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Abstract— Early detection of AD is of vital importance in the 
development of disease-modifying therapies. This necessitates 
the use of early pathological indicators of the disease such as 
amyloid abnormality to identify individuals at early disease 
stages where intervention is likely to be most effective. Recent 
evidence suggests that cerebrospinal fluid (CSF) amyloid β1-42 
(Aβ42) level may indicate AD risk earlier compared to amyloid 
positron emission tomography (PET). However, the method of 
collecting CSF is invasive. Blood-based biomarkers indicative of 
CSF Aβ42 status may remedy this limitation as blood collection 
is minimally invasive and inexpensive. In this study, we show 
that APOE4 genotype and blood markers comprising EOT3, 
APOC1, CGA, and Aβ42 robustly predict CSF Aβ42 with high 
classification performance (0.84 AUC, 0.82 sensitivity, 0.62 
specificity, 0.81 PPV and 0.64 NPV) using machine learning 
approach. Due to the method employed in the biomarker search, 
the identified biomarker signature maintained high 
performance in more than a single machine learning algorithm, 
indicating potential to generalise well.  A minimally invasive and 
cost-effective solution to detecting amyloid abnormality such as 
proposed in this study may be used as a first step in a multi-stage 
diagnostic workup to facilitate enrichment of clinical trials and 
population-based screening.  

I. INTRODUCTION 

Alzheimer’s disease (AD) is the most common 
neurodegenerative disease accounting for over 60% of all 
dementia cases [1]. It is characterized in part by the 
accumulation of amyloid-beta (Aβ42) plaques in the brain – a 
condition known as amyloid pathology – that is present long 
before clinical symptoms (cognitive) are apparent [2, 3].  
No cure or disease-modifying treatment for AD currently 
exists. There are ongoing efforts in clinical trials to combat 
this challenge. Current clinical trials target individuals at the 
earliest stages of AD, where intervention is thought to be most 
likely successful, following the high failure rates of previous 
trials [4]. Amyloid screening is used in these trials to identify 
individuals with amyloid pathology and may therefore be at 
the early stages of the disease before symptom onset. It may 
also be beneficial in the future for population-based screening 
[5, 6].  

Current validated biomarkers of abnormal amyloid 
accumulation include Aβ positron emission tomography 
(PET) and Aβ42 measurement in cerebrospinal fluid (CSF) 
[7]. Use of these markers is internationally recommended [3, 
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8]. However, PET scans are expensive and available only at 
specialized centres while lumbar punctures required for CSF 
testing are invasive. 

Notwithstanding the invasiveness of CSF collection, there 
is growing evidence that CSF Aβ42 may be an earlier indicator 
of AD pathology compared to Aβ42 PET [9-11] and thus may 
be a more suitable biomarker for disease detection at the 
earliest stages. To mitigate the limitation of invasiveness 
posed by CSF-based amyloid testing, there is strong interest 
in identifying blood-based biomarkers reflective of amyloid 
status as would CSF. Such biomarkers may be used as a 
reliable initial step in a multistage diagnostic procedure. 

A few studies [12, 13] have demonstrated the potential of 
blood-based markers predictive of amyloid status as measured 
by CSF Aβ42 with area under receiver operating curve (AUC) 
reaching 0.88 (in 46 samples) and 0.81 (in 358 samples), 
respectively. However, the novel method employed by [12] in 
measuring the blood-based markers remains to be established 
and the results from [13] are yet to be validated in independent 
cohorts. 
In this study, we explore the utility of blood-based proteins to 
predict CSF Aβ42 status using support vector machines with 
recursive feature elimination (SVM-RFE) that has shown   
effectiveness in similar research domains [14]. We also give 
particular consideration to the robustness of identified 
markers, to enhance the likelihood of reproducing results 
since reproducibility of results is one of the challenges in AD 
blood biomarker discovery domain [15].  

II. METHODS 

A. Study data preparation 
Baseline data of 566 individuals from Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) cohort were obtained 
(http://adni.loni.ucla.edu). The data comprised blood-based 
measurement of 190 proteins analyzed on a Rule-Based 
Medicine platform and 3 other proteins (including 
homocysteine, Aβ40, and Aβ42. The data also included 
apolipoprotein E ε4 (APOE4) genotype, demographic and 
diagnostic information as well as CSF Aβ42 levels of the 
individuals measured on the Luminex Xmap platform. Forty- 
four (44) of the proteins were later  
excluded due to missingness, leaving 149 proteins. Finally, 
data  from  358  individuals  remainedafter 208  were   dropped  
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TABLE I.  
DEMOGRAPHIC CHARACTERISTICS OF STUDY SUBJECTS 

 
Clinical Diagnosis 

CN MCI ADD 

Number of participants (n)  58 198 102 

Age (mean, (SD)) 75.11(5.77) 74.37(7.49) 74.86(7.88) 

Gender, female (n, (%)) 28(48.28) 65(32.83) 43(42.16) 
Years of education  
(mean, (SD)) 15.67(2.78) 15.80(2.99) 15.16(3.30) 

APOE4 carriers (n, (%)) 5(8.62) 106(53.56) 71(69.61) 

Low CSF Aβ42 status (n, (%)) 1(1.72) 147(74.24) 93(91.18) 

CN: Normal control; MCI: Mild cognitive impairment; ADD: Alzheimer’s dementia; n: Number of 
subjects; SD: Standard deviation. 

 
due to missing CSF Aβ42 levels. CSF Aβ42 status for the 
remaining individuals (TABLE I) was obtained by 
dichotomizing their CSF Aβ42 levels as normal (high) or 
abnormal (low) according to clinically recognized threshold 
of 192pg/ml for the Luminex platform. 

B. Robust biomarker selection 
The objective here was to identify potential blood 

biomarker signatures predictive of CSF Aβ42 status, from 
which a signature can be selected based on robustness and 
performance. The measure of robustness was intended to be 
transparent and simple to evaluate. The method used is based 
on the approach proposed by Abeel et al. [16] with some 
modification.  

Similar to [16], SVM-RFE [14] combined with ensemble 
technique was used to select features for signatures formation, 
while Kuncheva index (KI) [17] was used to evaluate 
robustness of signatures. SVM-RFE combines the embedded 
feature selection capability of linear SVM with backward 
feature elimination strategy of RFE. Absolute values of the 
weights (coefficients) the linear SVM provides is the 
contribution of each feature to the SVM hyperplane and may 
be used a means of ranking the importance of individual 
features. A feature with a larger weight is regarded as one of 
higher importance, and one with a lower weight is considered 
less important. 

RFE implements a backward feature elimination 
procedure that iteratively removes the least important features 
in the training data samples. The algorithm starts out by fitting 
the training data with all the available features to a linear 
SVM, then ranks the features according to their weights and 
eliminates the least important one(s). The training data is 
subsequently refitted to the linear SVM but with only the 
retained features. This process is repeated until all features 
have been eliminated or a desired number of features to retain 
is attained. Finally, each feature in the training data is 
assigned an overall rank r (an integer with 1 as minimum and 
dimension of training data Ɒ as maximum) according to the 
observed feature contributions, with most significant features 
assigned lowest ranks. 

SVM-RFE with ensemble learning is implemented to 
improve the robustness (stability) of feature subset selection 
by SVM-RFE. In this approach, k different subsamples of the 

original dataset (of Ɒ dimension) are generated using random 
sampling without replacement, each subsample containing 
only a slight variation (p samples) of the original dataset. For 
each subsample (in the k subsamples), b bootstrap samples are 
generated. SVM-RFE provided with a specified signature size 
s as a stopping criterion is then applied to each bootstrap. The 
rank of each feature in Ɒ as well as the AUC performance 
(AUCOO) of the selected features on the out-of-bag samples is 
recorded. A candidate signature of size s is subsequently 
selected according to an ensemble ranking R obtained by 
aggregating 𝒓𝒓 over all b bootstrap samples as shown in (1).  

An estimate of the generalization performance of the 
signature is obtained by training the linear SVM on the 
subsample and its performance evaluated on the 1-p held out 
samples. Ensemble method of generating signatures has 
shown to improve robustness and classification performance 
compared to simply applying SVM-RFE directly to 
subsamples [16]. In addition to the approach proposed in [16], 
we carried out a repeated stratified cross-validation of the 
candidate signature on the corresponding subsample as a 
supportive evaluation of the signature’s classification 
performance. 

R = �𝑤𝑤𝑖𝑖𝑟𝑟𝑖𝑖

𝒃𝒃

𝑖𝑖=1

 
 

(1) 
 

The weight 𝑤𝑤𝑖𝑖  is bootstrap-dependent. It takes either of 
two values depending on the chosen aggregation method. In 
the complete linear aggregation (CLA) method, 𝑤𝑤𝑖𝑖  is set to 1, 
while 𝑤𝑤𝑖𝑖 = 1 − AUCOO in the complete weighted aggregation 
(CWA) strategy. The two methods were explored in this study 
albeit CWA was shown to be marginally better than CLA in 
[16].  

To evaluate the robustness of the k candidate signatures, a 
stability measure defined by the Kuncheva index (KI) [17] 
shown in (2) was applied. 

KI =
𝑚𝑚 − (𝑠𝑠2/𝑘𝑘)
𝑠𝑠 − (𝑠𝑠2/𝑘𝑘)

 (2) 

KI with range [-1, 1] measures the similarity between two 
signatures. 𝑚𝑚 is the number of features common to both 
signatures. The greater the value of KI, the larger the number 
of common features. A negative index indicates that feature 
intersection is mostly due to chance. The overall stability 
KI𝑡𝑡𝑡𝑡𝑡𝑡 of a signature can be defined as the average of all 
pairwise similarity comparison between the signature and rest 
of the k-1 signatures. 

KItot =
∑ KI𝑖𝑖𝒌𝒌−𝟏𝟏
𝑖𝑖=1

(𝑘𝑘 − 1)
 (3) 

C. Implementation 
The robust biomarker selection task was implemented in 

python programming language. The machine learning 
subtasks were conducted with the scikit-learn package. Codes 
are available at    https://github.com/chimastan/robust-blood-
based-signature-of-csf-abeta42-status.  The values of k, b, and 
p used were 500, 50, and 0.8, respectively, considering the 
recommendations by [16]. Cross-validation fold used was 10-
fold with 10 repetitions with samples stratified according   to 
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the target label distribution. The C parameter for the linear 
SVM was set to default (C=1). In the RFE, number of features 
to eliminate per run was set to 20% of the total available 
features to improve speed of processing. 

III. RESULTS 

A. Potential robust signatures  
We realized several potential signatures with different 

levels of classification and stability performance for 
prediction of CSF Aβ42 status. Fig. 1 illustrates the variation 
between signature size s and the average cross-validated AUC 
as well as average KItot over the 500 subsamples. It can be 
seen that the average AUC gradually increased with 
increasing s up to a point (s≈8) and then declined, while 
stability steadily dropped with increasing s. The results of 
CWA and CLA ensemble methods were largely equivalent as 
shown in Fig.1. Thus all further reports are based on results 
of the simpler CLA method. Consideration of potential 
signatures was also limited to ones consisting of 5 
biomarkers, being that stability remained moderate at s=5 
while the increase in average AUC beyond that point was 
minimal. 

A total of 229 unique candidate signatures were obtained 
from the 500 subsamples. We then identified the top 10 

signatures with best values of stability KItot (ranging between 
0.67 and 0.61) and subsequently carried out further analysis 
to aid making a final selection. 

B. Final selection of signature 
We conducted additional analyses with similar approach 

as in II(B) but with s limited to 5 and random forests (RF) 
used as the machine learning algorithm. Therefore in this 
case, RF-RFE was applied instead of SVM-RFE. The number 
of trees per forest was set to 2000, each forest containing a 
maximum of Ɒ3/4 features as recommended in [18]. The 
purpose was to obtain candidate signatures with best KItot 
values and compare them to the top 10 realized earlier with 
SVM-RFE. This would allow identifying signatures whose 
classification and stability performance may be agnostic to 
type of machine learning algorithm and thus likely to 
generalize better. With the RF-RFE, we realized 169 unique 
potential signatures and identified the top 10 with best 
stability values. A comparison of the signatures with ones 
obtained with SVM-RFE implicated one signature as 
common. The signature consists of APOE4 genotype, 
eotaxin-3 (EOT3), apolipoprotein-C1 (APOC1) and 
chromogranin-A (CGA), and Aβ42. The signature achieved 
0.64 stability (KItot) value. Average AUC, sensitivity, 
specificity, negative predictive value (PPV) and negative 
predictive value (NPV) for the repeated 10-fold cross-
validation were 0.85, 0.84, 0.63, 0.83 and 0.67, respectively. 
The average values on the unseen held-out samples were 0.84 
AUC, 0.82 sensitivity, 0.62 specificity, 0.81 PPV, and 0.64 
NPV, respectively. Contribution of individual biomarkers to 
the classification performance of the signature is as shown in 
Fig. 2 with APOE4 unsurprisingly making the most 
contribution. 

IV. DISCUSSION 

In this study, we investigated the utility of blood-based 
signature predictive of CSF Aβ42 status with a robust 
performance. We showed that APOE4 genotype and levels of 
four proteins predicted CSF Aβ42 status with high AUC. This 
is the first study to demonstrate a signature with a stable 
performance beyond a single machine learning algorithm. It 
is a positive indicator of the signature’s potential to 
generalize.  

Compared to existing studies, four out of the five 
predictors (APOE4, CGA, Aβ42 and EOT3) in the signature 
were implicated in a multi-marker panel from a recent study 
[13] as predictive of CSF Aβ42 status with RF. A number of 
studies have shown evidence of association between some of 
the identified markers and AD. In line with our observed 
prominent contribution of APOE4 in the identified signature, 
it is the strongest and most prevalent genetic risk factor for 
late-onset AD and considered as a possible therapeutic target 
[19]. Serum and CSF but not plasma levels of EOT3 have 
been shown to be dysregulated in individuals with AD [20]. 
APOC1 genes, in combination with APOE4, are suggested to 
play an important risk factor role in AD [21, 22]. However, 
association between plasma levels of APOC1 and AD has not 
been evidenced. CGA has an amount of co-localisation with 
brain amyloid plaques [23]. 

 

 

Figure 1. Comparison of (a) classification and (b) stability performance of 
CLA and CWA-based ensemble methods. The overall AUC and stability are 
the average AUC and KItot over the k (500) subsamples. 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notwithstanding, CSF and blood levels of CGA have not been 
reported to be correlated. Interestingly, plasma and CSF Aβ42 
have shown to be correlated in individuals with AD [24, 25].  

This study has several limitations. All analyses were 
conducted with the ADNI cohort with its peculiarity such as 
age and level of education of participants. Distribution of 
individuals with abnormal CSF Aβ42 levels across the clinical 
groups (CN, MCI, and ADD) was biased, with nearly all 
samples belonging to the MCI or ADD group. This might 
have impacted our analyses as the individuals are likely to 
have developed other confounding conditions. 

V. CONCLUSION 
Early detection of AD is crucial to the future success of 

disease modifying therapies which are thought to be most 
effective at the earliest disease stages. This necessitates the 
use of early pathological indicators of the disease such as 
amyloid abnormality. A minimally invasive and cost-
effective solution to detecting amyloid abnormality such as 
proposed in this study may serve as a first step in a multi-stage 
diagnostic workup to facilitate enrichment of clinical trials 
and population-based screening.    
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 Figure 2. Contribution of individual marker to classification 
performance of the selected signature. The contribution was 
determined from the feature weights of linear SVM, normalized by 
the largest weight during training. 
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