
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

The Plymouth Student Scientist - Volume 14 - 2021 The Plymouth Student Scientist - Volume 14, No.1 - 2021

2021

Development of a flow injection micro

analysis system using an ARM

microcontroller with an interactive

web-based interface

Andrewartha, William Ross

Andrewartha, W.R. (2021) 'Development of a flow injection micro analysis system using an ARM

microcontroller with an interactive web-based interface', The Plymouth Student Scientist, 14(1),

pp. 108-144.

http://hdl.handle.net/10026.1/17335

The Plymouth Student Scientist

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

The Plymouth Student Scientist, 2021, 14, (1), 108-144

108

Development of a flow injection micro analysis
system using an ARM microcontroller with an

interactive web-based interface

William Ross Andrewartha

Research Advisor: Dr Paul Davey, School of Engineering, Computing and
Mathematics University of Plymouth, Drake Circus, Plymouth, PL4 8AA

Abstract

Monitoring the state of the environment is increasingly important in today's changing world.
Flow Injection Analysis techniques are useful for measuring a wide range of solutions in a
cost-effective and controlled manner. These include seawater samples from which the levels
of iron present can be quantified. During the analysis, a wide variety of devices need to be
controlled precisely to ensure accurate and repeatable results. Such devices include
peristaltic pumps, switching valves, six-port valves and solenoid valves.

The system is simple to configure by using a bespoke web-based interface to configure and
control an STM32 ARM microcontroller. The routine can be visualised to check that it looks
correct, and then the information is sent in a JSON format to the microcontroller. The
microcontroller then sends the appropriate control signals to the devices following the
programmed routine, allowing users to analyse substances such as iron with minimal
training.

Keywords: Flow injection, solutions, peristaltic pump, valves, ARM, STM32, microcontroller,

web, internet, interactive, API, JSON, JavaScript Object Notation, C++, programming,

automation, software design.

https://www.plymouth.ac.uk/staff/paul-davey

The Plymouth Student Scientist, 2021, 14, (1), 108-144

109

Introduction

Background
Flow injection analysis involves the combination of millilitre level fluid streams under
highly repeatable conditions. It achieves this by using peristaltic pumps [1], switching
valves, solenoid valves and six-port valves. In order to automate the process to save
time and money, a controller can be used to control the devices at precise times to
ensure accurate and repeatable experimental results.

Research Procedure

1. Develop a microcontroller-based system that can operate a peristaltic pump,
switching valves and solenoid valves according to a pre-programmed timing
routine.

2. Create a web-based interface to allow the user to interact with the system and
adjust the timings of the analytical cycle.

3. Produce a comprehensive user manual covering the operation of the system
and its components, as well as troubleshooting steps and design philosophy
for the system.

4. Design and simulate a PCB including device monitoring functionality.

Research
As stated in the Research Procedure, a critical function of the controller is its ability
to interface with and control a wide variety of lab equipment, using standard
connectors where possible. Standard connectors allow the devices to be swapped
around, allowing the controller to adapt to the different device requirements of the
various experiments. For example, one experiment may require three pumps and
one valve, while another needs one pump and three valves. The controller needs to
be flexible to adapt to the changing device configuration with minimal setup time.

Concept Design

Concept 1 – Control using proprietary connections on a computer
Concept 1 controls the pumps and valves using the manufacturer provided
proprietary software on a computer. By looking at the manual for the pump [1], the
manufacturer, Gilson Inc, provides a proprietary interface called GSIOC. GSIOC
allows for full control and monitoring of the pump; however, the software is currently
only available for Microsoft ® Windows, requiring additional drivers to be written for
use with other platforms. The valves are similar, with limited support for non-windows
operating systems. This system would, therefore, be specific to the pumps and
valves that it was designed for, requiring additional work to integrate valves that are
not of the same manufacturer. Also, the cost of a Windows ® PC is high, with the
required interface cards adding further costs. Due to these limitations, this concept
will not be developed further.

The Plymouth Student Scientist, 2021, 14, (1), 108-144

110

Concept 2 – Control using standard electronic connectors
Concept 2 controls the pumps and valves by using standard interface connectors,
which are present on their control unit. Standard connectors allow for much greater
interoperability than proprietary ones and prevent the system from being tied to a
particular operating system. This allows pumps and valves from different
manufacturers to be used in the future with minimal software reconfiguration. This
provides a more open system without licencing fees or other recurring costs. Also,
the use of standard connectors means that the system can be configured to suit the
particular requirements of the analysis being performed. This allows the control to be
much more flexible and useful to run different analyses. This concept will be
developed in this research.

Figure 1: Concept 1: Using proprietary interfaces to control devices

Windows
PC with
serial
ports

P
ro

p
ri

et
ar

y
in

te
rf

ac
e

Peristaltic
Pump

Proprietary
interface

Soleniod
Valve

P
ro

p
rietary

in
terface

6 - Port
Valve

Proprietary
interface

Switching
Valve

The Plymouth Student Scientist, 2021, 14, (1), 108-144

111

Figure 2: Concept 2: Using standard interfaces to control devices

Microcontroller

St
an

d
ar

d

in
te

rf
ac

e

Peristaltic
Pump

Standard
interface

Soleniod
Valve

Stan
d

ard

in
terface

6 - Port
Valve

Standard
interface

Switching
Valve

The Plymouth Student Scientist, 2021, 14, (1), 108-144

112

Optioneering
Processor Optioneering
The STM32F429ZI microcontroller was selected as the processor for the system,
based on the processor selection table shown below.

Table 1 contains a class weight column ranging from 0 – Unnecessary to 10 –
Essential for each feature. Each processor is then individually scored from 0 – Poor
to 5 - Best for each feature and multiplied by the class weight to get an overall
feature score. The feature scores are then summed together, and the processor with
the largest score is the one that is to be selected for the research.

Table 1: Processor comparison

Feature Feature
Weighting

STM32F429ZI ATmega32u4 Raspberry Pi
Zero

Weight Score Weight Score Weight Score
Maximum Clock
Speed

3 3 9 1 3 5 15

Maximum
Storage
(EEPROM)

2 3 6 2 4 5 10

Maximum
Memory (RAM)

3 4 12 1 3 5 15

Number of
ADC’s

2 5 10 3 6 0 0

ADC Resolution 3 4 12 3 9 0 0
Number of
Hardware Timers

5 5 25 2 10 1 5

Number of
USART
Interfaces

5 5 25 2 10 2 10

Number of I2C
Interfaces

2 4 8 2 4 2 4

Number of SPI
Interfaces

2 5 10 2 4 2 4

Number of
Onboard
Ethernet
Connectors

5 5 25 0 0

1 5

Development
Board Cost1

3 1 3 2 6 5 15

Ease of use 3 3 9 5 15 6 18
Total 145 74 101

Offerings from the leading manufacturers in the microcontroller industry, ARM and
Microchip were considered. This includes the STM32F429ZI and Raspberry Pi Zero

1 Cost referenced to the development board of each microcontroller at RS Components Ltd and
Pimoroni Ltd. Prices correct as of 25/05/2020

The Plymouth Student Scientist, 2021, 14, (1), 108-144

113

powered by ARM cores, and the ATmega32u4 from Microchip, powered by an AVR
core.

The primary concern for the processor was how many hardware timers are present
and whether the system can operate in real-time, given that precise timing is a
critical part of the research. Also, a built-in ethernet interface was desirable in order
to build a web-based interface to control the system. The rationale for deciding on a
web-based interface will be explained in the Web Interface Software Design section.

In addition, the processor used should support software threads with priorities so that
the devices can be controlled at precise time intervals. A state machine could be
used in the absence of threads, but they can simplify the microcontroller code
significantly, making them a desirable feature.

Furthermore, support for a wide variety of hardware interfaces, such as USART, SPI
and I2C is desirable in case the web interface is impractical, meaning another
method of communication can be used if required. Finally, a low cost was also a
desirable factor so the device can be made as cheaply as possible.

The STM32F429ZI has ethernet support inbuilt into the microcontroller, with only a
small amount of extra circuitry required to support an RJ45 jack connection weighing
heavily in its favour. It also supports software threads, has a wide variety of
additional interfaces, though at the highest cost.

The ATmega32u4 does not have inbuilt ethernet support, but an external SPI to
ethernet adapter could be used in order to support an ethernet interface. Because it
is an 8-bit device, the performance compared to the other 32-bit processors is
significantly lower. Then again, it does benefit from comprehensive software support
and is easy to program, with many libraries available, as it is used in the Arduino®
Leonardo [2].

The Raspberry Pi Zero does not have an ethernet connector; however, due to the
more powerful processor, as well as a USB OTG connector, it can emulate an
ethernet interface over serial [3]. It supports threads and some additional interfaces
but has only one hardware timer, which is a significant limitation for research that
depends on precise timing.

Device Interface Optioneering
As discussed in the Background section, the purpose of the system is to interface
with existing lab devices to control them precisely. Therefore, the controller must
have the appropriate hardware to interface with the devices control system so that
the devices can be controlled without damaging the processor.

The interface between the controller and the lab equipment should be as simple as
possible to increase reliability and to keep the cost of the controller low. Some
equipment, like a solenoid valve or peristaltic pump, only need one contact to supply
power to the device to turn it on. Other devices, like switching valves, six-port valves,
photomultiplier tubes, and photo spectrometers, have more complex interface
requirements.

The Plymouth Student Scientist, 2021, 14, (1), 108-144

114

Switching Relays
Electrical relays were chosen to be the primary interface between the microcontroller
and devices because they provide galvanic isolation between the device and
microcontroller and can switch high voltages safely. They can be used to control
solenoid valves, peristaltic pumps, switching valves and six-port valves.

If a typical routine switches each relay 35 times over the routine cycle, and that three
routines are run per day, 175 cycles occur per day. Given that each relay switches 1
A of current and there is a unity power factor, the relay has a lifespan of 700,000
cycles [4]. This means that the relays should last for 4000 days, or just under 11
years, which is acceptable for the controller.

Device Inputs
Some devices such as a mass spectrometer, six-port and switching valves can
assert a signal in the case of a fault [5]. An input interface circuit is needed to allow
such inputs to be read by the microcontroller, so that the appropriate action can be
taken. Also, the circuit needs to ensure that the microcontroller is protected from
electrostatic discharge to prevent damage by using an optocoupler. The Inputs
section describes the development of the interface circuit.

Interface Connectors
In order to maintain existing compatibility with existing lab devices, standard screw
terminal connectors were chosen. Specialised connectors for each type of device
were considered to assist with connecting the devices. However, this would have
made the system less flexible to changing needs. Therefore, standard connectors
were chosen to allow the controller to adapt to changing configurations readily.
Figure 3 shows the interface connector chosen.

Figure 3: A standard interface connector

The Plymouth Student Scientist, 2021, 14, (1), 108-144

115

Photomultiplier Tube
A photomultiplier tube measures the amount of light generated by a chemical
reaction and can be used to determine when it is complete. Figure 4 shows an
example of a photomultiplier tube that could be used with the system. To operate, it
requires a high input voltage of 1.1 kV, meaning that a suitable input conversion
circuit is required to interface with the microcontroller.

The circuit could convert the signal into a digital form so that it can be processed by
the microcontroller digitally. Alternatively, the circuit needs to convert the signal into
a range of 0 v to 3.3 v so that the onboard ADC can sample the signal to digitise it.
Unfortunately, the author could not access a photomultiplier tube during
development, so the physical implementation of this part was not able to be
completed.

Figure 4: A photomultiplier tube

Research Enclosure
The research enclosure was chosen to ensure that it would be able to withstand the
conditions in the lab. Dr Antony Birchill was consulted to ensure that the enclosure
would be suitable. The enclosure is made from ABS material to resist corrosion from
chemicals used in the lab, while the rubber feet prevent damage from any spilt

The Plymouth Student Scientist, 2021, 14, (1), 108-144

116

chemical. Also, the size was essential to ensure that it could hold all the electronics
required. The removable end panels are a useful feature to aid assembly.

For this research, the maximum control voltage is 24 v. This means that a case
capable of withstanding Band 1 signals, less than 50 v is suitable.

Microcontroller Software Design
C/C++ is the language used for the control software on the microcontroller. Keil is
the IDE used to develop the code for this research. Also, the STM32 HAL, as well as
mbed-os, is used to reduce the development time by taking care of the
microcontroller-specific features and providing a consistent interface to perform
standard functions.

The use of mbed-os comes with a performance trade-off as well as increasing the
size of the compiled program, requiring a larger amount of ROM on the
microcontroller to store the program. However, due to the high-performance
microcontroller used, and the fact that there are no power limitations in the system,
the benefits of mbed-os such as threading and the reduction in development time,
particularly with the HTTP server, outweigh the performance costs of using it for this
research.

mbed-os version 5.15 was chosen to be used throughout the research. The entire
library for the STM32F429ZI microcontroller was exported to Keil from the online
compiler [6]. Keil provides more comprehensive debugging features than the online
compiler, such as the ability to single-step through lines of code to identify software
bugs. Also, the use of the online compiler was impractical due to a limited internet
connection. The use of the new mbed ide [7] was considered but ruled out due to the
software still being in beta at the time of starting the software development.

Software device class hierarchy
To provide a consistent interface and to simplify the management of devices, a base
device class was created. The base device class defines the primary methods that
can be used with a device. The child classes then specialise these for the specific
requirements of the device. Figure 5 shows the relationship between the classes.

The class constructor takes the names of the control pin(s) used for the device as
well as a unique ID that can later be used to control each device individually.

The class also provides an internal state variable that can be adjusted through an
interrupt-safe API to keep track of the state of the device.

The Plymouth Student Scientist, 2021, 14, (1), 108-144

117

Figure 5: The device class hierarchy

Pin Name Abstraction
In order to simplify the connection and configuration of devices, the microcontroller-
specific pin names are abstracted. Instead, a simple numbering system is used when
configuring the system. This has been accomplished by using an array to hold the
pin names for the digital inputs and outputs. It also means that additional device
interfaces can be added easily by adding more pin names to the array. The interface
numbers are simply the position of the pin name in the array, starting at one so as
not to confuse non-technical users who might find an interface zero a bit strange.

Code 1 shows the definition of two arrays of pin names used for digital inputs and
outputs. Here there are eight digital outputs and four digital inputs.

Code 1: The pin name definitions

baseDevice

perPump

sixValve

solValve

switchValve

//Define an array to hold the pins used for the digital
outputs

const array<PinName, 8> digitalOutputs = {PF_13, PE_9, PE_11,
PF_14, PE_13, PF_15, PG_14, PG_9};

//Define an array to hold the pins used for the digital inputs

const array<PinName, 4> digitalInputs = {PA_7, PD_14, PD_15,
PF_12};

The Plymouth Student Scientist, 2021, 14, (1), 108-144

118

Base Device Array
Due to the input and output pins being known at compile-time, as described in the
section on Hardware Design, the maximum number of devices on the system can be
calculated. This is possible since each device requires at least one input or output
pin in order to operate. Code 2 shows the calculation of the maximum number of
devices based on the number of inputs and outputs.

The number of actual devices on the system may be less than this due to some
requiring more than one pin but cannot be more. This calculation allows an array to
be created to hold all of the possible device objects. An array was used rather than a
vector to prevent memory fragmentation that would be caused by having a variable-
length structure to hold the device objects.

Code 2: The maximum number of devices calculation based on the number of inputs and
outputs defined

The array is initialised in an empty state, as shown in Code 3. It is populated
according to the configuration specified by the device configuration file, as explained
in the Device Configuration JSON section.

Code 3: The creation of the devices array

File Format
JSON stands for JavaScript Object Notation and is the file format used to hold the
routines and device information in the system. It is comprised of ASCII characters
that can easily be parsed into JavaScript objects. Data is stored in name-value pairs
and is separated by commas, with curly brackets, { } denoting objects and square
brackets, [] denoting arrays [8].

The controller configuration for devices and routines is stored in a JSON file format
in order to pass the information between the microcontroller and web interface
easily. Name-value pairs allow the code to be more readable, assisting with
debugging but with a significant performance cost due to the data needing to be held
in C++ strings for parsing. However, this performance cost only occurs when the
device or routine configuration is updated and needs to be parsed. Once the parsing
is complete, the performance returns to normal as the data is stored in C++
structures that use fewer resources.

//Calculate the number of digital inputs and outputs defined

const short maxDevices = digitalOutputs.size() +
digitalInputs.size();

//Create an array of baseDevice* which will be populated at
run-time by calling configDevices()

array<baseDevice*, maxDevices> devices = {};

The Plymouth Student Scientist, 2021, 14, (1), 108-144

119

An alternative file format such as CSV, Comma Separated Value file format was
considered due to superior performance. However, this would mean that a custom
parser would be needed to extract the information from the file, which would need
extensive testing to ensure that it would cope with the variety of information in the
file. Besides, the file would also need extra parsing on the web interface side, in
order to display device and routines information. Furthermore, if the file needs to
contain additional information in the future, such as a new device type requiring three
pins to operate, more data can be added without having to change the existing
parser. This is possible due to the name-value pairs in JSON, which is possible in a
format such as CSV but is more complex to implement. The name-value pairs mean
extra elements can be ignored for the existing devices that do not need them.

In order to parse the JSON on the microcontroller, the JSON parser library written by
Samuel Mokrani was used [9]. Writing a new parser library was considered but
dismissed due to the development time and complexity.

Device Configuration JSON
Figure 6 shows the devices file structure, consisting of an array of device objects,
each containing the required properties for the device. This includes a unique ID, the
name of the device, the type of device and the interface pins used.

Figure 6: The devices.json file structure

The code in Section 1 of the supplementary file parses the JSON file and extracts
the required information. It then creates the appropriate device objects in the base
device array, described in the Base Device Array section, and initialises them ready
for use.

Timing Structures
In order to store routine configuration data, a new structure was created. This
comprises the device ID, start time, stop time and the state of the device. The
timings are that the device starts at the start time and stops at the start time of the
next timing block, or the stop time at the end of the routine. Start time and duration
were considered parameters for the timings, but this would have made it more

devices.json

Device Object

ID Name Type
Primary
Interface

Secondary
Interface

Device Object

ID Name Type
Primary
Interface

Secondary
Interface

The Plymouth Student Scientist, 2021, 14, (1), 108-144

120

challenging to check for gaps in the timing information, leading to the devices being
in an undefined state. Also, the duration can be easily calculated by taking the start
time from the stop time.

Code 4: shows the definition of the timing structure.

Code 4: The structure to hold the routine timing information

Figure 7 shows a visual representation of the timing structure, containing the device
ID, start time, stop time and state.

Figure 7: The timing object structure

Directly parsing the JSON was considered to reduce the timing system’s memory
requirements, but, as discussed in the File Format section, there is a performance
impact when parsing JSON, which might affect the timing performance. When the
JSON is parsed, it can be checked for errors to ensure that all the required data is

Timing Object
(deviceTimes)

Device
ID

Start
Time

Stop
Time

State

typedef struct {

 uint16_t devID;

 uint16_t startTime;

 uint16_t stopTime;

 uint16_t devState;

} deviceTimes;

The Plymouth Student Scientist, 2021, 14, (1), 108-144

121

present before the routine is run. The pre-checking ensures that there are no syntax
errors with the routine, preventing wasted effort.

Due to the reasons above, a C++ standard vector is used to hold the variable-length
routine information. An array could be used, but as its length cannot be changed
after it is initialised, it would have to be initialised to a size larger than the most
extensive routine possible, consuming valuable memory that may not be used.

Code 5 shows the initialisation of the routine vector. It is populated according to the
configuration specified by the routine configuration file, as explained in the next
section.

Code 5: The routine vector

Routine Configuration JSON
Figure 8 shows the routine configuration file structure, consisting of an array of
routine objects. Each routine object contains an ID, Name and an array of timing
information, as described in the Timing Structures section.

Figure 8: The routines.json file structure

The code in Section 2 of the supplementary file parses the JSON file and extracts
the required information. It then inserts the appropriate timing objects in the routines
vector, described in the previous section, and initialises them ready for use.

Routine Timing
Precise timing is critical in this research to control devices at precise time intervals to
ensure accurate and repeatable results are obtained. The current time resolution of

routines.json

Routine Object

Name ID Timings

Timing Object

Device
ID

Start
Time

Stop
TIme

State

Timing Object

Device
ID

Start
Time

Stop
TIme

State

Routine Object

Name ID Timings

Timing Object

Device
ID

Start
Time

Stop
TIme

State

Timing Object

Device
ID

Start
Time

Stop
TIme

State

//Create a vector to store device times for the routine

std::vector<deviceTimes> routine;

The Plymouth Student Scientist, 2021, 14, (1), 108-144

122

the system is one second, which could be increased to 100 ms if needed for short
routines.

The relays used can open and close their contacts within 10 ms. However, this is the
maximum switching speed and will shorten the lifetime of the relays. Also,
mechanical lab devices require time to change from one state to the next, making
any greater time precision redundant. If there is a requirement for increased
precision in the switching time of devices, a different interface such as a MOSFET
would need to be considered.

In order to ensure that the timings are precise, a mbed-os EventQueue running on
the highest priority thread is used. EventQueues [10] are extremely useful as they
allow for scheduling of events at precise time intervals, using a hardware timer for
accuracy.

Routine Operation
In order to run a routine, the previously parsed and stored data has to be read and
used to control the connected devices.

Code 6 shows a function to run a routine in a blocking way, which is useful for testing
the operation of it. The function initialises a local variable to zero and then
determines the length of the routine, as described in Section 3 of the supplementary
file. It then enters a while loop, checking each second if there is a device that needs
to change state. Once the routine has finished, the devices are reset, and the
function returns.

However, there are severe limitations to this approach, including a loss of timing
precision if the thread calling the function is not the highest priority. The fact that it is
a blocking function also means that thread starvation can occur if it is run on the
highest priority thread. Furthermore, due to the non-deterministic nature of the code
preceding the thread sleep command, there will be a further loss of timing precision,
as the delay does not take into consideration the execution time of the preceding
code.

The Plymouth Student Scientist, 2021, 14, (1), 108-144

123

Code 6: The blocking function to run a routine

void runBlockingRoutine(void) {

 //Seconds since starting routine

 uint16_t elapsed = 0;

 //Get routine duration

 uint16_t duration = routineDuration();

 //While the routine has not finished

 while (elapsed < duration) {

 //Loop through routine and change state if required

 for (deviceTimes n : routine) {

 //If a device needs to change state

 if (elapsed == n.startTime) {

 //Loop through the devices array

 for (int i = 0; i < devices.size(); i++) {

 //If the device ID matches the specified ID

 if (n.devID == devices[i]->getID()) {

 //Change the state of the device

 devices[i]->changeState(n.devState);

 }

 }

 }

 }

 //Increment elapsed

 elapsed++;

 //Delay for a second before starting again

 thread_sleep_for(1000);

 }

 //Reset devies to default state

 resetRoutineDevices();

}

The Plymouth Student Scientist, 2021, 14, (1), 108-144

124

To overcome the issues with running the routine in a blocking function, an
EventQueue is utilised, as shown in Code 7. The routine event queue runs on the
highest priority thread, in order to ensure the timing is precise. The function is similar
to the blocking one above, except that now it is called deterministically by the event
queue, improving timing precision.

The calling function uses the function in Section 3 of the supplementary file to
calculate the duration of the routine after it is loaded and then calls the run routine
function on the event queue every second. The routine then runs like before, except
once it has finished, the function removes itself from the event queue using the ID
obtained when it was put on to the event queue.

//Routine Thread

Thread routineThread(osPriorityRealtime);

//Create eventqueue

EventQueue routineQueue;

//startRoutine - Responsible for running the routine EventQueue

void startRoutine(void) {

 //Start event queue on thread

 routineQueue.dispatch();

}

//Seconds since starting routine

uint16_t routineElapsed = 0;

//Routine duration in seconds

uint16_t duration = 0;

//ID of the EventQueue task generated by calling runRoutine every
second

int routineEventQueueID = 0;

//Get routine duration

uint16_t duration = routineDuration();

The Plymouth Student Scientist, 2021, 14, (1), 108-144

125

Code 7: The event queue way of running a routine

void runRoutine(void) {

 //If the routine has not finished

 if (elapsed < duration) {

 //Loop through routine and change state if required

 for (deviceTimes n : routine) {

 //If a device needs to change state

 if (elapsed == n.startTime) {

 //Loop through the devices array

 for (int i = 0; i < devices.size(); i++) {

 //If the device ID matches the specified ID

 if (n.devID == devices[i]->getID()) {

 //Change the state of the device

 devices[i]->changeState(n.devState);

 }

 }

 }

 }

 //Increment elapsed time

 routineElapsed++;

 }

 else {

 //Reset devies to default state

 resetRoutineDevices();

 //Stop the function from being called again as the routine
has finished

 routineQueue.cancel(routineEventQueueID);

 //Reset the eventQueueID

 routineEventQueueID = 0;

 }

}

The Plymouth Student Scientist, 2021, 14, (1), 108-144

126

Webserver
In order to interact with the system, a web-based interface is used. To achieve this,
an HTTP server runs on the microcontroller to handle the requests from the client.
The client-side web interface development is discussed in the Web Interface
Software Design section.

To ensure that the webserver is responsive and does not impact other tasks, it runs
in a separate thread with a normal priority. The thread consists of an infinite loop, in
which the server listens for GET requests from the client and takes the appropriate
action in response to them.

Section 5 of the supplementary file details the reconfiguration of the microcontroller
in response to the user interface changing the device configuration. As noted in the
Web Interface Software Design section, the web client has more processing power
than the microcontroller and so is responsible for creating the device and routine
configuration files. These are then sent to the microcontroller, which then
reconfigures to the new configuration.

Sending requests to the microcontroller to change the configuration was considered
and is definitely possible, but with the frequent requests to change the device or
routines and the input validation needed, poor performance was observed. Due to
this, all of the device and routine manipulation and validation happens on the web
client. The complete configuration file is then sent to the microcontroller, which
reconfigures to match the new file.

Device Status Monitoring
The device status monitoring system will track the state of all of the devices and
ensure that they are all operating normally. It will also have the ability to shut down
the system if a fault is detected, to protect the lab equipment.

The priority device for monitoring is solenoid valves, as it is challenging to determine
manually if they are working or not. Next are the Switching and Six-Port valves, as,
during testing, a controller failed, and a significant amount of time was spent trying to
determine why the valve was no responding to commands. Finally, the peristaltic
pump is the easiest to test, though monitoring would be useful to ensure that that it
has genuinely stopped if the emergency stop is activated.

To do this, a monitoring circuit will need to measure the critical parameters of the lab
equipment. The system can then notify the user and shut down the system if a
device is operating outside normal parameters.

The Solenoid Valve Monitoring section discusses a circuit to monitor the voltage and
current of a solenoid valve. Two analogue input pins can be used to monitor the
current and voltage. An additional function could be added to the base device class
to facilitate the configuration and reading of the values. A separate thread could then
continuously measure and monitor the device and shut down the system if a fault is
detected.

The Plymouth Student Scientist, 2021, 14, (1), 108-144

127

Web Interface Software Design
Introduction
The goal of using a web-based interface is to reduce the initial setup time of the
system, as nearly all modern computers have a web browser installed. Also, users
are familiar with web interfaces and so should find it more intuitive than using a
custom piece of software that has to be installed. In addition, web browsers are
actively maintained and generally well supported.

To develop the interface, modern web techniques along with HTML CSS and
JavaScript code were used. The interface communicates with the HTTP server
running on the microcontroller to service the requests from the user, as discussed in
the Webserver section previously.

Typically, web servers are more powerful than the client, meaning that they handle
the heavy processing work, for example, running databases or storing files.
However, in this case, the microcontroller has limited processing power, and the
webserver thread is a low priority, to ensure precise routine timing, as discussed in
the Routine Operation section previously.

As the client computer is more powerful than the microcontroller, it is better suited for
creating and validating device and routine configurations that are then sent to the
microcontroller to be run. Writing a custom database function to manage the devices
and routines on the microcontroller was considered but dismissed due to
development time and complexity as well as poor performance during initial
experiments.

The jQuery JavaScript library was used to assist with adding interactivity to the web
interface. The library has useful features such as the “each” function for looping
through data, and the “getJSON” function for getting JSON data from a web server.
The interface could be written without using this library, using pure JavaScript. The
main challenge is the manipulation of JSON for the devices and routines. A future
improvement to the system would be the removal of the jQuery library to improve
performance as many functions of the library are not used but still stored on the
microcontroller.

As noted in the Future Development section, an improvement to the system would
be the addition of a single board computer such as a Raspberry Pi. This would then
host the webserver and improve the user experience by having additional processing
power for data analysis. The single-board computer could and act as the webserver
while the microcontroller board handles all of the real-time tasks. Serial
communications over USART could then control the board.

To assist with understanding the web interface, there is a demonstration video,
https://www.youtube.com/watch?v=7ggpQW3ySN4. The demonstration starts at
2:50.

https://www.youtube.com/watch?v=7ggpQW3ySN4

The Plymouth Student Scientist, 2021, 14, (1), 108-144

128

Home Page
Figure 9 shows the homepage upon first loading the web interface. The top bar
allows for navigation, while the rest of the page allows for routines to be selected,
tested and run.

Figure 9: The web interface homepage

Selecting Routines
The routine to be run can be selected using the dropdown box populated from the
routines.json file described in the Routine Configuration JSON section. The routine
names are put into the dropdown for selection, and the ID is added for reference.
Code 8 shows the function used to populate the dropdown. After ensuring that it is
empty, the code inserts a default option called “Select Routine” to prompt the user to
select a routine. It then gets the routine JSON file from the microcontroller, parses it,
and then appends the created HTML to the dropdown to display the routines to the
user.

Testing Routine Devices
After a routine has been selected, the “Test Devices” button tests all the devices
used in the routine to ensure that they are working correctly. Once the button is
pressed, the devices are tested sequentially. Upon finishing, a popup appears
informing the user that the devices were all successfully tested, as shown in Figure
10 or that there was an error, as demonstrated in Figure 11. At the moment, the
testing is manual, with the user confirming the correct operation of the devices.
Future improvements include integrating with the device monitoring system
discussed in the Device Status Monitoring section so that the testing process can be
automated.

The Plymouth Student Scientist, 2021, 14, (1), 108-144

129

Code 8: The JavaScript to populate the dropdown

Figure 10: A successful device test

function populateRoutines(ddID) {

 //Ensure that the dropdown is empty

 $('#' + ddID).empty();

 //Set default option as select device, and make it disabled

 $('#' + ddID).append('<option selected="true" disabled>Select
Routine</option>');

 $('#' + ddID).prop('selectedIndex', 0);

 //Define a temporary variable to hold the HTML

 var opHTML = '';

 //Get the routine information

 let routines = getRoutines();

 //Parse the JSON

 var response = $.parseJSON(routines.json);

 //Loop through the response and fill in the dropdown

 $.each(response, function (i, item) {

 //Generate the dropdown html

 opHTML += '<option class=' + item.routineID + '>' +
item.name + '</option>';

 });

 //Append the html to the dropdown

 $('#' + ddID).append(opHTML);

}

The Plymouth Student Scientist, 2021, 14, (1), 108-144

130

Figure 11: An unsuccessful device test

The code in Section 4 of the supplementary file runs when the test button is pressed.
It gets the routine ID and then sends this to the server to test the devices. It then
awaits a response indicating that all devices were tested, or that an error occurred. A
popup is then generated to inform the user.

Running a Routine
The “Run Routine” button works in a very similar way to the “Test Devices” button
described in the previous section, except that it starts the selected routine running
rather than testing the configured devices.

Device Configuration
Figure 12 shows the device configuration page of the system. The navigation bar is
still at the top, while the main page shows all the currently configured devices and
provides options for adding, updating and deleting them.

Figure 12: The device configuration page showing three configured devices

The Plymouth Student Scientist, 2021, 14, (1), 108-144

131

Viewing Devices
As shown in Figure 12, the device configuration page shows all of the currently
configured devices. The name, type and interfaces used by the device are all shown.

Testing Devices
As shown in Figure 12, each configured device has a test button to allow its
operation to be tested quickly. Upon clicking on a test button, a popup will appear,
asking which state the device should be changed to. Once the option is selected, the
device will change to the requested state, similar to the routine device test described
in the previous section.

Adding Devices
Upon clicking the “Add a device” button, a form pops up to enter the required
information, as shown in Figure 13. Once the fields have been populated, the “Add
device” button can be clicked to add the device to the system.

Figure 13: The form to add a device

The Plymouth Student Scientist, 2021, 14, (1), 108-144

132

As discussed in the Web Interface Software Design section, the client is more
suitable for managing the configuration than the server, so an Indexed DB is used to
hold the device and routine configuration information. Upon the configuration
changing, the database is exported in a JSON format and sent to the microcontroller.
The microcontroller then reconfigures to match the updated configuration.

Code 9 shows the function to add a device to the system, while the code in Section 5
of the supplementary file shows the functions to send the configuration to the
microcontroller and reconfigure it to match the updated configuration.

Code 9: The function to add a new device to the system

function addDevice(formObject) {

 //Get the form data, validity checked by HTML5 required
attribute and range restrictions when the form is submitted

 let newDevice = [

 {

 devName: formObject.devName.value,

 devType: formObject.devType.value,

 devPin1: formObject.priInter.value,

 devPin2: formObject.secInter.value

 }

];

 //Start a database transaction

 let transaction = db.transaction(["devices"], "readwrite");

 //Start an object store request

 let objectStore = transaction.objectStore("devices");

 //Add the device to the database

 let objectStoreRequest = objectStore.add(newDevice[0]);

 //Update board configuration

 updateDeviceConfig();

}

The Plymouth Student Scientist, 2021, 14, (1), 108-144

133

Deleting Devices
Clicking on the “Delete a Device” button brings up the form shown in Figure 14. It
consists of a dropdown to select the device to delete, and then a button to confirm
the deletion.

Figure 14: The form to delete a device

Code 10 shows the function to delete a device from the system; the only difference
to adding a device is the fact that a record is removed from the database.

Code 10: The function to delete a device from the system

Routine Configuration
Figure 15 shows the routines configuration interface, with the navigation bar at the
top as always. There is a dropdown to select a routine to visualise, and buttons to

function deleteDevice(formObject) {

 //Get the dropdown data which contains the ID of the
device to delete

 let delDevice = formObject.devID.value

 //Start a database transaction

 let transaction = db.transaction(["devices"],
"readwrite");

 //Start an object store request

 let objectStore = transaction.objectStore("devices");

 //Add the device to the database

 let objectStoreRequest = objectStore.delete(delDevice);

 //Update board configuration

 updateDeviceConfig();

}

The Plymouth Student Scientist, 2021, 14, (1), 108-144

134

add or remove a routine. Finally, the bottom row allows for the configuration of
device timings.

Figure 15: The routines configuration interface

Visualising Routines
By selecting a routine from the dropdown box, it will be loaded for editing and
visualised on-screen, as shown in Figure 15. The visualisation provides a clear
overview of the state of all devices during a routine and simplifies the process of
debugging. It also helps to catch simple errors, such as a pump being turned on
when a control valve is closed. This prevents damage to equipment and prevents
wasted effort.

The horizontal bar chart by Richard Ramsay [11] inspired the look of the
visualisation. The visualisation consists of the name of the device used in the
routine, followed by a row of HTML span elements [12]. The span elements display
the state of the device and are colour coded for easy identification. Also, if the
mouse hovers over them, the tooltip displays the precise timings that the device will
be in the state, as shown in Figure 17.

The code in Section 6 of the supplementary file shows the function to generate the
routine visualisation HTML, given the routines JSON as a parameter. After parsing
the JSON, the function sorts the timings array by start time [13] and then creates a
list of unique devices. It then gets the name of the devices, before looping through
the timings array and returning the generated HTML.

Editing Routines
Once a routine has been selected, it can be edited by using the inputs shown at the
bottom of Figure 16. This allows a device to be selected, the timing defined, and the
state selected. Upon clicking the “Generate Timings” button, the timing information is
added to the routine. The visualisation can be refreshed to reflect the updated
timings. Although this works reasonably well, as shown in the video demonstration, it
is not particularly intuitive. An improvement could be to add a right-click menu to the

The Plymouth Student Scientist, 2021, 14, (1), 108-144

135

timing visualisation, to add a timing step. Also, the visualisation could be made
resizable by dragging the edges, which would be a more natural way to edit routines.

Adding Routines
Adding a routine is very similar to the process of adding a device, described in the
section Adding Devices. In this case, only the name needs to be specified when
creating a routine, with the timings added to the routine by using the inputs detailed
in the previous section. As mentioned before, once any changes are made, the
database updates and the updated configuration is sent to the microcontroller.

Deleting Routines
Again, deleting a routine is very similar to the process of deleting a device, described
in the Deleting Devices section. As shown before, the routine needs to be selected
before pressing the delete button. The board then receives the new configuration.

Figure 16: A routine visualised

The Plymouth Student Scientist, 2021, 14, (1), 108-144

136

Figure 17: The tooltip showing the timing of the device

Emergency Stop
To stop all of the devices in an emergency, an emergency stop button is located on
the top navigation bar. Figure 18 shows the top navigation bar, with the emergency
stop button located on the bar's far-right. It is coloured red to stand out in what is
likely to be a stressful situation such as a chemical leak, spill or equipment
malfunction. Once pressed, all devices are stopped immediately.

Figure 18: Navigation bar

Hardware Design
Relays
The relay interface boards break out three pins each, + 3.3 v power, ground and
signal. All of the power and ground connections are wired together, as shown in
Figure 19. The signal wires each connect to a separate GPIO pin on the
microcontroller, allowing each to be controlled individually.

Currently, the relays are located within a 3D printed PLA enclosure to allow them to
be tested with LEDs. While this is suitable for testing, it is not acceptable in a
finished product. As discussed in the Future Development section, the production of
a PCB would significantly enhance the performance and reliability of the research by
eliminating the majority of the connections and flexible wire that is prone to coming
loose. Unfortunately, due to a lockdown, importing a PCB board was not possible at
the time of completing the research.

Inputs
As discussed in the Future Development section, the ability of lab devices to signal

an action from the controller would significantly enhance the research. It would also

allow for the detection of errors in equipment, improving the safety of the system.

Figure 20 shows the schematic for such a circuit, allowing an external input to
interface with the system through an optocoupler to avoid potential electrostatic
damage to the microcontroller.

Figure 21 and Figure 22 show the device input circuit built on a breadboard, with an
LED to show the state of the input.

The Plymouth Student Scientist, 2021, 14, (1), 108-144

137

Figure 19: The relays connected to the microcontroller

Figure 20: The device input circuit with optocoupler

 T
U

 R
S

 k
R

 k
R

The Plymouth Student Scientist, 2021, 14, (1), 108-144

138

Figure 21: The device input circuit built on a breadboard in the off-state

Figure 22: The device input circuit built on a breadboard in the on-state

The Plymouth Student Scientist, 2021, 14, (1), 108-144

139

Solenoid Valve Monitoring
As discussed in the Testing and Future Development sections, the addition of a

device monitoring function would significantly enhance the research.

Figure 23 shows a circuit to monitor a solenoid valve. The voltage and current are
measured and converted to a suitable range for the ADC on the microcontroller to
sample. The circuit works with supply voltages of 24 v DC and 500 mA of current.

Figure 23: Solenoid valve monitoring circuit

Testing
On Thursday, 12th March 2020, the system had its first test in controlling the lab
devices. The purpose of the test was to ensure that the system could control a
variety of devices successfully. The test results were encouraging, with a six-port
valve, solenoid valve and peristaltic pump all being successfully controlled by the
system, as shown in Figure 24.

Further work was also suggested as desirable additions to the research, with a
monitoring system to detect device failures. This is an excellent idea to improve
safety and save time troubleshooting.

 C T SN
U .

 C T SN
U .

J G
U

R

R

R

R

R

D

D

R

R

 Relay s odule
U

The Plymouth Student Scientist, 2021, 14, (1), 108-144

140

Figure 24: Testing the controller with a six-port valve, solenoid valve and peristaltic pump

The production of a PCB would significantly enhance the reliability of the research by
eliminating most of the flexible wire and connectors. It would also allow a smaller
case to be used, reducing the cost of the enclosure.

The use of a different enclosure is required if high voltages are to be used. If a PCB
reduces the size of the electronics, then a smaller and cheaper case could be used.
Also, a case that could withstand high voltages would be beneficial as it would allow
new devices to be added in the future, without worrying about the enclosure not
being up to the task. Additionally, the case would have extra certifications, such as
an IP rating and fire-resistance rating. This would increase confidence in the case to
withstand harsh conditions.

Conclusion
This research has clearly shown that lab devices can be automated, saving time
while increasing the accuracy and repeatability of measurements. The results from
the controller are encouraging, showing that the lab devices can be effectively
automated with low-cost components. This is of great value to many laboratories,
where finances and time are limited. Of particular interest is that once programmed,
there are no ongoing licensing fees or recurring costs, and the system works on any
computer with a USB port, making deployment simple.

Flow injection analysis is used in many laboratories in order to analyses a range of
chemical species, such as trace metals, nutrients and organic compounds. Each
analysis has its own devices and routine, and the ability of the controller to be
reconfigured quickly and efficiently is of significant value. The user guide helps new
users start using the system quickly and efficiently.

The research has provided an excellent opportunity to explore the capabilities and
limitations of modern STM32 ARM processors in real-time applications. Additionally,
the development of the web interface has been of significant academic value.

The Plymouth Student Scientist, 2021, 14, (1), 108-144

141

Future Development
There is some scope for future development and improvement. For example, adding
additional processing power via a Raspberry Pi or other single board computer
would be beneficial for firstly hosting the web interface. Although the microcontroller
hosts the interface well, there are some limitations, such as not being able to serve
large files, such as device manuals or datasheets which would be useful to store on
the controller. Also, the additional processing power available would be useful for
running analysis on the data collected, such as plotting graphs or calculating
statistics.

In addition, the webserver could then be removed from the microcontroller, instead
communicating to the SBC over a serial interface. This would allow the
microcontroller to be replaced by a cheaper model without ethernet, such as the
STM32F446. It does not have an ethernet connector and has fewer GPIO pins, but it
is £9.02 cheaper than the STM32F4292. Other improvements include the ability to
interface with a photomultiplier tube, as this would allow the progress of the reaction
to be monitored and provide useful data for analysis.

Also, as touched on in the Device Status Monitoring section and the Testing section,
the implementation of device inputs and monitoring would significantly enhance the
research by automating the process of testing devices. The continuous monitoring of
devices is excellent from a safety perspective, as the whole system can be shut
down if there is a fault with a device. Device inputs would allow the controller to
integrate much more effectively with other lab devices, saving time by reducing the
required amount of supervision.

Acknowledgements
I would like to thank Dr Antony Birchill for his support and for agreeing to be the

client for the project.

The mentor support provided by Dr Paul Davey has been invaluable throughout the

project and was greatly appreciated.

Finally, I would also like to thank all members of my family for their continued

support.

2 Cost refers to the development board of each microcontroller at RS Components Ltd. Prices correct
as of 25/05/2020

The Plymouth Student Scientist, 2021, 14, (1), 108-144

142

Glossary

ADC – Analogue to Digital Converter

API – Application Programming Interface

ARM – Advanced RISC Machines Ltd

ASCII – American Standard Code for Information Interchange

CSV – Comma Separated Value

GSIOC – Gilson Serial Input Output Channel

GPIO – General Purpose Input Output

HAL – Hardware Abstraction Layer

HTML – HyperText Markup Language

HTTP – HyperText Transfer Protocol

IDE – Integrated Development Environment

Indexed DB – Indexed DataBase

JSON – JavaScript Object Notation

MOSFET – Metal Oxide Semiconductor Field-Effect Transistor

RISC – Reduced Instruction Set Computer

ROM – Read-Only Memory

SBC – Single Board Computer

USART – Universal Synchronous/Asynchronous Receiver/Transmitter

USB OTG – Universal Serial Bus – On The Go

The Plymouth Student Scientist, 2021, 14, (1), 108-144

143

References

[1] Gilson ncorporated, “User’s Guide eristaltic ump,” [Online]. Available:

https://gb.gilson.com/pub/static/frontend/Gilson/customtheme/en_US/images/d

ocs/MINIPULS3_UG_LT801121-17.pdf. [Accessed 15 October 2019].

[2] Arduino AG, “Arduino eonardo,” [Online]. Available:

https://www.arduino.cc/en/Main/Arduino_BoardLeonardo. [Accessed 10

October 2019].

[3] Adafruit ndustries, C, “ thernet Gadget | Turning your Raspberry i ero

into a US Gadget,” [Online]. Available: https: learn.adafruit.com turning-your-

raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget. [Accessed 08 October

2019].

[4] Songle Relay , “Songle Relay SRD,” [Online]. Available:

https://www.switchelectronics.co.uk/pdf/SRDsongle.pdf. [Accessed 09 May

2020].

[5] C AG nternational, “Two osition icroelectric alve Actuator,” [Online].

Available: https://www.vici.com/support/tn/tn421.pdf. [Accessed 12 October

2019].

[6] AR D, “Using the Online Compiler,” [Online]. Available:

https://os.mbed.com/docs/mbed-os/v5.15/quick-start/online-with-the-online-

compiler.html. [Accessed 23 May 2020].

[7] AR D, “ bed Studio,” [Online]. Available: https: os.mbed.com studio .

[Accessed 22 May 2020].

[8] Schools, “JSON Syntax,” [Online]. Available:

https://www.w3schools.com/js/js_json_syntax.asp. [Accessed 20 May 2020].

[9] S. Mokrani. [Online]. Available:

https://os.mbed.com/users/samux/code/MbedJSONValue/. [Accessed 07

March 2020].

[10] AR td, “mbed vent ueue,” [Online]. Available:

https://os.mbed.com/docs/mbed-os/v5.15/apis/eventqueue.html. [Accessed 22

May 2020].

[11] R. Ramsay, “ orizontal Stacked ar Chart,” [Online]. Available:

https://codepen.io/richardramsay/pen/ZKmQJv. [Accessed 15 April 2020].

[12] Schools, “ T Tag,” [Online]. Available:

https://www.w3schools.com/tags/tag_span.asp. [Accessed 22 May 2020].

The Plymouth Student Scientist, 2021, 14, (1), 108-144

144

[13] . Asadi, “Sorting a JSON array according one property in JavaScript,”

[Online]. Available: https://medium.com/@asadise/sorting-a-json-array-

according-one-property-in-javascript-18b1d22cd9e9. [Accessed 01 May 2020].

[14] RS Components td, “ST icroelectronics ST Nucleo-144 MCU

Development Board NUCLEO- ,” [Online]. Available: https: uk.rs-

online.com/web/p/processor-microcontroller-development-kits/9173775/.

[Accessed 15 October 2019].

[15] RS Components td, “ arallax nc ,” [Online]. Available: https: uk.rs-

online.com/web/p/power-management-development-kits/8430834. [Accessed

15 May 2020].

[16] RS Components td, “RS RO, , A S roject ox, hite, x x

11 mm,” [Online]. Available: https: uk.rs-online.com/web/p/instrument-

cases/2374476/. [Accessed 12 March 2020].

Appendices are provided as a supplementary file in the download area.

