
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

The Plymouth Student Scientist - Volume 12 - 2019 The Plymouth Student Scientist - Volume 12, No. 1 - 2019

2019

The surface sediment carbon content of

a north norfolk saltmarsh

van Ree, R.

van Ree, R. (2019) 'The surface sediment carbon content of a north norfolk saltmarsh', The

Plymouth Student Scientist, 12(1), p. 50-62.

http://hdl.handle.net/10026.1/14682

The Plymouth Student Scientist

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



The Plymouth Student Scientist, 2019, 12, (1), 50-62 

 

50 
 

The surface sediment carbon content of a 
north norfolk saltmarsh 

 

Robert van Ree 

 

 

Project advisor: Professor Jason Hall-Spencer, School of Biological and Marine 
Sciences, A401 PSQ, Portland Square, Drake Circus, Plymouth, Devon, PL4 8AA 

 

Abstract 

Carbon sequestration is an important aspect of mitigating climate change and its detrimental 
environmental and economic effects. Vegetative ecosystems such as rainforests are often 
praised for their ability to sequester carbon through photosynthesis, however more efficient 
systems for sequestering carbon such as saltmarshes are often overlooked. Carbon storage 
was investigated in the developing salt marsh habitats of Holkham Bay, part of the Holkham 
National Nature Reserve in Norfolk, England between 31/07/2017 and 03/08/2017. This was 
done to assess the quantity of carbon that may be lost to rising sea levels associated with 
climate change and be released as CO2, which contributes to the greenhouse effect. 
Qualitative analyses of vegetation type and sediment texture were carried out using quadrat 
sampling (n = 70) and sediment cores (n = 35). Quantitative analysis of sediment carbon 
stock was carried out through loss on ignition. Carbon stock of the salt marsh was 
graphically represented using GIS mapping and an attempt was made to estimate the total 
carbon stock of the top 10 cm of the saltmarsh sediments. Measured values of carbon 
stocks at Holkham were compared with predicted values of carbon stock obtained using the 
Salt Marsh Carbon Stock Predictor tool. Significant differences in carbon stock between clay 
and sandy sediments were observed (p < 0.001), whilst vegetation communities showed no 
statistically significant difference in relation to carbon stock (p > 0.05). Estimates of carbon 
stock across the marsh (0.43 Km2) stand at 454-444 tonnes of carbon. Measured values of 
carbon stock were on average 14.18 Tonnes per Hectare lower than those predicted and are 
potentially due to marsh immaturity. Frequent anthropogenic disturbance at Holkham may be 
causing a reduction in carbon accumulation by the marsh vegetation. This study shows that 
substantial quantities of carbon could be lost from Holkham saltmarshes and indicates that 
larger marshes on the North Norfolk coastline may be substantially larger sinks of carbon, 
thus requiring continued protection and monitoring. 
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Introduction 

A saltmarsh is an intertidal habitat that provides a range of ecosystem services. They 
can be regarded as the temperate version of the tropical mangrove forests and are 
often found on low energy or protected shorelines, being common around estuaries 
(Barbier et al., 2011). Saltmarshes are formed when a geographical obstacle, such 
as a land spit, causes water movement to slow, allowing for greater levels of 
sediment deposition (Allen and Pye 1992). Once the saltmarsh begins to form, the 
zonation of halophytic plants which accrete sediment over time leads to further 
marsh development (Silvestri et al., 2005).  

One of the primary impacts of global climate change is that of rising sea levels. 
Increased temperatures lead to an acceleration of the melting of polar ice sheets and 
a subsequent increase in sea level (Overpeck et al., 2006). With sea levels predicted 
to rise by 65±12 cm by 2100 (Nerem et al., 2018). With the rising sea levels, the salt 
marsh may become permanently submerged to a point where the vegetation dies 
and as such, the sequestering of carbon from the atmosphere will cease (Craft et al., 
2009). Carbon release as CO2 from these habitats is of growing concern to those 
studying climate change due to the impact of rising CO2 levels on the greenhouse 
effect (Pendleton et al., 2012). 

The benefits saltmarshes provide to society are both direct and indirect, being both 
economic and for our well-being as a species. They provide protection from storm 
surges to coastal towns and cities (Koch et al., 2009, Barbier et al., 2011) and act as 
nursery grounds for juvenile fish (Beck et al., 2001). Saltmarshes are often areas of 
special scientific interest (SSI’s) due in part to their affiliation with migratory birds 
(Hughes 2004). They offer protection from coastal erosion and storm surges (King 
and Lester, 1995 and Mӧller et al., 2014). Saltmarshes are attractions for tourists 
which generate income for the local area (Barbier et al., 2011). Notably, they 
sequester substantial amounts of carbon from the atmosphere (Mcleod et al., 2011, 
Livesley and Andrusiak 2012) According to an evaluation by Beaumont et al., (2014) 
the economic value of saltmarsh carbon sequestration is between 34.56 – 118.26 
£/ha/yr, making them a valuable resource in financial terms. 

Blue carbon is the carbon stock (C-stock) of coastal habitats, specifically mangrove 
forests, seagrass beds and saltmarshes (Lavery et al., 2013). The present study 
investigates blue carbon in saltmarshes at Holkham Bay, Norfolk, which is an SSI. 
Previous research by Sousa et al., (2017) found C-stocks from sediments of Atriplex 
portulacoides in Portugal were at a value of 104,102 tonnes (T), with the plant 
biomass containing 13,118 T. Total C-stocks of the marsh were estimated at 
252,052 T. According to Sousa et al., (2017), salt marshes accumulate carbon at a 
rate of ≈245 ± 26 gC m−2 y−1 globally. Saltmarshes around the world have been lost 
to anthropogenic influence such as reclamation projects (Gedan and Bertness, 
2009). Combined with the effects of sea level rise, many saltmarshes are under 
significant threat of being lost. 

According to those working within Holkham National Nature Reserve, there was no 
monitoring underway regarding the C-stocks of the marsh at the time of data 
collection. This study aims to find out how much carbon is stored in the top 10 cm of 
sediments in the saltmarsh at Holkham, to implement graphical mapping techniques 
as a method of representing C-stocks across the marsh and to provide evidence of 
why saltmarshes across North Norfolk such as at Holkham and Stiffkey should 
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continue to be protected by government in order to prevent a loss of marsh area to 
rising sea levels. This work will aim to test the influences of vegetation type and 
sediment texture on the marshes C-stocks. Both one tailed hypotheses for this study 
are that vegetation type will have a significant effect on C-stocks and that sediment 
texture will have a significant effect on C-stocks. Hence the null hypotheses that 
neither vegetation type nor sediment texture will have a significant effect on C-
stocks. 

 

Methods 

Survey area 

The saltmarsh is characterised as being a back-barrier marsh due to being situated 
behind a barrier island. Formed of mainly pioneer and middle marsh, it has been 
classed as being in the early stages of development (Natural England, 2015). The 
marsh is predominantly covered by Atriplex portulacoides, Limmonium binervosum, 
Puccinellia maritima, Salicornia europaea and Sueda vera, characterised by the 
National Vegetation Classification system as SM14, SM21, SM13, SM8 and SM9 
respectively. In situ observations reveal that much of the pioneer marsh is being 
heavily damaged by anthropogenic influences of trampling by pedestrians, horses 
and motor vehicles, thereby causing erosion of the pioneer marsh. 

Data aquisition 

Data collection in the field was adapted from Skov et al., (2016). A total of 70 random 
75 x 75 cm quadrat samples were taken by means of a random number table 
throughout the marsh, in addition to 35 10 cm deep sediment cores (Figure 1). 
Initially 35 quadrats were used solely for random sampling of vegetation and 
sediment texture across the salt marsh. Organisms were identified and enumerated 
according to percentage cover. The dominant species in each quadrat was recorded 
and each quadrat was categorised according to the National Vegetation 
Classification system (NVC), which is a method of classifying vegetative 
communities based on the flora present within an area. At each sample site, soil 
texture was defined as either ‘sandy’ or ‘clay’ according to a simplification of the roll 
test (Skov et al., 2016), a qualitative assessment of soil composition. Soils classed 
as clay include loamy, silty and organic rich soils. Sediment cores were taken in 
conjunction with 35 quadrat samples and frozen at -12oC pending loss on ignition 
analyses in the lab. 

 

Laboratory analyses 

Initial estimates of C-stock were carried out using the Salt Marsh Carbon Stock 
Predictor (SMCSP) produced by Skov et al., (2016) to calculate C-stocks in the 
sediment based on the vegetation present and soil texture across the salt marsh 
(Type 4 prediction). This method was only applicable to areas of A. portulacoides 
and P. maritima (NVC communities SM14 and SM13, respectively) as no data were 
available to produce estimates of carbon stock in areas characterised by the other 
three dominant species: L. binervosum S. europaea and S. vera and (NVC 
communities SM21, SM8 and SM9, respectively). Predicted values were compared 
to actual values obtained from loss on ignition. 
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Figure 1: Locations of quadrat samples and sediment cores across the saltmarsh at 
Holkham bay. Map created using Arc GIS version 10.6 using world imagery basemap, 
sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, FSA, USGS, AEX, Getmapping, 

Aerogrid, IGN, IGP, swisstopo and the GIS user community.  

 

Loss on ignition was carried out in triplicate to ensure concurrent results and allow 
for the calculation of average values of C-stock for each sediment type and NVC 
community. Samples were dried in an oven at 60 oC for 24 hours to remove any 
moisture from the sediment before being ground with a mortar and pestle to 
homogenise the sample. Samples were then weighed using an electronic balance 
accurate to 0.01 g. Samples were heated to ~ 500 oC for 6 hours to remove any 
carbon from the soil. Samples were re-weighed; carbon content was calculated via 
the following formula: 

Percentage carbon content was converted into a mass per area format by dividing 
the original sample weight by 100 before multiplying it by the % carbon content. This 
value was then multiplied by the area of the core to produce C-stock values of grams 
per metre squared (g/m2) and being scaled up to t/Ha. 

Values for carbon content observed from loss on ignition were used to create 
predicted values of carbon content for the initial 35 quadrat samples. This was done 
by calculating mean values for each NVC community and its respective sediment 
category (e.g. SM14: Clay and SM14: Sandy) and applying them to quadrat samples 
that had the corresponding NVC and sediment classification. 

C-stock was then plotted using Arc GIS and its ArcMap programme (Version 10.5.1) 
onto a geographical map of the salt marsh. C-stock was represented using 
proportional points, large points on the map represent greater quantities of carbon 
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stored at that point. Each point has been assigned a range of values for carbon 
content (t/Ha). A second map was produced whereby the saltmarsh was divided into 
subsections, the mean C-stock for each subsection was calculated from the C-stock 
values obtained from within that subsection. Sections of the marsh were colour 
coded according to the mean values of C-stock calculated. This was done to provide 
a visual representation of C-stocks for the entire saltmarsh. 

Statistical analyses 

Data for C-stocks, NVC communities and sediment categories were imported into R 
Studio (Version 1.0.153). Mean values, standard deviation and standard error were 
calculated to represent values for carbon content in each NVC community per 
sediment category. These data were represented using a bar plot featuring error 
bars indicating standard deviation. 

To test the assumptions required for analysis of variance (ANOVA) between 
sediment category and C-stocks and between NVC community and C-stocks, a 
Shapiro-Wilks normality test was applied followed by a Levenes test to investigate 
homogeneity of variances. Due to not meeting these assumptions, non-parametric 
testing using a Mann-Whitney U test was performed. 

 

Results 

Predictions of stored carbon in SM13 and SM14 

Predictions of stored carbon in SM13 and SM14 in another study calculated the 
average value for C- stock as 29.5 tonnes per Hectare (t/Ha) (Skov et al., 2016). 
Values obtained from analyses at Holkham differed significantly. Mean values for 
stored carbon across SM13 and SM14 in Holkham were calculated to be 15.323 
t/Ha. Tables 1 and 2 compare these values for each subcategory. 

 

Table 1: C-stock values predicted by the SMCSP for NVC communities SM13 and SM14 in 
both sandy and clay soils. 

Predicted values (type 4 predictions) 

NVC Soil texture C-stock (t/Ha) 

SM13 Sandy 26 (± 3.3) 

Clay 40 (± 3.3) 

SM14 Sandy 19 (± 3.7) 

Clay 33 (± 3.7) 

Mean SM13 and SM14 Sandy 22.5 (± 3.5) 

Clay 36.5 (± 3.5) 
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Table 2: Mean measured values of C-stock for Holkham marshes. Mean C-stocks for all 
categories combined were 14.177 t/Ha lower than those predicted by the SMCSP in table 1. 

Mean measured values at Holkham Bay 

NVC Soil texture C-stock (t/Ha) 

SM13 Sandy 11.007 

Clay 20.398 

SM14 Sandy 8.805 

Clay 21.081 

Mean SM13 and SM14 Sandy 9.906 

Clay 20.74 

 

Loss on Ignition Analysis 

The influence of sediment type (sandy or clay) had a significant effect on C-stocks. 
Shapiro- Wilk testing found data to be normally distributed (W = 0.76594, p = 4.688e-
06). Levenes testing revealed the variances not to be homogenous. A Mann-Whitney 
U test revealed sediment types to be a significant factor in determining C-stocks (p = 
7.261e-06). Clay sediments had greater quantities of stored carbon than sandy 
sediments (�̅� = 20.6 ± 9.8 t/Ha clay [n = 56] and �̅� = 9.8 ± 3.4 t/Ha sandy [n=14]). 

 

Figure 2: Mean C-stock values for each NVC community in samples where sediment texture 
was defined as Clay (Left) and as Sandy (Right). Error bars representing standard deviation. 

SM14 in Clay soils showed the greatest level of variation, ranging between 5.9 and 72.1 
t/Ha. Data for SM9 in Sandy sediments were not available and is not plotted. 

n = 3 n = 4 

n = 3 

n = 4 

n = 6 

n = 16 

n = 20 

n = 9 n = 5 
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Mean values for C-stock per NVC type in each sediment category were plotted onto 
a bar graph (Figure 2). SM13 showed highest values for average C-stock (𝑥 ̅ = 18.52 
± 6.33 t/Ha) whilst SM8 was the lowest (�̅� = 15.98 ± 8.89 t/Ha). 

 

Total carbon content of Holkham saltmarsh. 

The total C-stock of the marsh was calculated in two different ways. The first method 
was calculating the average C-stock of the entire marsh and multiplying it by the total 
marsh area. This method gave a total C-stock value for the top 10 cm of sediment of 
454 Tonnes of carbon. The second method was to divide the marsh into sections 
that were geographically separated and calculate the average C-stock for each 
section, before multiplying this value by the area of that section. This method gave a 
total value of 444 Tonnes of carbon across the top 10cm of the vegetated marsh 
area. The most common range of values for C-stock was 20.1 – 35 t/Ha (Fig. 3). 

 

 

Figure 3: C-stocks of Holkham saltmarsh represented using proportional symbols. Larger 

symbols relate to larger quantities of stored carbon (t/Ha). Modal range of C-stock = 20.1– 

35 t/Ha. Mean C-stock across the marsh = 18.7 ± 9.7 t/Ha. Map created using Arc GIS 

version 10.6 using world imagery basemap, sources: Esri, DigitalGlobe, GeoEye, i-cubed, 

USDA, FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo and the GIS user 

community. 

The largest values for C-stock are found in the eastern side of the marsh (65.1-72 

t/Ha), this area of marsh showed variation in C-stocks. Western areas of marsh 
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appeared to have more consistent C-stocks, predominantly within the ranges of 

20.1-35 t/Ha (Figure 3). The largest concentration of carbon (~255 tonnes) is found 

in the eastern side of the marsh in area H (Figure 4). 

 

 

Figure 4: Data shown in figure 3 were extrapolated to produce an overview of total marsh C-

stocks. Mean (t/Ha) ± SD and total C stock (Tonnes) values for C-stock in each section are 

as follows:  A: �̅� = 18.9 ± 3.88, Total = 19.08, B: �̅� = 20.28 ± 3.79, Total = 28.74, C:  �̅� = 

18.31 ± 5.42, Total = 14.99, D: �̅�  = 17.89 ± 3.69, Total = 30.73, E: �̅�  = 19.81 ± 8.86, Total = 

27.24, F: �̅� = 8.54, Total = 4.49, G: �̅� = 11.70 ± 7.9, Total = 58.8, H: �̅� = 20.5 ± 15.09, Total = 

255.08, I: �̅� = 14.7, Total = 12.99. Areas F and I contain one sample each and therefore no 

standard deviation is calculated for these areas. Map created using Arc GIS version 10.6 

using world imagery basemap, sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, FSA, 

USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo and the GIS user community. 

 

Discussion 

Saltmarsh habitats can act as a substantial sink of carbon when compared to 

terrestrial habitats such as woodland (Mcleod et al., 2011). Differences in marsh 

characteristics such as vegetation and sediment composition can cause variation in 

carbon stocks across a marsh (Tables 1 and 2). An equilibrium between the vertical 

accretion of sediments by marsh vegetation and sea level rise (SLR) is needed for 

the survival of saltmarshes (Donnelly and Bertness 2001). An acceleration of SLR 

that exceeds the rate of marsh vertical accretion will lead to submergence of the 

marsh and therefore a loss of marsh area. Hence SLR is a growing threat to 
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saltmarshes (Morris et al., 2002). Research by Kirwan et al., (2016) contradicts this 

point, stating that biophysical feedbacks such as the acceleration of vertical 

accretion rates is often ignored. Managed retreat strategies may help to improve the 

longevity of the marsh, as seen in Byers and Chmura, (2007). However, Holkham 

bay faces a steep incline upwards when moving inland close to the shoreward edge 

of the marsh which is followed immediately by woodland (Figure 1), making any 

inland movement of the marsh problematic. Current and future management 

strategies should focus primarily on creating pathways for the inland retreat of 

marshland to avoid significant losses of marsh area. Secondly, such strategies may 

use managed retreat methods to increase the sediment loading capacity of the 

marsh, and so assist in the vertical accretion of marsh sediments in order to maintain 

an equilibrium with sea level rise (Esteves and Williams, 2015). 

Total carbon stocks across Holkham saltmarsh vary between sub-sections of the 

marsh as seen in Figure 4. Sousa et al., (2017) report marsh area in Portugal to be 

~4400 Ha and total C-stock to be 252,053 T in the top 25 cm of marsh sediments. 

Converting this to t/Ha gives a value of ~57 t/Ha. This value is approximately three 

times that of values obtained at Holkham in the top 10 cm of sediment. However, the 

depth of sediment cores taken by Sousa et al., (2017) was 15 cm greater than those 

taken at Holkham. Despite the largest concentrations of carbon being found in the 

top 10 cm of soil, sediment core depth must be considered when comparing C- 

stocks with the current literature. 

Clay soils tend to have larger C-stocks than coarser sediment (Fig. 2). Kelleway et 

al., (2016) reported that sediment particle size was a principal factor when predicting 

the quantity of stored carbon. Particle size analysis of Holkham saltmarsh sediments 

may provide new insights into the distribution of C-stocks across the marsh if used in 

conjunction with loss on ignition. National vegetation classification communities at 

Holkham were not a significant factor in explaining C-stocks across the marsh. This 

may be explained by the maturity of the marsh. Holkham bay saltmarshes are still in 

development, therefore biomass and rates of carbon accumulation by vegetation 

may be much lower than that of a more developed or larger marsh where biomass is 

greater. This may also assist in explaining why the measured values of C-stock at 

Holkham for SM13 and SM14 were lower than those predicted (Tables 1 and 2). 

It is also possible that frequent anthropogenic disturbance could have caused a loss 

of C-stock in the marsh and so have led to lower values of C-stock than those 

predicted. Holkham is heavily trampled by pedestrians, cars and horses. Persico et 

al., (2017) investigated the effects of disturbance caused by wild hogs (Sus scrofa) 

on South-Eastern US saltmarsh. It was suggested that disturbance by hogs would 

cause patches of saltmarsh to change from carbon sinks to carbon sources over 

time. This could lead to a reduction in the capacity of vegetation to accumulate 

carbon in addition to a loss of previously stored carbon in sediments due to soil 

respiration following disturbance. It is therefore plausible that trampling by humans, 

horses and motor vehicles might cause similar damage to the saltmarsh vegetation 

at Holkham. It would therefore be useful for future studies to investigate temporal 

variations in marsh biomass production in trampled and non-trampled areas of the 

marsh. 



The Plymouth Student Scientist, 2019, 12, (1), 50-62 

 

59 
 

This work highlights the importance of Holkham bay as a carbon sink and suggests 

that other marshes within Holkham National Nature reserve such as Warham are 

likely to be much larger sinks of carbon due to their greater size. However, Holkham 

Bay marsh is a small area of marsh and must be considered carefully before drawing 

more general conclusions as to the capacity of other marshes to store carbon. 

Failure to do so could potentially lead to gross underestimates of C-stock. Chew and 

Gallagher, (2018) report that allochthonous and recalcitrant organic carbon (black 

carbon) contribute to overestimations of blue carbon stocks. It is further argued that 

as black carbon is not readily oxidised, it should be excluded when calculating the 

level of mitigation of CO2 emissions (i.e. C-stocks). Further investigation is required 

to account for the ratio of black carbon within marsh sediments to provide a more 

comprehensive account of carbon stock. An idealised method for future research 

should consider the following when assessing saltmarshes as carbon sinks: Biomass 

and type of vegetation, proportions of black carbon, local geomorphology, local rates 

and future predictions of SLR, temporal analyses of vertical sediment accretion rates 

(Kulawardhana et al., 2015), sediment particle size, and sediment bulk density 

Conclusion 

This study shows that saltmarshes in Holkham bay are significantly affected by 

sediment texture (determined largely by sediment particle size), and that NVC 

communities in this case do not have a significant effect on C-stocks. C-stocks of 

saltmarshes can be effectively mapped using the methods outlined in this study 

when attempting to visualise spatial variations of stored carbon. This study 

demonstrates the effectiveness of using geographical mapping of C- stocks. Such 

maps can be used to assess key areas of marsh that require monitoring and 

protection due to their significance as a C-stock. 

Estimates of C-stock across Holkham saltmarsh show that marshes in early 

development can store substantial quantities of carbon in the top 10 cm of sediment 

alone and therefore indicates that C-stocks in larger, more developed local marshes 

will be even higher. This value of C-stock will be even greater when accounting for 

above ground biomass and the C-stock of sediments below 10 cm depth. Hence it is 

strongly recommended that efforts to mitigate marsh loss from sea level rise be of 

great importance to governing bodies when designing and implementing protection 

plans for the coastline. 
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