et al. 2013). This often has significant trade-
off costs that can reduce prey fecunditiy or survival (Lima & Dill 1990; Turner 1996; 
Trussell et al. 2003). Non-consumptive effects are therefore receiving growing interest, 
as these types of predator-prey interactions often outweigh the effects of DMIs and 
can play a vital role in trophic cascades (Schmitz et al. 2004; Trussell et al. 2004), 
competitive interactions (Peacor & Werner 2001) and ecosystem function (Schmitz et 
al. 2008).  
 
Littorinid snails are marine gastropods that are important herbivorous grazers in 
intertidal communities, which can significantly affect the density of seaweeds 
(Lubchenco 1978). It is widely recognised that DMIs, such as predation by crabs, are 
one of the principle mechanisms driving the structure of rocky intertidal assemblages 
through the regulation of Littorinid densities, and the cascading indirect impact on the 
densities of primary producers (Menge et al. 1997). However, more recent 
experiments have demonstrated that non-consumptive effects, in the form of predatory 
crab cues, can suppress foraging by Littorinid snails which in turn, causes positive 
indirect effects on the abundance of algal communities (e.g. Trussell et al. 2002). 
Therefore, TMIs may be an important element of assemblage composition on rocky 
intertidal shores. These types of predator-prey interactions may be further shaped by 
environmental and physiological conditions that can alter relative costs and benefits 



The Plymouth Student Scientist, 2017, 10 (2), 28-39 

 

[30] 
 

of foraging.  For example, TMIs may have more influence on foraging behaviour in 
resource rich systems as where prey can increase their energy reserves and reduce 
the risk of starvation, they are more likely to be risk adverse (McNamara & Houston 
1987; Luttbeg et al. 2003). When predation risk is high, it can increase the production 
of stress hormones, heat shock proteins and antioxidant enzymes (Miller et al. 2014). 
Additionally, it can reduce prey foraging activity and increase the use of refuge 
habitats, resulting in a trade-off between energy gain and safety from predation, known 
as the growth-predation risk trade-off (Trussell et al. 2011). 

The effects of predation risk on prey physiology may limit the ability of prey to cope 
with additional physiological stress caused by environmental factors, such as an 
increase in temperature. This can affect how prey balance this trade-off, especially if 
environmental stressors and predation risk are combined (Miller et al. 2014). Changing 
temperature is one of the key environmental drivers that can have widespread 
consequences. It influences metabolic rates and can affect nearly all species 
interactions, impacting on ecosystem function and population dynamics (Petchey et 
al. 1999; Sentis et al. 2016). The energetic demands and foraging rates of ectotherms, 
such as Littorinid snails, can often be influenced by the physiological effects of 
temperature (Hochachka & Somero 2002), which can cause challenges for these prey 
when balancing the growth-predation risk trade off (Rall et al. 2012). Increases in 
temperature can result in higher resting metabolic rates, increasing energy required 
by prey for survival or maintenance and, in turn, decreasing energy reserves and 
increasing foraging rates (O'Connor 2009). This can make prey more conspicuous to 
potential predators as well as limit their ability to trade-off food for safety. (Lima & Dill 
1990; Dell et al. 2014; Matassa & Trussell 2014). Rises in metabolic demands due to 
increasing temperatures may exceed increased foraging rates thereby limiting prey 
growth (Matassa & Trussell 2014). Therefore, increased temperatures may compound 
the growth costs associated with reductions in foraging caused by TMIs. 
Consequently, temperature may be an important factor in prey foraging decisions 
when under predation risk, and may indirectly influence community structure through 
cascading effects. 

In this study, my laboratory experiments examined how temperature might modify the 
effects of risk-induced foraging in L. littorea. My food chain consisted of a basal 
resource (the marine alga, Ulva lactuca), a common herbivore (the intertidal 
gastropod, Littorina littorea and chemical risk cues from a major predator of L. littorea 
(the shore crab, Carcinus maenas). 

I predicted that an increase in temperature will alter the foraging behaviour of L. littorea 
when under threat of predation, causing them to trade-off energy gain for safety from 
predation. 

 

Methodology 

Study species 
Throughout the experiment, all animal work was carried out in accordance with the 
ASAB/ABS ethical guidelines (ASAB, 2012). This work involved invertebrate species 
which require no research permits or approval in the UK. 

I collected L. littorea and Ulva in September from Mt Batten, Plymouth (50°21'28".9 N, 
4°07'39".3 W). All L. littorea were measured prior to the experiments (average width 
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17.54 mm; range 15.1-20.1 mm)  and maintained on Ulva in six separate aquaria split 
between two constant temperature rooms (10°C and 20°C). Shore crabs (C. maenas) 
were collected from Mt Batten and maintained on a diet of L. littorea at 15°C. Overall, 
five crabs were used to prepare the predation cue water. All the crabs were 
undamaged and of medium size (average width 46.12 mm; range 39-57.2 mm). 
Throughout the experiment all study organisms were maintained in aerated seawater 
(35 PSU).  

I collected L. littorea and Ulva in September from Mt Batten, Plymouth (50°21'28".9N, 
4°07'39".3W). All L. littorea were measured prior to the experiments (average width 
17.54mm; range 15.1-20.1mm) and maintained on Ulva in six separate aquaria split 
between two temperature rooms (10°C and 20°C). Shore crabs (C. maenas) were 
collected from Mt Batten and maintained on a diet of L. littorea at 15°C. Overall five 
crabs were used to prepare the predation cue water. All the crabs were undamaged 
and of medium size (average width 46.12mm; range 39-57.2mm). Throughout the 
experiment all study organisms were maintained in aerated seawater (35 PSU).  

Experiment 
Two hundred L. littorea were food deprived for 24 hours then randomly assigned to 
one of two treatments: (control (seawater), or predation cue). Acetate grids were 
placed in the bottom of each circular dish (160 mm in diameter) and an individual snail 
was randomly placed into the dish filled with 600 ml of seawater. The position of each 
treatment and species was randomised between dishes. At the start of each trial a 
disc of Ulva (diameter 25.9 mm, area 527.85 mm2) was placed in the centre of each 
dish and 60 ml of control water or predation cue water was added. Predation cue water 
was taken from an aquarium containing 3,200 ml of seawater in which one C. maenas 
had been maintained for 24 hrs. Due to unexpected mortalities of C. maenas during 
the first 75 trials, two smaller C. maenas were used to prepare cue water for the 
remaining 125 trails. However, Paterson et al. (2013) showed that predator cue 
experiments are robust in terms of experimental design and different methodologies 
used in these type of experiments have no impact on effect size. Carcinus maenas 
were fed two L. littorea at the start of the 24 hr period and two additional L. littorea 
were added to the tank immediately prior to the trials. This preparation ensured L. 
littorea were exposed to chemical cues from natural predators, and death kairomones 
from crushed conspecifics, a mixture which has been shown to maximise anti-predator 
behaviour (Cotton et al. 2004; Mowles et al. 2011). 

Behavioural data were collected by scan sampling at 15 minute intervals for the first 
150 minutes of each trial. Behaviour was recorded as moving, eating, stationary, at 
waterline or out of the water. Jacobsen & Stabell (1999), Keppel & Scrosati (2003) and 
Dalesman et al. (2007) have shown that crawling out of the water and avoiding 
predator cue water are anti-predator behaviours performmed by gastropods. To 
determine the overall amount of foraging, Ulva discs were removed after 24 hrs, 
placed between a sheet of graph paper and clear acetate, and then scanned into 
ImageJ. The area (mm2) of the remaining Ulva was then calculated. 

Statistical analysis 
Statistical analyses were performed using R version 3.2.4 (R Core Team 2016). 
Because of zero inflation, all data were analysed using a quasi-Poisson generalised 
linear model (GLM). Pairwise comparisons among temperatures within each treatment 
type were examined using Tukey HSD post hoc tests.  
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Results 
Temperature had a significant effect on the amount of time L. littorea spent moving 
(t=-4.976, df=196, p=<0.0001) and remained stationary (t=4.41, df=196, p<0.0001) 
(Table 1). L. littorea assigned to 20°C remained stationary for an average of 48 
minutes during the observed period compared to individuals observed at 10°C who 
remained stationary for an average 15 minutes. In comparison, L. littorina spent an 
average of 75 minutes moving at 20°C compared to 127 minutes at 10°C (Fig 1). No 
other treatment showed a significant effect on gastropod behaviour (Table 1). Both 
temperature (t=3.969, df=196, p<0.01; Fig 2) and predation risk (t=-1.985, df=196, 
p=0.048; Fig 2) had significant effects on the amount of Ulva consumed, although the 
interaction was not significant (t=-1.759, df=196, p>0.05; Table 1). Temperature 
significantly increased snail foraging (Fig 2), with a mean of 13.42% being consumed 
at 20°C compared to 5.73% at 10°C. The addition of predation cue caused L. littorea 
to consume significantly less Ulva compared to control conditions (Fig 2). 

 
Table 1. Summary of results from analyses of time spent (a) moving, (b) eating, (c) 

stationary, (d) at the waterline, (e) out of the water and (f) amount of Ulva consumed. 
Temperature and treatment were fully crossed fixed effects. 

 
Behaviour Effect Df T  P  

(a) Moving Treatment 

Temp 

Treatment x temp 

196 

196 

196 

0.776 

-4.976 

1.296 

0.44 

<0.0001 

0.20 

(b) Eating Treatment 

Temp 

Treatment x temp 

196 

196 

196 

-0.289 

0.417 

0.262 

0.77 

0.68 

0.79 

(c) Stationary Treatment 

Temp 

Treatment x temp 

196 

196 

196 

-1.347 

4.410 

-1.770 

0.18 

<0.0001 

0.08 

(d) At the waterline Treatment 

Temp 

Treatment x temp 

196 

196 

196 

1.415 

-0.353 

0.388 

0.16 

0.72 

0.70 

(e) Out of the water Treatment 

Temp 

Treatment x temp 

196 

196 

196 

0.185 

-0.290 

0.377 

0.85 

0.77 

0.70 

(f) Ulva consumed Treatment 

Temp 

Treatment x temp 

196 

196 

196 

1.985 

3.969 

1.759 

0.04 

<0.01 

0.08 
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Figure 1.  Mean (+ SE) time spent (a) moving and (b) stationary between treatments, no 

predator (NP) and predator (P) and across temperatures (10 and 20 degrees). 
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Figure 2.  Mean (+ SE) Ulva consumed between treatments, no-predator (NP) and predator 

(P) in different temperatures (10 and 20 degrees) 
 

Discussion 
It has been shown that periwinkles generally increase their crawling speed and activity 
with increasing temperature (Newell 1958), as individuals move closer to the optimal 
temperature of their thermal performance curve (Huey & Kingsolver 1989). However,  
my results are at odds with this;- an increase of ten degrees resulted in the total time 
spent stationary increasing, whilst cooler conditions resulted in individuals becoming 
more active. This suggests that the higher temperature of 20°C pushed these 
individuals past their optimum and into a more stressful temperature range.  Mean 
monthly sea surface temperatures around Plymouth Sound range from 9°C in March 
to a maximum of 16°C in August (Smyth et al. 2010). The decrease in activity I 
observed at 20°C may therefore be the result of L. littorea trying to compensate for 
thermal stress. The act of withdrawing into the shell has been reported to reduce body 
temperature of Littorinids by up to 4°C, as it reduces the amount of heat exchange 
with the substrate (Miller & Denny 2011). This behavioural trait can therefore assist 
snails in controlling body temperature, which is particulary important for individuals 
approaching their thermal threshold. The increase in movement I observed at 10°C 
suggests that this is closer to the optimal temperature of their thermal performance 
curve, however, the reduced Ulva consumption at this temperature contradicts this 
hypothesis. Another explaination for this  contradiction, is that the lower temperature 
may be stimulating migration behaviour. Previous studies (Lambert & Farley 1968; 
Underwood 1973; Gendron 1977) have shown that L. littorea migrate seasonally down 
shore in response to colder conditions. 
 
Although my behavioural observations did not detect an increase in the amount of time 
L. littorea spent foraging at 20°C, I found that after 24 hrs, L. littorina at 20°C had 
consumed 2.5 times more Ulva than those at 10°C. This increase in consumption may 
be required for individuals to meet higher metabolic demands, which increase with 
temperature (O'Connor 2009). This has been demonstrated in a variety of marine 
invertebrates including, shrimp (Wyban et al. 1995), sea stars (Sanford 2002), 
predatory snails (Sanford 2002) and Littorinid snails (Newell et al. 1971). Previous 
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research with related Littorina species found that basal metabolic rates increased at 
temperatures ranging from 22-25°C (Newell & Northcroft 1967). Although the highest 
temperature in my experiments were below that of Newell & Northcroft (1967), this 
would corroborate the significant increase observed in consumption of Ulva at 20°C. 
Therefore, increased temperatures could enhance the foraging rates of ecotherms, 
offsetting the positive indirect effects of predation risk on primary producers, with 
important consequences for community structure (Matassa & Trussell, 2014). In my 
experiment, predation risk caused L. littorea to consume 85% less Ulva at 20°C. I 
found no significant interaction between temperature and predation risk, which 
suggests that temperature may only have a minor role in shaping predator-prey 
interactions. Despite this, it appears that L. littorea do trade-off energy gain for safety 
under warming when predation risk is high. This would therefore counteract the 
indirect effects of warming on the abundance of primary producers as a result of 
increased herbivorous grazing.  
 
It is well established that non-consumptive effects are a strong force shaping predator-
prey interactions (Morgan et al. 2016), as predator induced phenotypic plasticity can 
be immediate and affect individuals within a local population throughout their lifetime 
(Peacor & Werner 2001). My results provide further evidence that the effect of 
predation risk can influence the behaviour of prey. I found that the addition of  predator 
cue caused L. littorea to consume 77% less Ulva compared with control treatments, 
resulting in a positive indirect effect on Ulva. These risk specific differences in the 
impact of their food rescource likely reflect predator induced changes in snail 
behaviour. Marine gastropods frequently respond behaviourally to the presence of 
predators (Jacobsen & Stabell 1999). For example, aquatic snails climb to the water 
surface as a behavioural response to crayfish and Belostoma predators (Alexander & 
Covich 1991; Covich et al. 1994; Turner 1996). Furthermore, Yamada et al. (1998) 
reported how Littorina sitkana changed their behaviour by climbing above the water 
level in cages in the presence of predatory crabs that were actively feeding on 
conspecific snails. In contrast to these studies, I did not observe an increase in anti-
predator behaviour. The sampling interval and duration of my behavioural 
observations may have been inadequate to detect the change in behaviour 
responsible for the measured changes in consumption. Wojdak (2004) reported that 
snails showed little immediate response to predation cues. Reductions in foraging and 
increased refuge use was only observed 19 hours after predators had killed snail prey. 
In the present experiment, behaviour was only observed for the first 150 minutes. If I 
had observed behaviour over a longer period, I may have witnesed the expected anti-
predator behavioural response to predation risk. Alternatively, L. littorea may have 
preferred to vertically migrate in the dark than in the light. This may be an adapated 
form of anti-predator behaviour that has evolved in response to night active predators, 
such as crabs, that have been shown to migrate to the upper intertidal at high tide 
during night hours (Jacobsen & Stabell 1999). Vertical migration in the dark has been 
documented for several gastropods (Rogers 1968; Phillips 1975). For example, 
Jacobsen & Stabell (1999) demonstrated that experiments carried out in the dark 
resulted in a higher proportion of L. littorea leaving the water compared to experiments 
in the light. This form of anti-predator behaviour would be consistent with the 
diminshed impact on the snails food resource. 
 
 
 



The Plymouth Student Scientist, 2017, 10 (2), 28-39 

 

[36] 
 

Conclusion 
This study shows that the effects of temperature and predation risk can both 
independently elicit behavioural responses in L. littorea. Despite no interaction 
between these two stressors it appears that L. littorea do trade energy gain for safety 
when predation risk is high. This demonstrates that foraging under predation risk 
involves a trade-off between benefits gained from feeding and costs of increased 
vulnerability to predation. My results highlight the complex ways TMIs and 
environmental stressors may influence predator-prey interactions as well as having 
cascading effects on their primary resources. They additionally support the argument 
for incorporating non-consumptive effects and the effects of temperature change into 
the study of food-web dynamics (Peacor and Werner 2001) in order to 
comprehensively estimate cascading impacts of predation on communities, 
particularly in habitats that experience fluctuating levels of sea and air temperature, 
such as the rocky shore. 
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