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Abstract 
 
The art of using evolutionary mechanisms for identifying satisfiability has produced a range of 
efficient solutions to this otherwise computationally challenging problem. Since their first use 
these evolutionary methods have been changed and adapted to produce increasingly efficient 
solutions. This paper introduces two unique alternatives to the optimisation of these methods, 
the first through the introduction of alternative mutation operators and the second through 
utilizing a grammatical encoding which has been proven to improve neuroevolution. The goal 
of this paper is to identify whether these two alternatives are candidates for future investigation 
in improving evolutionary satisfiability solvers. 
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Introduction 

 

The satisfiability problem 

The Boolean satisfiability problem (SAT) is a problem in Boolean algebra which is to 

prove whether a given expression (in conjunctive normal form) can be satisfied. A 

simple example of a satisfiable equation is (𝐴̅ + 𝐴); we can see this must be satisfiable 

due to its equivalent truth table ( 

 

 

 

 
 

unsatisfiable equation (𝐴̅. 𝐴) we Figure 1); however, if we take an 

can prove this to be unsatisfiable in the same way ( 

 

Figure 2). 

 

 

 

 
 

Figure 1: Truth Table for a Satisfiable Equation. 

 

 

 
 

 

Figure 2: Truth Table for an Unsatisfiable Equation 

 

This problem is exceptionally important in the domain of computational complexity as 

it is both the first and the simplest problem which has been proven to be 𝑁𝑃-complete 

[1]. Being 𝑁𝑃-complete means that the problem both exists in the complexity class of 

𝑁𝑃 and can be reduced to by all other problems in 𝑁𝑃 under certain reduction rules 

as presented by Aaronson [2]; this also implies that unless 𝑃 = 𝑁𝑃 [1] the worst-case 

time-complexity for SAT algorithms will be 𝑂(𝑛𝑘). The SAT problem however is not 

only interesting in theoretical computer science but its applications are broad; for 

example, Boyarski, Stern & Surynek [3] used SAT solving to enhance pathfinding in 

multiagent systems. 

 

Ramsey numbers 

As best presented by example, Ramsey’s numbers give the solution to a popular 

combinatorics problem in mathematics; the problem being: A party is being planned; 

how many people must be invited to guarantee that at least 𝑚 people will know each 

other or 𝑛 will not know each other? [4]. In graph theory, a Ramsey number, 

𝐴 𝐴̅ 𝑅𝑒𝑠𝑢𝑙𝑡
1 0 1
0 1 1

 

𝐴 𝐴̅ 𝑅𝑒𝑠𝑢𝑙𝑡
1 0 0
0 1 0
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𝑅 = (𝑚, 𝑛), is the minimum number of vertices (𝑣) to guarantee that all graphs of order 

𝑣 must have a clique of order 𝑚 and an independent set of order 𝑛. For example, one 

such Ramsey number 𝑅 = (3, 3) we know to be 6 as proven by Greenwood and 

Gleason [5]; as shown in Figure 3 we cannot guarantee a colouring on a graph of order 

3, 4 or 5. However, on a graph of order 6 we cannot escape guaranteeing we have at 

least one clique of size 𝑚 or 𝑛; so to answer our original problem to throw a party with 

at least three people either knowing each other or three people not knowing each other 

there must be at least six people. 

 
Figure 3: Ramsey Number Visualisation. 

 

Genetic computation 

Genetic computation can be traced back to Turing’s work in 1948 where he first 

proposed the idea of an evolutionary or genetics based search method [6]; the earlier 

biological work of Darwin inspired this idea [7]. The core idea is that there exists a 

population of organisms in which only the fittest individuals would survive and continue 

to live on through generations whereas weaker organisms would be removed. This 

phenomenon is what is today known as survival of the fittest. Work in artificial evolution 

however did not start until the 1950s [8] when there were several groups investigating 

its applications. For example, Rechenberg [9] utilized evolution to optimize real-value 

pairs for aerospace devices; whereas, Holland [10] was working on a method he 

termed as “Genetic Algorithms” (GA). 

 

Within each algorithm is a population of potential solutions to a given problem; these 

solutions generally being represented as a string of bits. In biological terms, this string 

of bits is referred to as a genome with each bit being called a gene. This population 

then undergoes three genetic operators which can take a variety of forms as can be 

found in various literatures [6] [8] [11]. However, the goal of each of these operators 

is the same: Selection, Reproduction, and Mutation; selection selects the best 

genomes in the population for reproduction (sometimes called crossover) before finally 

the resulting population is mutated to produce a new population. This process is then 

repeated until either it is stopped or a suitable solution is found. An example of this 

process is shown in Figure 4. 
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Figure 4: A Genetic Algorithm. 
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Project Overview 

This project looks to combine the three topics discussed above to optimize genetic 

algorithms to find solutions to Boolean equations through a modified party problem. 

The problem this project investigates is as follows, given a complete graph of size 𝑛 

and a clique size of 𝑥 does there exist a graph which doesn’t contain a clique of 𝑥 

vertices which are either connected or disconnected from each other. To do this the 

project will investigate the conversion of this problem to a Boolean equation and then 

investigate the effects of altering the mutation methods of two key SAT genetic 

algorithms (EvoSAP [12]and FlipGA [13]); it then looks to compare two blind genetic 

algorithms using different encoding methods (direct encoding and morphogenetic 

encoding). This report begins by introducing the current literature on genetic 

algorithms for satisfiability and the various genetic encodings currently in use. It then 

describes how the primary project objectives identified in Error! Reference source 

not found., before continuing to describe how these are met through development of 

a simulator which shall be used to carry out the required experiments. Finally, this 

report concludes on the results of the experiments. 

Methods for finding satisfiability 
 

Traditional methods 

Traditional techniques for SAT rely heavily on local-search based approaches. For 

example, the most widely used procedure, which is known as the Davis-Putnam 

procedure [14] utilizes a search over the given formula for unsatisfiable clauses. This 

procedure has acted as the backbone for many other variants such as that presented 

by Selman, Mitchell and Levesque [15] which disregards part of the search procedure 

in favour for a recursive search method instead. 

 

Older work on an algorithm known as GSAT [16] utilizes a greedy-local search 

heuristic, the method looks to iteratively improve an initial solution which is like genetic 

methods function but with less random variables. GSAT has been proven to 

outperform the David-Putney by at least one order of magnitude. However, the author 

admits the GSAT method is incomplete and there is no guarantee of finding a solution 

but mentions that artificial intelligence methods are one such technique which could 

be promising in terms of time complexity. However, recent successes in proving 

satisfiability have continued to use a purely local search based approach such as the 

cube and conquer method presented by Kullman et al. [17] which has been used to 

verify and solve Pythagorean triples [18]. 

 

Evolutionary approaches 

Evolutionary and genetic approaches to satisfiability solving emerged following the 

Davis-Putnam procedure; these methods ranged from the purely evolutionary 

methods such as the Stepwise Adaptation of Weights method (SAWEA) [19] to hybrid 

methods incorporating a lightweight local search procedure such as FlipGA [13] and 

EvoSAP [12]. However, the effect this has on results is big; as presented by Gottlieb 

and Voss [20] the results showed that FlipGA had success rate (SR) which was 11% 
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greater than SAWEA, but it also did so in 70.8% fewer average evaluations per 

solution (AES). 

 

The biggest challenge with evolutionary approaches to SAT is how to calculate a 

fitness value which represents how close a given organism is to a satisfiable solution. 

The most popular of these fitness functions is MAXSAT as used in [13] [12]; here the 

algorithms look at each clause in the equation and identify whether that clause is 

satisfied or not, we can then calculate the total fitness for a given organism based on 

the number of clauses satisfied divided by the total number of clauses. Similarly, 

SAWEA [19] utilizes an adaptive fitness function based on MAXSAT; in SAWEA each 

clause is given a weighting which makes the fitness function:  where n is the number 

of clauses. During evolution, the weights are adjusted according to the following 

function:  where y is the fittest organism in the population; this increases the 

importance (weights) of those clauses which are currently unsatisfied. 

 

Furthermore, the mutation operators employed in the different methods are not used 

as a variable in many experiments. For example, in SAWEA [19] the algorithm is 

designed to use a method called MutOne in which a single gene in each organism is 

mutated randomly whereas in other literature [13] [12] [21] they stick to random 

mutations. However, even in these random mutations differences are clear; for 

example, in FlipGA each gene in the population has a chance of being mutated, 

whereas EvoSAP uses an organism by organism random chance of being mutated 

before selecting genes. 

 

Due to the differing nature of these fitness functions it is important that measurements 

are taken when organisms are evaluated and/or flipped. As described by Gottlieb, 

Marchiori and Rossi [21] the three quantitative measurements which can be used to 

analyse the complexity of each approach are as follows: the average evaluations per 

solution (AES), average flips and evaluations per solution (AFES) and average flips 

per solution (AFS). These measurements as opposed to the actual run-time of the 

algorithms allow researchers to compare results without the need to worry about 

implementation detail such as language or hardware. They also go further to mention 

that although the local search methods run-time would be a measurement of 

complexity, in the case of genetic and evolutionary methods this is hardly the case as 

it is machine and implementation dependant. 

 

Genetic encodings 
 

Variable string 

Commonly described as the most intuitive ways of encoding these solutions [21], 

representing the solution to a Boolean equation as a bit string. For example, given a 

Boolean function 𝑏 which has 𝑛 variables a solution bit-string would contain 𝑛 bits. 

With this representation, it would be easy to assume a good fitness function for such 
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an encoding would be the function 𝑏; however, as stated by Gottlieb, Marchiori and 

Rossi [21] this will cause the algorithm to fall back to a random search. 

 

To rectify this issue, a fitness function introduced by De Jong and Spears [22] called 

𝑀𝐴𝑋𝑆𝐴𝑇 takes advantage of equations which are in conjunctive normal form [23] to 

analyse how many clauses in the equation are satisfied. One example is given an 

equation 𝑏 = (𝐴 + 𝐵). (𝐶 + 𝐷) and an input string of 𝑖1 = 1000 the equation would 

equate as follows: 𝑏 = (1 + 0). (0 + 0) = (1). (0) Here we can see we have satisfied a 

single clause of the equation and so the fitness of 𝑖1 is 0.5 (50%) whereas the input 

string 𝑖2 = 1010 would have a fitness of 1 (100%) as it satisfies both clauses. 

 

Real-Values 

Another such way of representing these solutions comes in the form of real-values 

which are inspired by Montana’s work on evolving and training neural networks [24]. 

The concept is to have each gene consist of a floating-point number 𝑛 such that 𝑛 ∈

ℝ.  Although originally presented by Montana in 1989 it wasn’t until 1998 that it was 

applied to satisfiability problems by Back et al. [25]. This then converts a satisfiability 

problem into continuous optimisation problems [21]. To do this they swap each 

variable 𝑥𝑖 and its inverse 𝑥𝑖̅ with a floating-point equivalent between -1 and 1 such 

that 𝑥𝑖̅ = (𝑦𝑖 + 1)2 and 𝑥𝑖 = (𝑦𝑖 − 1)2. They then replace the logical ∙ by an arithmetic 

+ and the logical + with an arithmetic ×. This then produces a continuous function 

which can be optimised. 

𝑒𝑞𝑏𝑜𝑜𝑙𝑒𝑎𝑛 = (𝐴 ∙ 𝐵 ∙ 𝐶̅) + (𝐴̅) 

𝑒𝑞𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 =  ((𝑦𝐴 − 1)2 +  (𝑦𝐵 − 1)2 + (𝑦𝐶 + 1)2) × ((𝑦𝐴 + 1)2) 

As you can see above, the Boolean variables are converted and evolved as floating-

point numbers represented as 𝑦𝑋, according to their logical sign they are then 

converted for evaluation. This encoding however does not show much promise to 

improving SAT solving algorithms; as found by Back et al. [25] and Eiben and van der 

Hauw [19] this floating-point representation is significantly inferior to the previously 

mentioned SAWEA method. 

 

Pathing 

As presented by Gottlieb and Voss [20] another way to take advantage of the 

conjunctive normal form nature of SAT problems is that a satisfying solution must 

satisfy at least one variable in each clause of the equation. For example, given  𝑏 =

(𝐴 + 𝐵). (𝐶 + 𝐴̅) one such path would be (𝐴, 𝐶) which is feasible whereas a path of 

(𝐴, 𝐴̅) is infeasible as it contains both a variable and its inverse. Moreover, as 

presented by Gottlieb, Marchiori and Rossi [21] this representation is far more compact 

than alternatives such as variable string encodings; however, as found by the 

representation’s original authors Gottlieb and Voss the representation does not 

produce results which are close to that of a variable encoding. 
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Mutation method optimisation 
 

Hypothesis 

How does changing the mutation method affect the performance of hybrid-SAT genetic 

algorithms? Due to the nature of the FlipGA methods introducing mutation method 1 

would increase the rate of mutation (from 0.45 [13] to 0.81 per gene) which when 

applied along with the local search on a population will considerably increase the 

search space, decreasing the number of evaluations it will require. 

 

The same comment would apply for EvoSAP; however, in the case of EvoSAP there 

is no reproduction as such so more emphasis is placed on the local-search finding a 

solution. This could however lead to a greater success rate as mutation method 1 will 

reduce the mutation rate of each gene in EvoSAP from 0.9 [12] to 0.81. For the second 

mutation method, the probability of each gene mutating in FlipGA stays consistent at 

0.45 and so a change in the results would appear unlikely. However, for EvoSAP the 

chance of a gene mutating is halved from 0.9 to 0.45 and so I would expect more 

extreme results than those found for EvoSAP with the first mutation method.   

 

Design 

To ensure consistency in results the candidate mutation methods will be used on two 

separate evolutionary procedures for finding satisfiable solutions. Further to this a 

benchmark for each of the two methods is taken beforehand for comparison with the 

results. The key variable is the mutation method which acts as a core component of 

the two hybrid SAT genetic algorithms. The mutation method shall be varied between 

the original mutation methods of both algorithms as well as the two methods presented 

below in Figure ; as presented in their original papers each algorithm will be run with 

an ideal mutation rate of 0.9. 
 

MUTATION METHOD 1 
BEGIN 
 i = 0 
 WHILE i < length(population) 
  BEGIN 
   ro = Random (0<= x <= 1) 
   IF ro < MUTATION_RATE 
    THEN 
     v = 0 
     WHILE v < length(variables) 
      BEGIN 
       rv = Random (0<= x <= 1) 
       IF rv < MUTATION_RATE 
        THEN 
         Flip v in population[i] 
        END 
       v = v + 1 
      END 
    END 
   i = i + 1 
  END 
END 

MUTATION METHOD 2 
BEGIN 
 no_vars = length(variables) 
 i = 0 
 WHILE i < length(population) 
  BEGIN 
   ro = Random (0<= x <= 1) 
   IF ro < MUTATION_RATE 
    THEN 
     rs = random (0<= x <= no_vars - 1) 
     j = 0 
     WHILE cnt <= r 
      BEGIN 
       Flip position j in population[i] 
       j = j + 1 
      END 
    END 
   i = i + 1 
  END 
END 

Figure 5: Mutation Methods. This figure illustrates the two variable mutation methods to be 

evaluated as part of the Mutation Method Optimisation experiment. 
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Method 

A simulator was developed as part of this experiment. To ensure reliable results all 

code is available with full unit tests [26]. Once proven reliable the simulator was moved 

onto a secure server at the University of Plymouth (Eeyore) and checked for a second 

time to ensure all tests were passing locally. The next step was to mitigate any risks 

to this experiment and as presented in Table 1 there was the potential to mitigate the 

risks and the damage caused. 

 

Table 1: Mutation Method Optimisation Risks. 

 

Running the test will utilize part of the DIMACS benchmark SAT set [27]; namely the 

first 50 instances available in the CBS_k3_n100_m441_b70 data set. Each instance 

consists of 100 Boolean variables and 441 clauses. Each instance shall be trialled 

twenty times to produce a reliable result and the results shall be averaged out. 

 

Results 

Presented in Table 2 is an overview of the results for the different mutation methods 

with all three mutation methods and below this in Figure , Figure  and Figure  is a 

graphical representation of the results. 

 

Table 2: Results of Mutation Experiment. 

Average Evaluations Solution (AES)  Success Rate 

 FlipGA EvoSAP   FlipGA EvoSAP 

Mutation 1 127588.78 67700.02  Mutation 1 0.986 0.692 

Mutation 2 70251.26 37355.562  Mutation 2 0.995 0.882 

Original 44326.31373 25835.56667  Original 0.9980392157 0.4509803922 

 

ID Name Mitigation Measures 

1 Server Faults (Powercut, 

restarts, turn-offs) 

To mitigate the loss of results after each mutation method 

has been tested its results will be saved to disk. 

2 Code Failure (Runtime 

errors) 

Thorough unit-tests have been implemented and must be 

passing before experiments are run. 

3 Criminal Activity (Tampering 

of results, stopping the 

experiments. 

The experiments shall be run within a Windows environment 

protected by a password. 

4 Algorithms Stopping 

prematurely 

The number of generations the algorithms shall run to at 

max is the same as presented in similar literatures 1,000 

[13]. 
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Figure 6: Mutation Method Success Rate. This figure illustrates the success rate of each 

mutation method for both algorithms across the data set. 

 

 

 

 

 
Figure 7: Mutation Method AES. This figure illustrates the AES of each mutation method for 

both algorithms across the data set. 
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Figure 8: Optimised Mutation Comparison. This figure illustrates the difference between a 

scaled number of evaluations to the success rate for both optimised algorithms of EvoSAP 

and FlipGA. 

 

Conclusion 

Contrary to the original predictions, FlipGA performed worse with the higher mutation 

rates provided by both method 1 and method 2, both of which lowered the success 

rate and increased the number of evaluations required. However, despite mutation 

method 2 providing the same probability of a gene mutating as its original method the 

method still performed marginally worse. 

 

Despite this, the inverse appears true for EvoSAP; as you can see in Figure 6 both 

mutation methods increased the success rate although at a cost of increasing the 

number of evaluations required. Nonetheless, mutation method 2 improved EvoSAP 

considerably at minimal cost to the number of evaluations. One clear conclusion which 

can be drawn from these results is that in utilizing a mutation method with a lower 

chance of mutating each gene improves these algorithms significantly; putting more 

emphasis on the local search and in FlipGA’s case the reproduction elements. 

 

Moreover, on comparing the differences between the best mutation methods for 

EvoSAP and FlipGA there is a significant difference in the number of evaluations 

required compared to the success rate of each method. As shown in Figure  FlipGA 

close to doubles the number of evaluations required for a 0.116 increased chance of 

finding a solution. What these results show is a clear trade-off in the number of 

evaluations allowed and the required success rate; EvoSAP with this second mutation 

method provides a better proportion of success rate to number of evaluations. 
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Morphogenetic encoding experiment 
 

Hypothesis 

Does a Morphogenetic encoding scheme increase the efficiency of a purely genetic 

algorithm for clique problems through SAT? Due to the nature of the morphogenetic 

implementation the mutations mutate a larger amount of the chromosome in 

comparison with a single mutation in a direct encoding. This following the results of 

the previous experiment led to a prediction that through widening the random search 

space the GA utilizing morphogenetic encoding will reach the global maximum quicker 

than the equivalent GA using direct encoding. 

 

Design 

In this experiment, a simple blind genetic algorithm is used as the control method with 

a benchmark taken before modifications to the encoding takes place. The only variable 

in this experiment is the encoding type used; the design of the genetic algorithm is 

simple and consists of a population of size 10 and a mutation rate of 0.9. The genetic 

operators are described in Table3 and the two encoding types are described in Table 

4. 

 

Table 3: BlindGA Genetic Operators. 

Operator Description 

Selection Selection is done using the MAXSAT function [22] and produces two parents 

which can be used for this generation. 

Reproduction Single point crossover is achieved using a random crossover point between 

the two parents. 

Mutation  Each organism is given a mutated at a rate of 0.9 and each gene inside a 

mutated organism is modified at a rate of 0.5. 

 

Table 4: Overview of Encodings. 

Encoding Description 

Direct Utilizing the variable string encoding as done by various other literatures [19] 

[22]. 

Morphogenetic Adapting the graph generation system proposed by Kitano [28]. 

 

Method 

Similarly, to the experiment discussed above the code for this experiment was also 

verified using the unit-tests included in the simulator and were run on the same 

university server. The risks for this experiment are presented in Table  below; a key 

risk to note is no.5 which was identified during the running of the first experiment, 

automatic security updates stopped all processes being used by the simulator. 

 

Table 5: Encoding Evaluation Risks. 

ID Name Mitigation Measures 

1 Server Faults (Powercut, 

restarts, turn-offs) 

To mitigate the loss of results after each mutation method 

has been tested its results will be saved to disk. 
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2 Code Failure (Runtime 

errors) 

Thorough unit-tests have been implemented and must be 

passing before experiments are run. 

3 Criminal Activity (Tampering 

of results, stopping the 

experiments. 

The experiments shall be run within a Windows environment 

protected by a password. 

4 Algorithms Stopping 

prematurely 

The number of generations the algorithms shall run to at 

max is the same as presented in similar literatures 1,000 

[13]. 

5 Automatic Security Updates Agreement was made to turn-off automatic security updates 

during the running of this experiment. 

 

Running the test will utilize instead of a SAT data set a selection of clique problems 

converted to SAT problems. The definitions of each of these problems can be found 

in Table ; the problems are to be read as given a graph of size graph size is there such 

a colouring of the edges that no clique of size clique size exists. For each of the 

problems the algorithms will have 20 trials and their results averaged to give a score. 

 

Table 6: Encoding Experiment Data. 

Graph Size Clique Size 

3, 4, 5 3 

4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 17 

4 

 

Results 

Presented in Table  is an overview of the results for the two encoding methods; below 

this you will find Figure  and Figure  which illustrate this information. 

 

Table 7: Encoding Results Overview. 

Total AES Success Rate 

Direct Encoding Kitano Encoding Direct Encoding Kitano Encoding 

14366.55 2992 0.6117647059 0.6470588235 

 

 
Figure 9: Encoding Evaluations Results.  This figure illustrates the differences between the 

number of evaluations required by both the direct and morphogenetic encodings. 
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Figure 10: Encoding Success Rate Results. This figure illustrates the differences between 

the success rates of the two encodings. 

 

 

Conclusion 

Matching the original predictions made, the morphogenetic encoding reduced the 

number of evaluations required by the genetic algorithm by 80% while also marginally 

increasing the success rate. What is also apparent from the experiment is that the 

morphogenetic approach may also increase the reliability of the result whereas the 

direct encoding was shown to be more inconsistent with test case 11. 
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