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Abstract

Portfolio optimisation is an important problem in finance; it allows investors to manage
their investments effectively. This paper considers finding the efficient frontier associ-
ated with the mean-variance portfolio optimisation (unconstrained) problem. We then
extend the mean-variance model to include cardinality constraints (resulting in an NP-
Hard problem) that limits the number of assets in a portfolio. We discuss different
types of algorithms that one can use for finding the optimal portfolios, implementing a
meta-heuristic genetic algorithm technique to solve the unconstrained and cardinality
constrained problems. Finally, we improve our solutions by altering the crossover and
mutation probabilities in the genetic algorithm method. For finding the efficient frontier
associated with both problems, we examine a dataset involving 55 assets from the US
stock exchange.

Keywords: Mean-variance portfolio optimisation, cardinality constrained portfolio opti-
mization, NP-Hard problem, quadratic programming, meta-heuristic, genetic algorithm.
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Introduction

In financial mathematics, portfolio optimisation is an important topic for investment
management techniques. It helps investors select optimum portfolios, given the level
of return they want with respect to a desired level of risk. Markowitz (1952, 1959)
introduces the standard mean-variance approach to portfolio selection. It involves
tracing out an efficient frontier, a continuous curve illustrating the trade-off between
the expected return and risk (variance) [6].

The standard Markowitz mean-variance approach assumes that asset returns fol-
low a multivariate normal distribution [6]. This means the return on our portfolio assets
can be expressed by the expected return and the variance of the returns. Markowitz
mean-variance is the unconstrained part of the portfolio optimisation problem. In this
case, as we will see later, the objective function is quadratic, the constraints are linear,
and the efficient frontier can be easily found via quadratic programming.

Adding more constraints to the problem makes it difficult to trace the efficient fron-
tier. In this paper, we will look at the cardinality constrained problem, and in this case,
the objective function is not quadratic. It allows us to restrict the number of assets in
a portfolio. As we decrease the number of assets, it becomes more difficult to trace
the efficient frontier, as there will be fewer assets to use to minimize risk to the same
level as previously. As a result, heuristic methods have been introduced, where finding
the optimum solution is not guaranteed. However, heuristic methods are efficient in
finding the optimum solution or near-optimal solution in a reasonable amount of time.
Therefore, we will find the efficient frontier for the cardinality constraints problem via a
meta-heuristic algorithm (genetic algorithm).

The genetic algorithm and quadratic programming techniques are not the only two
methods to find optimal portfolios. There are several procedures proposed in the liter-
ature for the mean-variance and cardinality constrained portfolio optimisation problem.
Mansini and Speranza present three different heuristic algorithms to find the optimal
portfolios in a portfolio optimisation problem with round lot constraint [20]. Chang et al.
present three meta-heuristic algorithms. There are based upon a genetic algorithm,
tabu search, and simulated annealing for finding the cardinality constrained efficient
frontier, involving up to 225 assets [6]. Streichert et al. used evolutionary algorithms
(e.g. GA). They compared the results on the constrained, and unconstrained portfolio
optimisation problem [24]. Cura presents a population-based meta-heuristic algorithm
using particle swarm optimisation technique for cardinality constrained mean-variance
model. Cura compared the results with other methods such as genetic algorithms, sim-
ulated annealing and tabu search [8]. Deng et al. used an improved particle swarm
optimisation technique for cardinality constrained problem. They showed most of the
time, the particle swarm optimisation technique outperformed the genetic algorithm,
simulated annealing, and tabu search [10]. There also exist many studies which ap-
plied a multi-objective evolutionary approach to the portfolio optimisation problem. In
multi-objective portfolio optimisation, we maximise the return and minimise the risk
at the same time. Diosan used Pareto Archived Evolution Strategy (PESA), Non-
dominated Sorting Genetic Algorithm (NSGA Il) and Strength Pareto Evolutionary Al-
gorithm (SPEA 2) for solving the bi-objective portfolio optimisation problem [11]. In
another study, Lwin et al. used a hybrid multi-objective evolutionary algorithm for car-
dinality, quantity, pre-assignment and round lot constraints. They showed the hybrid
multi-objective evolutionary algorithm significantly outperforms PESA, NSGA I, and

430



The Plymouth Student Scientist, 2021, 14, (2), 429-464

SPEA 2 algorithms [18].

Many publications had discussed solving portfolio optimisation problems with exact
algorithms. The exact algorithms aim to give us exact solutions compared to heuris-
tic algorithms. However, it will take more time to find the optimum solution. Exact
solution methodologies include Jobst, for the cardinality constrained portfolio selec-
tion problem, using a quadratic programming-based branch-and-bound approach [16].
Lejeune and Bonami used a nonlinear branch and bound algorithm to find the optimal
portfolios with various real-world constraints such as buying stocks by lots [4]. Bien-
stock applied a branch-and-cut algorithm for the cardinality constrained mean-variance
model with side constraints [3]. There are also other examples of exact methods, such
as Bertsimas and Cory-Wright. They used cutting-plane methods for solving portfolio
selection problem [2].

Portfolio optimisation is a complex problem, and it can not be easily solved nu-
merically. So, we will be using R programming language software to do the complex
calculations throughout this paper.

Efficient Frontier

The efficient frontier is a two-dimensional curve representing the set of optimal port-
folios with the minimum risk for a given level of expected return. In other words, the
efficient frontier comprises portfolios that offer the highest expected return for a spe-
cific level of risk. As we add more constraints to the standard mean-variance portfolio
optimisation problem, various shapes of the efficient frontier will appear. For the uncon-
strained problem in which the objective function is quadratic, we will have a quadratic
curve for the efficient frontier. However, we do not know where the position of the
curve is in the risk and expected return space. The correlation between assets will
roughly tell us this. On the other hand, the cardinality constraint’s objective function is
not quaderatic, so that the efficient frontier will have varied shapes.

The efficient frontier for the constrained problem might be a discontinuous curve
depending on the objective function of the problem. If we are dealing with a single
objective function, the discontinuities will appear in the efficient frontier. However, if we
are dealing with multi-objective functions, discontinuity will not emerge in the efficient
frontier. In this paper, we are only dealing with the single objective function, and we
will see a few examples where discontinuities appear in the efficient frontier. This is a
consequence of a single-objective optimisation approach.

Mean Variance Portfolio optimisation

Formulation of unconstrained problem

Now we can formulate the mean-variance portfolio optimisation problem and then use
the R computer programming language to solve the problem.
Notations: Let:

n be the number of assets.

w; be the proportion held in asseti (1 = 1,2,...,n)

R be the expected rate return of asseti (i =1,2,...,n)

R, be the target return on our investment.
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o;; be the co-variance of assets 7 and j
(1,j=1,2,...,n)
1; be the expected return on our portfolio.
The unconstrained portfolio optimisation problem is as follows [6]:

Minimise z": Zn: W;W;0;; (1)

i=1 j=1
subject to:

Zwi =1 (2)

R = Zwiﬂi (3)
=1
where 0 <w; <1, (i=1,2,...,n),and R; > Ry.

Equation 1 is the variance formula, and it means to minimise the total risk that an in-
vestor is exposed to on their portfolio. Equation 2 means the proportions of investment
in 7 asset is equal to one. Finally, equation 3 is the expected return on our portfolio.

Further analysis

The proportion of assets that we invest in must equal to one.

=1

where w are the weights.
The collection of weights in vector form:

(wl,wg, U)n)T

The return on the individual asset in a portfolio is equal to the proportion of the
portfolio invested in an asset multiple the rate of return on a our investment for the
individual asset. Thus, the total return on a portfolio is simply the sum of returns on
individual assets in the portfolio.

n
R, = E W;T;
i=1

Where 7; is the rate of return for asset i.
Calculating the mean and variance of the portfolio return:

n
Rl = E T, W; = THWy + Tawa + ... + Tw,

=1

Using the expectation properties:

E(Ry) = wiE(n) +waE(m) + ...+ w, E(7,)
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This means that:

Var(R,) = FE[(R; —

- (Zwm—u») (jiwm_“”’))]

- B[S wn e

Li=1 j=1

= Z Zwiij (73 — ) (15 — 145)]

i=1 j=1

= Zn: z”: w;w;Cov(T;T))

i=1 j=1

This means that risk(o?) is equal to:

n n

0'2 :ZZwiwjaij (1)

i=1 j=1

Co-variance is a statistical measure used to analyse the relationships between two
variables: the relationships between assets i and j. Note that Cov(r;r;) = var(r;). The
variance co-variance matrix X' is

2
011 012 ... O1n
2
021 099 ... O2p
) =
2
On1t Op2 ... 0,

We can write the diagonal and off-diagonal terms in the co-variance matrix sepa-
rately as follows:

o’ = Zn:wfaf + 2”: Zn: W;W;05; (4)
i=1

i=1 j=Li#j

Next we will look at the strength of the relationships between assets i and j.
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Correlation between assets

The material in this section have been adopted from [12]

Correlation is a statistical measure that determines how assets move in relation
to each other. We can use the correlation to determine the relationship between the
returns of two assets and then use that to determine the efficient frontier curve in risk
and expected return space.

The correlation coefficients, which we use to measure correlation, range between
-1 and +1 and we will denote the correlation coefficients between two assets i and j
as pi;-

Oij
ng - 0'2‘0']'
where o; and o; are the standard deviation asset : and asset j respectively.

Now let us investigate coefficients between two assets, say m and n. Then, the

expected return is:

The proportion in asset m and n must be equal to one:

Wy, + W, =1

From equation (4), the formula for the risk becomes:

2 2 2 2 2
O = Wo O + W0, + 2W0 W PrunOm O,

= wfnogl +(1- wm)QUTQL + 2w (1 — W) PrenTmOn (5)

Equation (5) is the risk formula for asset m and n.

Perfect Positive Correlation

A correlation of +1 suggest that the two assets have a perfect positive correlation. This
means the expected return on two assets m and n move in the same direction.
When p,., = +1, the equation (5) for the risk on the portfolio become:

o2 =wl ot + (1 —wp)o2 + 2w, (1 — wy)?omo,

O = (w202 4 (1 — w)202 + 2w (1 — W) O o]/
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The term in the bracket is a quadratic function and so
Omn = Wnom + (1 — w0y,
Also, the expected return on our portfolio is:

Solving w,, in the function of standard deviation (c,,,) will give us:

Omn — On

Wy = ——
Om — Op,

Substituting w,,, into the expression for R gives us the equation for a straight line (see

Figure 1):

Omn — On

Omn — On

m ~— Un Om — Op,
When the correlation +1 the investment opportunity set a straight line and this
means that there is very little room for diversification.

Perfect Negative Correlation

A correlation of -1 suggests that the two assets have a perfect negative correlation.
This means the expected return on two assets m and n move in the opposite direction

to each other. That is, when p,,, = —1, the equation (5) for the risk on the portfolio
become:
o2 = w2 o2 (1 —wn)?0> — 2wy (1 — wp)?0mo,

Solving for ¢ will give us two solutions:

Omn = WO — (1 — wp,)oy,

or
Omn = —Wnom + (1 — wy,)oy,

We can perform the same calculation as before, finding w,, from the expression of
standard deviation and substituting it into R,,,,. By doing this we will get two straight
lines equation that connecting m and n in the expected return and standard deviation
space .

Therefore we have

o e + o
or
o —o0y,
Wm = —(om +0n)
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Substituting w,,, into the expression for R,,,, gives us:

o+ o, o+ o,

Rmn: m 11— n
pr +( Um+an)u
or
o— o, o— o,
Rmn:—+ﬂm+<1_ ):un
—Om — On —Om — On

In this case the investment opportunity set becomes two straight lines that connects
assets m and n and both lines move in opposite direction; (see Figure 1).

Correlation of Assets Between p=0and p = 0.5

A correlation of 0 suggests that the there is no correlation between two assets. In this
case the co-variance part drops out and we will be left with the return on a portfolio.

o? = w202 + (1 —wy)?o?

The above risk equation is quadratic, and therefore the assets m and n are con-
nected by a quadratic curve (see Figure 1).

A correlation of 0.5 suggests that there is some relationships between the risk and
expected return of assets m and n.

In theory, we can have a perfect positive and negative correlation between two or
more assets; however, that is impossible to have in the real world. The correlation be-
tween any two or more real assets is almost always greater than zero or considerably
less than 1. This would mean we can never have zero risks. As a result, let us find the
minimum risk by minimising the risk formulae via differentiation.

The equation (5) for the risk on the portfolio :

T = (wfnagl + (1 - wm)QUz + 2w, (1 — wm)Qp,maman)1/2

Calculating the derivative of the risk formula with respect to w,,:

d mn ]' —
Lt (1 w003+ 200~ ) )
= Qo2 — 202 4+ 202 4 2000 Pmn — AW CTmTnPmn)
. domn
Setting dg =0:
W

2wm07271 - 202 + 2wm0-721 + 2O'mo'npmn - 4wmamanpmn =0
Zwmafn + 2wmaq21 — AW O O Prn. = 203 — 2000 Pmn

Therefore:

02 = OmOnPmn
02, + 02 — 20,0, Pmn

This means the weight in assets m achieves the minimum variance. We can do a
similar calculation to obtain the minimum variance for asset n. However, in this case,
the risk formula needs to be in terms of w,,.

The optimum efficient efficient frontier curve normally lies between, p,,, = 0 and
pmn = 0.5. The Figure 1 shows the relationships between assets m and n for different
values of p,,,.

Wy =
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correlation= 0

correlation = -1

correlation= 0.5

o

Figure 1: Strength of the relationship between risk and expected return for various
correlation coefficients.

Solving the unconstrained problem

There are several techniques that we can use to solve the portfolio optimisation prob-
lem. In this paper, we will only focus on quadratic programming and genetic algorithm
techniques. Also, we will examine the risk and expected return of 55 assets between
January 2016 and October 2020. We choose this period of time as there was no
messing off assets data.

Quadratic Programming

Quadratic Programming involves problems where the constraints are linear functions,
and the objective is a quadratic function of decision variables [14]. We can use
quadratic programming to solve the unconstrained part of the problem because the
objective function is quadratic, and constraints are linear functions.

A quadratic programming problem in its standard form can be written as follows
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[25].
1
min EXTQX —c'X
subject to both linear and linear inequality constraints
ATz > b

>0

where @ is a n x n symmetric matrix and it is the Hessian matrix of the objective
function. ¢! is the the gradient of the objective function, A is a R™*"™ matrix ,X is a
vector in R™ and b is a vector in R™.

1 1 by
X = 2 ,C= 0:2 and b= b
T, c.n by,

qi1 q1i2 --- Qin

Q= q?1 q?2 - Q2.n

dn1 4n2 --- dnn

A numerical example of quadratic programming optimisation follows. Consider:
Minimise f = 23:% + 23:3 — 4z — 102,
subject to:
81‘1 — T Z 4
2£L'1 — 25(]2 Z -2
T 2 0
To Z 0

From the above information:

1 4 4 0
ol -

Also:
8 1 4
r |2 =2 -2
A 1 0 and b = 0
0 1 0

The following R code can be used to solve the above question [25]:

library (quadprog)

# Matrix appearing in the quadratic function to be minimised.
Dmat <- matrix(c(4, 0, 0, 4), nrow = 2)

# vector appearing in the quadratic function to be minimised.
dvec <- c(4, 10)
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# Matrix defining the constraints

Amat <- t(matrix(c(8, 2, 1, 0, -1, -2, 0, 1), nrow = 4))

# vector holding the values of b

bvec <- c(4, -2, 0, 0)

# meq indicates how many constraints are equality

# No constraint is equality in this example, so meq = 0 (by default)
QP <- solve.QP(Dmat, dvec, Amat, bvec, meq=0, factorized=FALSE)

QP
R Output:

$solution
[1] 1.25 2.25

$value
[1] -14.25

$unconstrained.solution
[1] 1.0 2.5

$iterations
[1] 2 O

$Lagrangian
[1] 0.0 0.5 0.0 0.0

$iact
[1] 2

The R code output suggests the function f has a minimum at the point (1.25, 2.25), and
the minimum value is -14.25 with respect to the given constraints. The solution to the
unconstrained problem is -14.5, and it is at the point (1,2.5). In Figure 2, we can see
the 3D plot of the function f and the location of the minimum point (green dot).

(a) Unconstrained problem (b) Constrained problem

Figure 2: Shows the plot of the function f.

Figure 3 shows the contour plot of the objective function, and it shows how far the
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minimum point for the constrained problem is away from the minimum point for the
unconstrained problem. Note that both Figures 2 and 3 were creating using https:
//www.wolframalpha.com/.

(a) Unconstrained problem (b) Constrained problem

Figure 3: Contour plot

R code output
Figure 4 shows the efficient frontier for the unconstrained portfolio optimisation prob-
lem. We can plot a heat map of the Portfolio weights by the following R code.

library(lattice)
levelplot (weights_list, col.regions =rev (terrain.colors(100)),
xlab=’Portfolio’,ylab=’Stock numbers’)

Note: For the above code to work, the R code for solving mean variance portfolio
optimisation needs to be run first.
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Figure 4: The efficient frontier.
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Figure 5: Weights heat map.
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We can also find the portfolio that gives as the minimum return and minimum risk
or vice versa, given the return tolerance. We can do that in R:

for ( point in 1:100 ) {
print (tickers[which(weights_1list[point ,]1>107°(-4))1)

}

Table 1 shows the portfolio with the minimum return and minimum risk. As ex-
pected, the additions of proportions of assets in Table 1 is equal to one. The asset that
gives us the maximum return is “AMD”, we invest 100% of our money in this asset. We
can also conclude that out of those 55 assets to obtain any portfolios, we only need 14
assets, which means we do not need to invest in all 55 assets.

Table 1: The portfolio that give us the minimum return.

Assets | Proportions | Assets | Proportions
AMZN | 0.06959706 | MRK | 0.2119145
NFLX | 0.003974694 | RES | 0.01134017
JMP 0.1761246 D 0.1771800
BABA | 0.03171242 | MMM | 0.05592903
COO | 0.01712344 BR | 0.02427032
MD 0.01534202 EA | 0.05478582
MDT | 0.02449597 | AON | 0.1262099
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We can plot the time series of the portfolio return of the portfolio the minimum risk
over the investment investment period.
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Figure 6: Time series of portfolio return.

Genetic Algorithm

Genetic algorithms (GAs) are heuristic search algorithms inspired by the theory of
natural selection. They were first initiated by Holland in 1975 and have quickly be-
come the best known evolutionary techniques [7]. In a genetic algorithm, an initial
population containing chromosomes is selected randomly as the first generation. The
individual chromosomes in the population are encoded into a string that consists of
several feasible solutions in solution space. In a portfolio optimisation problem, each
chromosome represents the weight of individual assets in a portfolio and is optimised
to find a possible solution [7].

The fittest parents are chosen from the initial population in order to produce off-
spring [23]. The produced offspring inherit the characteristics of the parents and will
be added to the next generation. The new generation consists of the better chro-
mosomes and represented by fitness function which is originated from the objective
function of the model [23]. The fitness function can be used to assess the fitness
for each chromosome and define how good a solution the chromosome represents.
Individuals with better fithess are more successful in adapting to their environment.
They will have a greater chance of surviving and reproducing, whilst individuals who
are less fit will be eliminated.[6]. This procedure keeps on iterating and, at the end, a
generation with the fittest individuals will be found.

Before going through the basic steps of a simple GA, we need to understand some
of the biological terminology such as selection, crossover and mutation operators.
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Selection operator:

Selection operators determine which representatives of the existing population will be
carried on to the next generation. There are different functions implementing selection
operator in R. We are using the IrSelection selection operator. This selection operator
decides the possibility of advancing to the next generation based on the fitness rank in
the current population [15].

The crossover operator:

The population resulting from the selection is typically divided into two parts. Then,
the genetic information of two parents is combined to generate new offspring. We
are doing this with the aim of producing new solutions that are better than previous
solutions. Many different types of crossover exist, e.g. single-point crossover, two-
point crossover, and arithmetic crossover [22]. There are various functions imple-
menting crossover operator in R. We are using the LaplaceCrossover operator. The
Laplace crossover operator is based on the Laplace distribution. A full description of
the Laplace crossover operator can be found in the work of Deep and Thakur [9].

Example of crossover: A chromosome can be divided into genes, which continue
information about certain traits, and each locus in the chromosome has two possible
genes: 0 and 1. In this example let us look at 8-bit strings.

Parent 1

LIENERCIENEREIL

Parent 2

EEENCEERIERERED

We can create two offspring by randomly selecting each bit (gene) from one of the
corresponding genes of the parent chromosomes.
Offspring 1

Offspring 2

Here, we have two individuals that we can say have inherited the characteristics of
the parents.

The mutation operator:

After the crossover process, the GA produces new offspring by modifying the existing
individual chromosomes in this section of the process. This can be done by randomly
flipping some of the bits in a chromosome with some probability; usually, very small
[21]. We maintain genetic diversity in the population, which means we will have more
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potential candidate solutions with different genetic information. This will allow the GA
to find better solutions at each iteration.
Example of mutation: In this example we have an 8-bit string after and before
mutation. We flip the bit in position 5.
Offspring 1 before mutation.

O[1[1[0]O[1]1]0O]

Offspring 1 after mutation.

(O[1[1[O1[1[1]O]

When we find the optimum profiles portfolios for the cardinality constrained portfolio
optimisation problem in R, it is crucial to test different values for the crossover and
mutation probability and set those probabilities equal to a reasonable value. We do
this because setting the mutation probability to a higher number will lead to a random
search (which is no more beneficial than searching for a needle in a haystack). Also,
setting the crossover probability to a lower probability will lead to poor results. We will
also show this in Section 5.4, where we attempt to improve our solutions by altering
the crossover and mutation probabilities.

The steps in a genetic algorithm are as follows:

Algorithm 1 Genetic Algorithm

Generate an initial population of chromosomes.

Evaluate the fitness of individuals chromosomes in the population.

Select a pair of parent chromosomes from the current population.

Combine parents to produce offspring using crossover operator.

Mutate the two offspring at each locus with with lower probability.

. Evaluate fitness of the offspring and select the Individuals with better fitness to be
added in the next generation.

7. Replace some or all of the population by the offspring.

8. if a satisfactory solution has been found stop, else go to 3.

I ol

Other termination conditions exist, e.g. running each point for a given number of
iteration to achieve a satisfactory solution. However, what is a satisfactory solution or
how many iterations are sufficient to achieve such a solution is a subject for debate.
Recall, as before we are examining a data set involving 55 assets between January
2016 and October2020.

Results from using the GA to solve the unconstrained problem

We solved the unconstrained problem using quadratic programming as the objective
function is quadratic. Genetic algorithm techniques can also be used to solve both the
unconstrained and constrained portfolio optimisation problem. R Output:

Figure 8 shows the R output for solving the unconstrained problem using both
quadratic programming and genetic algorithm techniques. As we can see, we have
obtained precisely the same efficient frontier using two different approaches.
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Figure 7: Unconstrained problem efficient frontier using the GA technique.
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(a) Using GA (b) Using QP

Figure 8: Solution to unconstrained problem using QP and GA.

We can use both GA and quadratic programming to solve the unconstrained port-
folio optimisation problem. However, the quadratic programming technique is much
faster than GA to find the optimal portfolios in R (see Figure 9). For example, it takes
R 0.08 seconds to compute the first point using the quadratic programming technique;
however, it takes R 10 seconds to compute the same point using the GA.
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(a) GA time (b) QP time

Figure 9: A time comparison of GA and QP for solving the unconstrained problem.

Figure 10 shows the generation-fitness plot for the first and last point of the efficient
frontier. As we can see, for the first point, it takes more iterations to reach the optimum
solution compared to the point at the top of the efficient frontier. From this, we can
conclude that points at the bottom of the efficient frontier are harder to compute; hence,
more iteration needed to reach the optimum solution. Also, it takes more time for R
to find the optimum solutions. On the other hand, the points at the top of the efficient
frontier are easy to finds and take less time.

-0.00010

-0.00014

Fitnes:

Fitness v

-0.00018

-0.00022

§
13
!
H
T
0

T T T T T T T T T T
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Generation Generation

(a) Generation-fitness plot for the first point.  (b) Generation-fitness plot for the last point.

Figure 10: Generation-fithess comparison of the first and last points for the
unconstrained problem.

The cardinality constrained portfolio optimisation prob-
lem

In the previous section, we saw how to solve the mean-variance portfolio optimisa-
tion problem. Investors face some restrictions such as floor-ceiling constraints, pre-
assignment constraints, and cardinality constraints in the real world. The floor-ceiling
constraint restricts the proportion of each asset in the portfolio to lie between certain
lower and upper limits [17]. This help investors to avoid very large or small position
which means lower transaction cost. The pre-assignment constraint allows investors
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who may intuitively favour a specific set of assets in their portfolio, with its proportion
either fixed or determined [19].

There are other constraints, such as class constraints, class limit constraints and
round lot constraints. However, in this section, we will only look at the cardinality
constrained portfolio optimisation problem.

The cardinality constraint

The cardinality constraint imposes a limit on the number of assets in the portfolio.
These limitations arise because investors have management issues of their portfolio
since managing many assets in a portfolio may be hard to monitor. They may also
seek to reduce transaction costs and/or to assure a certain degree of diversification
by limiting the maximum number of assets in their portfolios [19]. Therefore cardinality
constrained portfolio optimisation is a significant practical problem. By introducing the
cardinality constraint into the mean-variance model, the problem becomes a mixed-
integer quadratic programming problem which is an NP-hard problem. A problem is
NP-hard if the algorithm for solving it is at least as hard as any NP-problem (non-
deterministic polynomial time) [26]. The cardinality constrained portfolio optimisation
problem is as follows [1]:

n

Minimise A <Z Zwiw]—aij> —(1=2Xx) <Z wm,) (6)

i=1 j=1

subject to:
> wi=1 (7)
=1
S <k ®)
=1
R = Z Wi (9)
=1
where:

A € [0, 1] is the risk preference of the investor.
k is the desired number of assets in our portfolio.

z; IS @ binary variable denote whether an asset is selected or not:

_ )1, ifany of asset i is held, fori =1,2,...,n
“ )0, otherwise

Also, we have the analogous constraints as in page 3.
0<w; <lfori=1,2,....,n

R > Ry

By introducing the cardinality constraint into the mean-variance model, finding the
solution (the efficient frontier) becomes harder. If the value of % is equal to the total
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number of assets in a portfolio, then the problem is identical to the unconstrained
problem. The problem becomes harder to solve as we reduce the value of k. This
is because there will be fewer assets each time to choose from the total number of
assets, yet the same returns are needed.

Solving the cardinality constrained problem using a GA

Adding the cardinality constraint to the mean-variance portfolio optimisation problem
makes the constraints non-linear. Hence, we can not use the quadratic programming
technique to solve the problem. We can also see this in Figures 11 and 12 as the
efficient frontier is starting to become a non-quadratic graph as we decrease the value
of k. The following subsections give the results of running our GA on the problem. As
before, we are examining the risk and expected return of 55 assets between January
2016 and October 2020.

R Outputs for different values of &

We will analyse the efficient frontier and their generation-fitness plots for different val-
ues of k. We will first look at £ = 20 and k& = 10 and then gradually decrease the value
of .
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Figure 11: The GA-computed efficient frontier for £ = 20 and k& = 10.

Figure 11 shows the efficient frontier for the cardinality constrained portfolio opti-
misation problem when k& = 20 and k£ = 10. Let us compare the efficient frontier for
both k£ and the unconstrained efficient frontier (shown in Figure 12). There is not much
difference between the three curves, especially at the top of the curve. However, there
is a small deviation below the average return of 0.002. When k = 20, the lower left part
of the efficient frontier is a better approximation of the unconstrained efficient frontier
than £ = 10. We can conclude that as we decrease the value of k£, we might see
progressively larger deviations in the cardinality constrained efficient frontier compare
to the unconstrained efficient frontier.
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Figure 12: Comparison of the unconstrained efficient frontier with the constrained
efficient frontier using £ = 20 and k£ = 10.
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Figure 13: Comparative sample generation-fitness plots for £ = 20 and k£ = 10.

The generation-fitness plot shows how a particular point reaches the optimum so-
lution and how many iterations it takes for that to happen. In Figure 13, we can see
the generation-fitness plots for £ = 20 and £ = 10 for the point where the risk is at
a minimum. For each point in the efficient frontier, the generation-fitness plot will be
different as some points might reach the optimum solution faster or slower than others.

In Figure 10, we looked at the generation-fithess plot for the unconstrained portfolio
optimisation problem. We saw that it takes the GA a few iterations to find the optimal
solution; hence it is straightforward to find the efficient frontier - this is expected since
the unconstrained problem is a quadratic optimisation problem. In Figure 13, we can
see the generation-fitness plots for the cardinality constrained optimisation problem.
As we can see, it takes more iterations to solve the cardinality constrained problem
compared to the unconstrained problem. For example, it takes approximately 600
iterations for the first point (the lowest left point) in the efficient frontier to reach the
optimum solution. However, for the same point, it takes around 3000 iterations when
k = 20 and 5000 iterations when k = 10 to get to the optimum solution.

Before looking at Figure 13 in more detail, we need to know how each point reaches
the optimum solution in GAs. The horizontal lines within the generation-fitness plot are
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called local optima. The horizontal line at the top of the generation-fitness plot is the
global optimum. In the GA, the mutation operator attempts to improve the solution
to one of a higher fitness. When it reaches the local optimum, the crossover operator
takes over, and the graph jumps; hence, we see the staircase shape. At the top of each
stair, the GA uses the mutation operator for all these generations within the horizontal
line. Therefore, if the horizontal line continues for long enough, the obtained solution
is the optimum solution (global optimum).

Previously we said that the difficulty of the cardinality constrained problem in-
creases as we decrease the value of k£ each time. We can see this by comparing
the generation-fitness plots of £ = 20 and £ = 10 (see Figure 13). It takes fewer it-
erations for £ = 20 compare to £ = 10 to reach the optimum solution, and less of a
staircase shape is apparent. However, it takes more iterations when £ = 10 compare
to £ = 20 to reach the optimum solution, hence more staircase shape. We also had to
increase the run parameter in the R code from 5000 (where k& = 20) to 7000 (where
k = 10) because of the increase in the problem difficulty and make sure we get better
solutions.

Figure 14 compares the efficient frontiers of £ = 20 and k£ = 10 to the unconstrained
optimisation problem efficient frontier on one plot. We can conclude that the efficient
frontiers for £k = 20 and 10 are a good approximation of the unconstrained problem
efficient frontier. Also, as we decrease the value of k&, we should see more deviation at
the lower left and middle of the efficient frontier than the unconstrained efficient frontier
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Figure 14: Comparison of the efficient frontiers produced using the GA with that of
the unconstrained problem (light blue).

Let us look at the efficient frontier and the generation-fitness plots for £ = 5 and
k = 3. We did not study the efficient frontier for £ = 4 because we do not expect
much difference between k£ = 5, k = 4 and k = 3. When k = 5, there is slightly
more deviation at the bottom of the curve than &£ = 10 and £ = 20 compare to the
unconstrained problem. As we decrease the value of k£ to 3, we observe more deviation
(as expected). Sub-figures (b) in Figures 15 and 16 show the approximate traced
efficient frontier for both values of k. The traced efficient frontier was produced by
removing the non-efficient points from Sub-figures (a) and then tracing the approximate
efficient frontier of the remaining points. We can otherwise remove the non-efficient
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points using the code in the paper of [13]. We can also see discontinuities in the traced
efficient frontier for both values of k. This is because we are only minimising the risk
and not maximising the return simultaneously - that is, we are treating it as a one-
objective optimisation problem. An example of this can be found in Figures 1 and 3 of

the work of [5].
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Figure 15: Shows the efficient frontier for £ = 5.
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Figure 16: The efficient frontier for £ = 3.

For £k = 5 and k£ = 3, the number of iterations for the risk level below 0.0020 is
40000, for the risk level larger than 0.0020 is 90000, and the run parameter is equal to
10000.

In Figure 17 we can see the generation-fitness plots for £ = 5 and £k = 3. As
expected, it takes the GA a large number of iterations (approximately 30000) to find the
optimum solution for the first point when & = 3 compare to 13000 iterations when k = 5.
We also had to increase the run parameter to 10000 as the problem difficulty increases
as we decrease the value of k. Another way to see the increases in complexity of the
problem is to analyse the average fitness in the population in the generation-fitness
plot. For k£ = 5, the average fitness within the population higher than & = 3 (see Figure
17). Hence, the average fitness in the population would be higher for an easy problem.
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Figure 17: Comparative sample generation-fitness plots for k = 5 and k = 3.

Finally, we look at £ = 2, and we can see the approximation of the traced efficient
frontier after removing the non-efficient points in Figure 18. There is even more devia-
tion at the left and middle part of the efficient frontier than other values of £’s that we
saw previously compare to the unconstrained efficient frontier. As the value of k de-
creases, the efficient frontier is starting to move away from the unconstrained efficient
frontier. However, the top right of the efficient frontier is a good approximation of the

unconstrained efficient frontier when k& = 2 (see Figure 20).
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Figure 18: The efficient frontier for k& = 2.

For k = 2, the number of iterations for the risk level below 0.0020 is 40000, for the
risk level larger than 0.0020 is 90000, and the run parameter is equal to 12000.
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Figure 19, shows the generation-fitness plot when k£ = 2. As expected, it takes the
GA a larger number of iterations to find the optimum solution for the same point that
we looked at in the previous generation-fitness plots. As expected, the average fithess
in the population is lower for k = 2 compare to k£ = 3 and other values of & greater than
3. Note, it is essential to know that the generation-fithess plot may differ depending on

the individual run.
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Figure 19: Generation-fitness plot for k£ = 2.

e
fsel - @ - «© - ’-‘
o %o o -
o " i : o " gl
° iy ° ./" /
53 l 'ol
i o
Few § : 5
- : il o
a8 : - eils
EsS S E3
E s 3
& &) { & .
:f
i1 7
$13,
s Iy 0 weonsaneser s 0 weonsaneser
=3 $oos ° =
s B = s B o
ot
" 0 weer I oer
g B g B
S T T T < i T T
0.0005 0.0010 0.0015 0.0005 0.0010 0.0015

Risk Risk

(a) Efficient frontier unconstrained problem, (b) Traced efficient frontier for unconstrained
k=5 k=3and k =2. problem, k =5, k=3 and k = 2.

Figure 20: Comparison of the efficient frontiers produced using the GA techniques for

the unconstrained problem and constrained problem k£ =5, k = 3 and k = 2.
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From the approximately traced efficient frontiers in Figure 20, as we decrease the
value of k£, we are starting to move away from the unconstrained efficient frontier.
However, the top part of the graph for all values of k is a good approximation of the
unconstrained efficient frontier - this is not surprising since those portfolios at the top
part of the efficient frontier are commonly composed of a deficient number of assets.
For example, the top right-hand efficient frontier point represents 100% investment
into the single highest return asset. Also, as we decrease the value of &, the jumps
between the curve discontinuity become larger.

Figure 21 shows the heat map of the portfolio weights, for £ = 5 and k£ = 3.
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Figure 21: Heat map plot of asset weights by number of asset, for £ =5 and k£ = 3.

Figure 22 shows the heat map of the portfolio weights for k£ = 2.
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Figure 22: Heat map plot of asset weights by number of asset for k& = 2.

Figures 21 and 22 show that asset 17 will give us the highest return, and the assets
at the leftmost column of the heat map will give us the minimum return. Since asset
18 is not in the minimum return region, it represents the point with the highest risk in
the efficient frontier. We can also find the portfolio that gives the minimum return and
minimum risk or maximum return and maximum risk using the R code on page 14.

For example, Table 2 shows the portfolio that gives the minimum return when k& = 5.
As expected, the additions of proportions of assets in Table 2 is equal to one. The
number of assets that give us the minimum return/risk is greater than K. This might
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be that the GA is a heuristic method, which means our solutions are approximations
of the ideal solutions. The asset that gives us the maximum return is “AMD”, and we
invest 100% of our money in this asset.

Table 2: The portfolio that give us the minimum return.

Assets | Proportions
AMZN | 0.09876884
BABA | 0.03850131
MDT | 0.10769915
MRK | 0.31089986
MMM | 0.13739378
EA | 0.08825112
AON | 0.21848595

Now let us look at a portfolio that is located somewhere in the middle of the efficient
frontier for £ = 5.

Table 3: Portfolio number 30 where k = 5.

Assets | Proportions
AAPL | 0.1997389
MA 0.1428969
BABA | 0.2144142
MRK | 0.2741906
MSFT | 0.1687594

As we go from the bottom to the top of the efficient frontier (i.e. left to right on the
heat map), the number of assets in a portfolio will start equal to the value of k£ (see
Table 3). This also confirms that the points at the bottom of the efficient frontier are
more difficult to compute.

Figure 23 shows the number of portfolios against the number of assets in each
portfolio.
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Figure 23: The number of assets in each portfolios when k = 5.

Table 4 shows the portfolio that gives the minimum return when & = 3. As ex-
pected, the number of assets in this portfolio is greater than the value of & (discussed
previously).

Table 4: The portfolio that give us the minimum return when £ = 3.

Assets | Proportions
AMZN | 0.07718752
JMP | 0.17901866
BABA | 0.03674124
MDT | 0.04713987
MRK | 0.21296334
D 0.17722890
MMM | 0.07249896
EA | 0.05793089
AON | 0.13929062

If we look at the portfolios between point 85 and 99, we have similar assets in each
portfolio and they are “TSLA”, “AMD” and “WIX”. However, the value of proportion is
different in each portfolio.
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Table 5 shows the portfolio that gives the minimum return when k is equal to 2. The
assets that give us the maximum return is “AMD” and we invest 100% of our money in
this asset.

Table 5: The portfolio that give us the minimum return when k = 2.

Assets | Proportions
JMP | 0.22855982
COO | 0.08211846
MDT | 0.18836451
MRK | 0.36831630

EA 0.13264091

Next, we will look at how the change in crossover and mutation probabilities affect
the efficient frontier’s shape.

Probability of crossover and mutation

Increasing or decreasing the crossover and mutation probabilities may improve our
solutions to the cardinality constrained portfolio optimisation problem. We saw from
the previous results that most non-efficient points are located in the middle part of the
efficient frontier. In GAs, the mutation probability is usually small to avoid a random
search for the solutions. We decided to set the probability of mutation and crossover
to 0.4 and 0.6, respectively, for the efficient frontier in Figure 18.

Now, we will look at how the decrease in the mutation probability to 0.1 will change
our solutions (the probability of the crossover is left unchanged). Since most of the
non-efficient points are in the middle part of the frontier, we will only examine them for
k = 2 between the return values of 0.0015 and 0.0035. We will not look at other values
of k that we have seen because the crossover and mutation probability in these cases
are 0.4 and 0.1, respectively.

In Figure 24, CP and MP represent the crossover and mutation probabilities, re-
spectively. By changing the mutation probability to 0.1, we can see some improvement
in the efficient frontier as there are now fewer non-efficient points in the efficient fron-
tier. However, what is happening between the return of 0.0022 and 0.0026 is unclear.
To understand this better, we increased the number of points from 100 to 200 and
increased the number of iterations.
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Figure 24: Efficient frontiers for k = 2 for varying crossover and mutation probabilities.

Figure 25 shows the efficient frontier and the approximate traced efficient frontier
where the crossover and mutation probability are 0.6 and 0.1 using 200 points. The
number of iterations for the risk level below 0.0020 is 90000, for the risk level larger
than 0.0020 is 150000, and the run parameter is equal to 20000.
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Figure 25: The efficient frontier for £ = 2 using 200 points for return values between
0.005 and 0.0030.

By increasing the number of points and iterations, we can see slightly more of an
improvement. But, we are still not sure what is happening between the return values of
0.0022 and 0.0026. We can conclude that Sub-figures (a) and (b) suggest that another
discontinuity between return values 0.0022 and 0.0026 has been revealed by altering
the crossover and mutation probability. However, there is not enough evidence to vali-
date this claim; hence further investigation is needed to make a coherent conclusion.

We believe there are one or more discontinuities between the return values of
0.0022 and 0.0026. We narrowed the range of returns to between 0.0022 and 0.0026
in the efficient frontier to investigate this further. The number of iterations was un-
changed, except for risk levels larger than 0.0075 (where the number of iterations is
150000). In Figure 26, the numbers of points are 350. Sub-figure (a) in Figure 26

459



The Plymouth Student Scientist, 2021, 14, (2), 429-464

displays the efficient frontier between the return values where we believe the disconti-
nuities exist for k£ = 2 (it took R approximately 12 hours to produce this sub-figure).

In Sub-figure (b), we concentrate on efficient points by removing the non-efficient
points by hand. Although there are few efficient points, in this case, we have enough
evidence to conclude that there are one or more discontinuities between the return val-
ues of 0.0022 and 0.0026, and this is revealed by altering the crossover and mutation
probabilities. If we increase the number of points and iterations to a large number (e.g.,
500 points), the discontinuities in that region might be more visible as there may be
more efficient points. By modifying the crossover and mutation probabilities, it seems
the efficient frontier for £ = 2 is now slightly closer to the efficient frontier for £ = 3
between the return values of 0.0018 and 0.0026 (that is, we have a better result inside
the range) than was apparent in Figure 20. This illustrates graphically improvements
in the quality of solution that may be had through optimisation of GA parameters.
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Figure 26: The efficient frontier for £ = 2 using 350 points for return values between
0.0022 and 0.0026.

The crossover operator plays an essential role in the genetic algorithm process. So,
modifying the crossover probability can have an impact on the quality of our solution.
For example, in Figure 27, we can compare the unconstrained and k& = 2 efficient
frontier when the crossover probability is equal to zero and the mutation probability
unchanged (MP = 0.1). Setting the crossover probability equal to zero makes it quite
challenging to compute the points at the bottom of the efficient frontier. This is because
the zero crossover turns the GA effectively to into a hillclimber - such methods typically
have issues with strong local minima. However, the top of the efficient frontier for k = 2
is still a good approximation of the unconstrained efficient frontier.

Earlier, we observed that by setting the crossover and mutation probability to 0.6
and 0.1, respectively, we obtained better results between the return values of 0.0018
and 0.0026. However, by changing the crossover probability to zero, the obtained
results are very poor.
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The generation-fitness plot for £ = 2 for various crossover probabilities is shown
in Figure 28. When the probability of the cross over is zero, the mean fitness value
is much greater than the mean fitness value when the crossover probability is not
zero. This suggests, by setting the crossover probability to zero, we will only find the
points that are easy to compute and fail to find the points that are computationally very
difficult to compute. Hence, it is crucial to test different values of crossover probability
and select the best value.
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Figure 28: Generation-fitness plot for £ = 2.

Conclusion and further work

Conclusion

In this paper, quadratic programming and genetic algorithm methods were applied to
solve the optimal portfolio selection problem. We looked at both unconstrained and
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cardinality constrained problems and obtained efficient frontiers. The unconstrained
problem is straightforward as the objective function is quadratic and the constraints
are linear. Hence, we can solve the problem via quadratic programming techniques.
However, the cardinality constrained problem has non-linear constraints. Therefore
a meta-heuristic method such as a genetic algorithm is a suitable method to use.
The genetic algorithms are meta-heuristic search algorithms inspired by the theory
of natural selection. The genetic algorithm has heuristic operators such as selection,
crossover and mutation. It uses the operator step by step to find the optimum solutions
in the portfolio optimisation problem. In the end, we tried to modify the crossover and
mutation probabilities. This is important because it has a direct impact on the quality of
the solutions. For example, a higher mutation probability will lead to a random search.
We found that setting the crossover and mutation probabilities to 0.6 and 0.1 improves
our solutions.

Further work

Many different experiments and studies have been left for the future due to a lack of
time. Future work concerns a deeper analysis of other real-world constraints such
as pre-assignment, class and floor-ceiling constraints using a meta-heuristic algorithm
(genetic algorithm) in R. It will also be interesting to look at a different meta-heuristic
algorithm and compare the results with a genetic algorithm.
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