
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

The Plymouth Student Scientist - Volume 10 - 2017 The Plymouth Student Scientist - Volume 10, No. 2 - 2017

2017

Genetic optimisations for satisfiability

and Ramsey theory

Barnes, A.

Barnes, A. (2017) 'Genetic optimisations for satisfiability and Ramsey theory', The Plymouth

Student Scientist, 10(2), p. 193-207.

http://hdl.handle.net/10026.1/14165

The Plymouth Student Scientist

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 193

Genetic optimisations for satisfiability and
Ramsey theory

Andrew Barnes

Project Advisor: Angelo Cangelosi, School of Computing, Electronics and

Mathematics, Plymouth University, Drake Circus, Plymouth, PL4 8AA

Abstract

The art of using evolutionary mechanisms for identifying satisfiability has produced a range of
efficient solutions to this otherwise computationally challenging problem. Since their first use
these evolutionary methods have been changed and adapted to produce increasingly efficient
solutions. This paper introduces two unique alternatives to the optimisation of these methods,
the first through the introduction of alternative mutation operators and the second through
utilizing a grammatical encoding which has been proven to improve neuroevolution. The goal
of this paper is to identify whether these two alternatives are candidates for future investigation
in improving evolutionary satisfiability solvers.

https://www.plymouth.ac.uk/staff/angelo-cangelosi

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 194

Introduction

The satisfiability problem

The Boolean satisfiability problem (SAT) is a problem in Boolean algebra which is to

prove whether a given expression (in conjunctive normal form) can be satisfied. A

simple example of a satisfiable equation is (𝐴̅ + 𝐴); we can see this must be satisfiable

due to its equivalent truth table (

unsatisfiable equation (𝐴̅. 𝐴) we Figure 1); however, if we take an

can prove this to be unsatisfiable in the same way (

Figure 2).

Figure 1: Truth Table for a Satisfiable Equation.

Figure 2: Truth Table for an Unsatisfiable Equation

This problem is exceptionally important in the domain of computational complexity as

it is both the first and the simplest problem which has been proven to be 𝑁𝑃-complete

[1]. Being 𝑁𝑃-complete means that the problem both exists in the complexity class of

𝑁𝑃 and can be reduced to by all other problems in 𝑁𝑃 under certain reduction rules

as presented by Aaronson [2]; this also implies that unless 𝑃 = 𝑁𝑃 [1] the worst-case

time-complexity for SAT algorithms will be 𝑂(𝑛𝑘). The SAT problem however is not

only interesting in theoretical computer science but its applications are broad; for

example, Boyarski, Stern & Surynek [3] used SAT solving to enhance pathfinding in

multiagent systems.

Ramsey numbers

As best presented by example, Ramsey’s numbers give the solution to a popular

combinatorics problem in mathematics; the problem being: A party is being planned;

how many people must be invited to guarantee that at least 𝑚 people will know each

other or 𝑛 will not know each other? [4]. In graph theory, a Ramsey number,

𝐴 𝐴̅ 𝑅𝑒𝑠𝑢𝑙𝑡
1 0 1
0 1 1

𝐴 𝐴̅ 𝑅𝑒𝑠𝑢𝑙𝑡
1 0 0
0 1 0

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 195

𝑅 = (𝑚, 𝑛), is the minimum number of vertices (𝑣) to guarantee that all graphs of order

𝑣 must have a clique of order 𝑚 and an independent set of order 𝑛. For example, one

such Ramsey number 𝑅 = (3, 3) we know to be 6 as proven by Greenwood and

Gleason [5]; as shown in Figure 3 we cannot guarantee a colouring on a graph of order

3, 4 or 5. However, on a graph of order 6 we cannot escape guaranteeing we have at

least one clique of size 𝑚 or 𝑛; so to answer our original problem to throw a party with

at least three people either knowing each other or three people not knowing each other

there must be at least six people.

Figure 3: Ramsey Number Visualisation.

Genetic computation

Genetic computation can be traced back to Turing’s work in 1948 where he first

proposed the idea of an evolutionary or genetics based search method [6]; the earlier

biological work of Darwin inspired this idea [7]. The core idea is that there exists a

population of organisms in which only the fittest individuals would survive and continue

to live on through generations whereas weaker organisms would be removed. This

phenomenon is what is today known as survival of the fittest. Work in artificial evolution

however did not start until the 1950s [8] when there were several groups investigating

its applications. For example, Rechenberg [9] utilized evolution to optimize real-value

pairs for aerospace devices; whereas, Holland [10] was working on a method he

termed as “Genetic Algorithms” (GA).

Within each algorithm is a population of potential solutions to a given problem; these

solutions generally being represented as a string of bits. In biological terms, this string

of bits is referred to as a genome with each bit being called a gene. This population

then undergoes three genetic operators which can take a variety of forms as can be

found in various literatures [6] [8] [11]. However, the goal of each of these operators

is the same: Selection, Reproduction, and Mutation; selection selects the best

genomes in the population for reproduction (sometimes called crossover) before finally

the resulting population is mutated to produce a new population. This process is then

repeated until either it is stopped or a suitable solution is found. An example of this

process is shown in Figure 4.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 196

Figure 4: A Genetic Algorithm.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 197

Project Overview

This project looks to combine the three topics discussed above to optimize genetic

algorithms to find solutions to Boolean equations through a modified party problem.

The problem this project investigates is as follows, given a complete graph of size 𝑛

and a clique size of 𝑥 does there exist a graph which doesn’t contain a clique of 𝑥

vertices which are either connected or disconnected from each other. To do this the

project will investigate the conversion of this problem to a Boolean equation and then

investigate the effects of altering the mutation methods of two key SAT genetic

algorithms (EvoSAP [12]and FlipGA [13]); it then looks to compare two blind genetic

algorithms using different encoding methods (direct encoding and morphogenetic

encoding). This report begins by introducing the current literature on genetic

algorithms for satisfiability and the various genetic encodings currently in use. It then

describes how the primary project objectives identified in Error! Reference source

not found., before continuing to describe how these are met through development of

a simulator which shall be used to carry out the required experiments. Finally, this

report concludes on the results of the experiments.

Methods for finding satisfiability

Traditional methods

Traditional techniques for SAT rely heavily on local-search based approaches. For

example, the most widely used procedure, which is known as the Davis-Putnam

procedure [14] utilizes a search over the given formula for unsatisfiable clauses. This

procedure has acted as the backbone for many other variants such as that presented

by Selman, Mitchell and Levesque [15] which disregards part of the search procedure

in favour for a recursive search method instead.

Older work on an algorithm known as GSAT [16] utilizes a greedy-local search

heuristic, the method looks to iteratively improve an initial solution which is like genetic

methods function but with less random variables. GSAT has been proven to

outperform the David-Putney by at least one order of magnitude. However, the author

admits the GSAT method is incomplete and there is no guarantee of finding a solution

but mentions that artificial intelligence methods are one such technique which could

be promising in terms of time complexity. However, recent successes in proving

satisfiability have continued to use a purely local search based approach such as the

cube and conquer method presented by Kullman et al. [17] which has been used to

verify and solve Pythagorean triples [18].

Evolutionary approaches

Evolutionary and genetic approaches to satisfiability solving emerged following the

Davis-Putnam procedure; these methods ranged from the purely evolutionary

methods such as the Stepwise Adaptation of Weights method (SAWEA) [19] to hybrid

methods incorporating a lightweight local search procedure such as FlipGA [13] and

EvoSAP [12]. However, the effect this has on results is big; as presented by Gottlieb

and Voss [20] the results showed that FlipGA had success rate (SR) which was 11%

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 198

greater than SAWEA, but it also did so in 70.8% fewer average evaluations per

solution (AES).

The biggest challenge with evolutionary approaches to SAT is how to calculate a

fitness value which represents how close a given organism is to a satisfiable solution.

The most popular of these fitness functions is MAXSAT as used in [13] [12]; here the

algorithms look at each clause in the equation and identify whether that clause is

satisfied or not, we can then calculate the total fitness for a given organism based on

the number of clauses satisfied divided by the total number of clauses. Similarly,

SAWEA [19] utilizes an adaptive fitness function based on MAXSAT; in SAWEA each

clause is given a weighting which makes the fitness function: where n is the number

of clauses. During evolution, the weights are adjusted according to the following

function: where y is the fittest organism in the population; this increases the

importance (weights) of those clauses which are currently unsatisfied.

Furthermore, the mutation operators employed in the different methods are not used

as a variable in many experiments. For example, in SAWEA [19] the algorithm is

designed to use a method called MutOne in which a single gene in each organism is

mutated randomly whereas in other literature [13] [12] [21] they stick to random

mutations. However, even in these random mutations differences are clear; for

example, in FlipGA each gene in the population has a chance of being mutated,

whereas EvoSAP uses an organism by organism random chance of being mutated

before selecting genes.

Due to the differing nature of these fitness functions it is important that measurements

are taken when organisms are evaluated and/or flipped. As described by Gottlieb,

Marchiori and Rossi [21] the three quantitative measurements which can be used to

analyse the complexity of each approach are as follows: the average evaluations per

solution (AES), average flips and evaluations per solution (AFES) and average flips

per solution (AFS). These measurements as opposed to the actual run-time of the

algorithms allow researchers to compare results without the need to worry about

implementation detail such as language or hardware. They also go further to mention

that although the local search methods run-time would be a measurement of

complexity, in the case of genetic and evolutionary methods this is hardly the case as

it is machine and implementation dependant.

Genetic encodings

Variable string

Commonly described as the most intuitive ways of encoding these solutions [21],

representing the solution to a Boolean equation as a bit string. For example, given a

Boolean function 𝑏 which has 𝑛 variables a solution bit-string would contain 𝑛 bits.

With this representation, it would be easy to assume a good fitness function for such

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 199

an encoding would be the function 𝑏; however, as stated by Gottlieb, Marchiori and

Rossi [21] this will cause the algorithm to fall back to a random search.

To rectify this issue, a fitness function introduced by De Jong and Spears [22] called

𝑀𝐴𝑋𝑆𝐴𝑇 takes advantage of equations which are in conjunctive normal form [23] to

analyse how many clauses in the equation are satisfied. One example is given an

equation 𝑏 = (𝐴 + 𝐵). (𝐶 + 𝐷) and an input string of 𝑖1 = 1000 the equation would

equate as follows: 𝑏 = (1 + 0). (0 + 0) = (1). (0) Here we can see we have satisfied a

single clause of the equation and so the fitness of 𝑖1 is 0.5 (50%) whereas the input

string 𝑖2 = 1010 would have a fitness of 1 (100%) as it satisfies both clauses.

Real-Values

Another such way of representing these solutions comes in the form of real-values

which are inspired by Montana’s work on evolving and training neural networks [24].

The concept is to have each gene consist of a floating-point number 𝑛 such that 𝑛 ∈

ℝ. Although originally presented by Montana in 1989 it wasn’t until 1998 that it was

applied to satisfiability problems by Back et al. [25]. This then converts a satisfiability

problem into continuous optimisation problems [21]. To do this they swap each

variable 𝑥𝑖 and its inverse 𝑥𝑖̅ with a floating-point equivalent between -1 and 1 such

that 𝑥𝑖̅ = (𝑦𝑖 + 1)2 and 𝑥𝑖 = (𝑦𝑖 − 1)2. They then replace the logical ∙ by an arithmetic

+ and the logical + with an arithmetic ×. This then produces a continuous function

which can be optimised.

𝑒𝑞𝑏𝑜𝑜𝑙𝑒𝑎𝑛 = (𝐴 ∙ 𝐵 ∙ 𝐶̅) + (𝐴̅)

𝑒𝑞𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 = ((𝑦𝐴 − 1)2 + (𝑦𝐵 − 1)2 + (𝑦𝐶 + 1)2) × ((𝑦𝐴 + 1)2)

As you can see above, the Boolean variables are converted and evolved as floating-

point numbers represented as 𝑦𝑋, according to their logical sign they are then

converted for evaluation. This encoding however does not show much promise to

improving SAT solving algorithms; as found by Back et al. [25] and Eiben and van der

Hauw [19] this floating-point representation is significantly inferior to the previously

mentioned SAWEA method.

Pathing

As presented by Gottlieb and Voss [20] another way to take advantage of the

conjunctive normal form nature of SAT problems is that a satisfying solution must

satisfy at least one variable in each clause of the equation. For example, given 𝑏 =

(𝐴 + 𝐵). (𝐶 + 𝐴̅) one such path would be (𝐴, 𝐶) which is feasible whereas a path of

(𝐴, 𝐴̅) is infeasible as it contains both a variable and its inverse. Moreover, as

presented by Gottlieb, Marchiori and Rossi [21] this representation is far more compact

than alternatives such as variable string encodings; however, as found by the

representation’s original authors Gottlieb and Voss the representation does not

produce results which are close to that of a variable encoding.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 200

Mutation method optimisation

Hypothesis

How does changing the mutation method affect the performance of hybrid-SAT genetic

algorithms? Due to the nature of the FlipGA methods introducing mutation method 1

would increase the rate of mutation (from 0.45 [13] to 0.81 per gene) which when

applied along with the local search on a population will considerably increase the

search space, decreasing the number of evaluations it will require.

The same comment would apply for EvoSAP; however, in the case of EvoSAP there

is no reproduction as such so more emphasis is placed on the local-search finding a

solution. This could however lead to a greater success rate as mutation method 1 will

reduce the mutation rate of each gene in EvoSAP from 0.9 [12] to 0.81. For the second

mutation method, the probability of each gene mutating in FlipGA stays consistent at

0.45 and so a change in the results would appear unlikely. However, for EvoSAP the

chance of a gene mutating is halved from 0.9 to 0.45 and so I would expect more

extreme results than those found for EvoSAP with the first mutation method.

Design

To ensure consistency in results the candidate mutation methods will be used on two

separate evolutionary procedures for finding satisfiable solutions. Further to this a

benchmark for each of the two methods is taken beforehand for comparison with the

results. The key variable is the mutation method which acts as a core component of

the two hybrid SAT genetic algorithms. The mutation method shall be varied between

the original mutation methods of both algorithms as well as the two methods presented

below in Figure ; as presented in their original papers each algorithm will be run with

an ideal mutation rate of 0.9.

MUTATION METHOD 1
BEGIN
 i = 0
 WHILE i < length(population)
 BEGIN
 ro = Random (0<= x <= 1)
 IF ro < MUTATION_RATE
 THEN
 v = 0
 WHILE v < length(variables)
 BEGIN
 rv = Random (0<= x <= 1)
 IF rv < MUTATION_RATE
 THEN
 Flip v in population[i]
 END
 v = v + 1
 END
 END
 i = i + 1
 END
END

MUTATION METHOD 2
BEGIN
 no_vars = length(variables)
 i = 0
 WHILE i < length(population)
 BEGIN
 ro = Random (0<= x <= 1)
 IF ro < MUTATION_RATE
 THEN
 rs = random (0<= x <= no_vars - 1)
 j = 0
 WHILE cnt <= r
 BEGIN
 Flip position j in population[i]
 j = j + 1
 END
 END
 i = i + 1
 END
END

Figure 5: Mutation Methods. This figure illustrates the two variable mutation methods to be

evaluated as part of the Mutation Method Optimisation experiment.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 201

Method

A simulator was developed as part of this experiment. To ensure reliable results all

code is available with full unit tests [26]. Once proven reliable the simulator was moved

onto a secure server at the University of Plymouth (Eeyore) and checked for a second

time to ensure all tests were passing locally. The next step was to mitigate any risks

to this experiment and as presented in Table 1 there was the potential to mitigate the

risks and the damage caused.

Table 1: Mutation Method Optimisation Risks.

Running the test will utilize part of the DIMACS benchmark SAT set [27]; namely the

first 50 instances available in the CBS_k3_n100_m441_b70 data set. Each instance

consists of 100 Boolean variables and 441 clauses. Each instance shall be trialled

twenty times to produce a reliable result and the results shall be averaged out.

Results

Presented in Table 2 is an overview of the results for the different mutation methods

with all three mutation methods and below this in Figure , Figure and Figure is a

graphical representation of the results.

Table 2: Results of Mutation Experiment.

Average Evaluations Solution (AES) Success Rate

 FlipGA EvoSAP FlipGA EvoSAP

Mutation 1 127588.78 67700.02 Mutation 1 0.986 0.692

Mutation 2 70251.26 37355.562 Mutation 2 0.995 0.882

Original 44326.31373 25835.56667 Original 0.9980392157 0.4509803922

ID Name Mitigation Measures

1 Server Faults (Powercut,

restarts, turn-offs)

To mitigate the loss of results after each mutation method

has been tested its results will be saved to disk.

2 Code Failure (Runtime

errors)

Thorough unit-tests have been implemented and must be

passing before experiments are run.

3 Criminal Activity (Tampering

of results, stopping the

experiments.

The experiments shall be run within a Windows environment

protected by a password.

4 Algorithms Stopping

prematurely

The number of generations the algorithms shall run to at

max is the same as presented in similar literatures 1,000

[13].

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 202

Figure 6: Mutation Method Success Rate. This figure illustrates the success rate of each

mutation method for both algorithms across the data set.

Figure 7: Mutation Method AES. This figure illustrates the AES of each mutation method for

both algorithms across the data set.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 203

Figure 8: Optimised Mutation Comparison. This figure illustrates the difference between a

scaled number of evaluations to the success rate for both optimised algorithms of EvoSAP

and FlipGA.

Conclusion

Contrary to the original predictions, FlipGA performed worse with the higher mutation

rates provided by both method 1 and method 2, both of which lowered the success

rate and increased the number of evaluations required. However, despite mutation

method 2 providing the same probability of a gene mutating as its original method the

method still performed marginally worse.

Despite this, the inverse appears true for EvoSAP; as you can see in Figure 6 both

mutation methods increased the success rate although at a cost of increasing the

number of evaluations required. Nonetheless, mutation method 2 improved EvoSAP

considerably at minimal cost to the number of evaluations. One clear conclusion which

can be drawn from these results is that in utilizing a mutation method with a lower

chance of mutating each gene improves these algorithms significantly; putting more

emphasis on the local search and in FlipGA’s case the reproduction elements.

Moreover, on comparing the differences between the best mutation methods for

EvoSAP and FlipGA there is a significant difference in the number of evaluations

required compared to the success rate of each method. As shown in Figure FlipGA

close to doubles the number of evaluations required for a 0.116 increased chance of

finding a solution. What these results show is a clear trade-off in the number of

evaluations allowed and the required success rate; EvoSAP with this second mutation

method provides a better proportion of success rate to number of evaluations.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 204

Morphogenetic encoding experiment

Hypothesis

Does a Morphogenetic encoding scheme increase the efficiency of a purely genetic

algorithm for clique problems through SAT? Due to the nature of the morphogenetic

implementation the mutations mutate a larger amount of the chromosome in

comparison with a single mutation in a direct encoding. This following the results of

the previous experiment led to a prediction that through widening the random search

space the GA utilizing morphogenetic encoding will reach the global maximum quicker

than the equivalent GA using direct encoding.

Design

In this experiment, a simple blind genetic algorithm is used as the control method with

a benchmark taken before modifications to the encoding takes place. The only variable

in this experiment is the encoding type used; the design of the genetic algorithm is

simple and consists of a population of size 10 and a mutation rate of 0.9. The genetic

operators are described in Table3 and the two encoding types are described in Table

4.

Table 3: BlindGA Genetic Operators.

Operator Description

Selection Selection is done using the MAXSAT function [22] and produces two parents

which can be used for this generation.

Reproduction Single point crossover is achieved using a random crossover point between

the two parents.

Mutation Each organism is given a mutated at a rate of 0.9 and each gene inside a

mutated organism is modified at a rate of 0.5.

Table 4: Overview of Encodings.

Encoding Description

Direct Utilizing the variable string encoding as done by various other literatures [19]

[22].

Morphogenetic Adapting the graph generation system proposed by Kitano [28].

Method

Similarly, to the experiment discussed above the code for this experiment was also

verified using the unit-tests included in the simulator and were run on the same

university server. The risks for this experiment are presented in Table below; a key

risk to note is no.5 which was identified during the running of the first experiment,

automatic security updates stopped all processes being used by the simulator.

Table 5: Encoding Evaluation Risks.

ID Name Mitigation Measures

1 Server Faults (Powercut,

restarts, turn-offs)

To mitigate the loss of results after each mutation method

has been tested its results will be saved to disk.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 205

2 Code Failure (Runtime

errors)

Thorough unit-tests have been implemented and must be

passing before experiments are run.

3 Criminal Activity (Tampering

of results, stopping the

experiments.

The experiments shall be run within a Windows environment

protected by a password.

4 Algorithms Stopping

prematurely

The number of generations the algorithms shall run to at

max is the same as presented in similar literatures 1,000

[13].

5 Automatic Security Updates Agreement was made to turn-off automatic security updates

during the running of this experiment.

Running the test will utilize instead of a SAT data set a selection of clique problems

converted to SAT problems. The definitions of each of these problems can be found

in Table ; the problems are to be read as given a graph of size graph size is there such

a colouring of the edges that no clique of size clique size exists. For each of the

problems the algorithms will have 20 trials and their results averaged to give a score.

Table 6: Encoding Experiment Data.

Graph Size Clique Size

3, 4, 5 3

4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17

4

Results

Presented in Table is an overview of the results for the two encoding methods; below

this you will find Figure and Figure which illustrate this information.

Table 7: Encoding Results Overview.

Total AES Success Rate

Direct Encoding Kitano Encoding Direct Encoding Kitano Encoding

14366.55 2992 0.6117647059 0.6470588235

Figure 9: Encoding Evaluations Results. This figure illustrates the differences between the

number of evaluations required by both the direct and morphogenetic encodings.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 206

Figure 10: Encoding Success Rate Results. This figure illustrates the differences between

the success rates of the two encodings.

Conclusion

Matching the original predictions made, the morphogenetic encoding reduced the

number of evaluations required by the genetic algorithm by 80% while also marginally

increasing the success rate. What is also apparent from the experiment is that the

morphogenetic approach may also increase the reliability of the result whereas the

direct encoding was shown to be more inconsistent with test case 11.

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 207

References

[1] S. Cook, “The Complexity of Theorem-Proving Procedures,” in In Proceedings of

Third Annual ACM Symposium on Theory of Computing, New York, 1971.

[2] S. Aaronson, “Complexity Zoo,” University of Waterloo, [Online]. Available:

https://complexityzoo.uwaterloo.ca/Complexity_Zoo. [Accessed 01 04 2017].

[3] E. Boyarski, R. Stern and P. Surnek, “Boolean Satisfiability Approach to Optimal

Multi-Agent Path Finding under the Sum of Costs Objective,” in In Proceedings

of the 2016 International Conference on Autonomous Agents & Multiagent

Systems, Singapore, 2016.

[4] E. Weisstein, “Ramsey Number,” Wolfram, [Online]. Available:

http://mathworld.wolfram.com/RamseyNumber.html. [Accessed 01 04 2017].

[5] R. E. Greenwood, “Combinatorial Relations and Chromatic Graphs,” Canadian

Journal of Mathematics, vol. 7, pp. 1-7, 1955.

[6] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, Berlin:

Springer-Verlag Berlin and Heidelberg, 2010.

[7] C. Darwin, The Origin of Species, New York: D.Appleton and Company, 1923.

[8] M. Mitchell, An Introduction to Genetic Algorithms, Cambridge, MA: The MIT

Press, 1999.

[9] I. Rechenberg, “Evolution Strategy: Nature's Way of Optimization,” Lecture Notes

in Engineering, vol. 47, pp. 106-126, 1965.

[10] J. H. Holland, Adaptation in natural and artificial systems, Cambridge, MA: The

MIT Press, 1975.

[11] S. Kwong, K. F. Man and K. S. Tang, Genetic Algorithms, London: Springer,

1999.

[12] E. Marchiori, C. Rossi and J. N. Kok, “An adaptive evolutionary algorithm for the

satisfiability problem,” in Proceedings of the 2000 ACM symposium on Applied

computing, New York, 2000.

[13] E. Marchiori and C. Rossi, “A Flipping Genetic Algorithm for Hard 3-SAT

Problems,” in Proceeding GECCO'99 Proceedings of the 1st Annual Conference

on Genetic and Evolutionary Computation, San Francisco, 1999.

[14] M. Davis, G. Logemann and D. Loveland, “A Machine Program for Theorem

Proving,” Communications of the ACM, pp. 394-397, 07 1962.

[15] B. Selman, D. Mitchell and H. Levesque, “Generating Hard Satisfiability

Problems,” Artificial Intelligence, vol. 81, no. 1, pp. 17-29, 1996.

[16] H. Levesque, D. Mitchell and B. Selman, “A New Method for Solving Hard

Satisfiability Problems,” in Proceedings of the Tenth National Conference on

Artificial Intelligence, Menlo Park, 1992.

[17] A. Biere, M. Heule, O. Kullman and S. Wieringa, “Cube and Conquer: Guiding

CDCL SAT Solvers by Lookaheads,” in Proceedings of the 7th International Haifi

The Plymouth Student Scientist, 2017, 10 (2), 193-207

 208

Verification Conference on Hardware and Software: Verification and Testing,

Berlin, 2011.

[18] M. Heule, O. Kullman and V. Marek, “Solving and Verifying the Boolean

Pythagorean Triples Problem via Cub-and-Conquer,” in 19th International

Conference on Theory and Applications of Satisfiability Testing, Bordeaux, 2016.

[19] A. Eiben and J. Van Der Hauw, “Solving 3-SAT with adaptive genetic algorithms,”

in Proceedings of the Fourth IEEE Conference on Evolutionary Computation,

Piscataway, 1997.

[20] J. Gottlieb and N. Voss, “Representations, Fitness Functions and Genetic

Operators for the Satisfiability Problem,” in Proceedings of the third european

conference on artificial evolution, London, 1997.

[21] J. Gottlieb, E. Marchiori and C. Rossi, “Evolutionary Algorithms for the

Satisfiability Problem,” Evolutionary Computing, vol. 1, no. 1, 2002.

[22] K. A. De Jong and W. M. Spears, “Using Genetic Algorithms to solve NP-

Complete Problems,” in Proceedings of the third international conference on

Genetic Algorithms, San Francisoco, 1989.

[23] E. W. Weisstein, “Conjunctive Normal Form,” Wolfram, [Online]. Available:

http://mathworld.wolfram.com/ConjunctiveNormalForm.html. [Accessed 20 04

2017].

[24] D. Montana and L. Davis, “Training Feedforward Neural Networks Using Genetic

Algorithms,” in Proceedings of the 11th International Join Conference on Artificial

Intelligence, Detroit, 1989.

[25] T. Back, A. Eiben and M. Vink, “A Superior Evolutionary Algorithm for 3-SAT,” in

Proceedings of the 7th International Conference on Evolutionary Programming,

London, 1998.

[26] A. P. Barnes, “Evolutionary Party Problem Simulator,” GitHub, [Online].

Available: https://github.com/Sciprios/EvolutionaryPartyProblemSimulator.

[Accessed 01 04 2017].

[27] University of British Columbia, “SATLIB - Benchmark Problems,” [Online].

Available: http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html. [Accessed 2017

04 23].

[28] H. Kitano, “Designing neural networks using genetic algorithm with graph

generation system,” Complex Systems, vol. 4, pp. 461-476, 1990.

