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Abstract 33 

The ability of plant species to adjust key functional traits through intraspecific variation 34 

may determine their success in persisting on our planet in the future, especially in 35 

unstable habitats, such as the Amazonia–Cerrado transition zone. We assessed 36 

intraspecific variation in 12 leaf morphological and anatomical traits for four tree 37 

species along a savanna–forest gradient, including rocky cerrado, typical cerrado and 38 

woodland savanna. Generally, all evaluated species showed great intraspecific 39 

variation. Our findings demonstrate that trees occurring in the woodland savanna are 40 

potentially more vulnerable to climate change, while in the cerrado the individuals 41 

presented better tolerance to water deficit and high temperatures. Trees occurring in 42 

open-canopy habitats showed smaller stomata, higher stomata and trichome densities, 43 

compared to the same species growing in the woodland savanna. In contrast, the 44 

individuals in the woodland savanna shift leaf traits to increase resource acquisition 45 

(e.g. light), showing higher specific leaf area and larger stomata, compared to cerrado 46 

individuals. We have shown that vegetation-induced shifts in leaf morphological and 47 

anatomical traits are a major effect in within-species variability, with consequences for 48 

persistence and tolerance of species under future climatic conditions. 49 
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 54 

1. Introduction 55 

Current and future climate change are among the main threats to ecosystems 56 

globally (Yu et al., 2019), and it is expected that their impacts and direct consequences 57 

will lead to global losses in biodiversity, carbon stocks and ecosystem services (Allen et 58 

al., 2010; Collins et al., 2013; Law, 2014; IPCC, 2019; Araújo et al., 2021). The 59 

forecast is for increased mortality risk of species across biomes (Van Mantgem et al., 60 

2007; Phillips et al., 2009; Peng et al., 2011; McDowell, 2018), which are already 61 

sensitive to the current climate and may be even more vulnerable in the future (Araújo 62 

et al., 2021). Climate has changed enough to exceed the physiological limits to which 63 

some plants are adapted (Shaw and Etterson, 2012; Araújo et al., 2021) and led to 64 

negative effects that compromise survival and persistence of species over time (Becklin 65 

et al., 2016). In this context, even greater concerns arise regarding the ability of species 66 

to adapt quickly to climate change (Burrows et al., 2011; Dawson et al., 2011; 67 

Hoffmann and Sgrò, 2011). This is especially so for plants, which are sessile organisms 68 

with a long lifespan. Thus, trees will need flexibility during their lifetime to deal with 69 

rapid environmental and climatic changes, unrelated to genetic changes, and therefore 70 

intraspecific variation and phenotypic plasticity can be decisive for the persistence of 71 

trees and thus the risk of extinction due to future climate change (Nicotra et al., 2010; 72 

Benito Garzón et al., 2011). In this context, functional traits have advanced our 73 

understanding of tree physiology, community structure and ecosystem functioning 74 

(Wright et al., 2004; De la Riva et al., 2015; Volf et al., 2016).  75 

Recent studies have integrated the variation of intraspecific characteristics in 76 

functional traits to investigate the responses of trees along environmental gradients 77 

(Laforest-Lapointe et al., 2014; Siefert et al., 2015). Intraspecific variation allows trees 78 

to establish under new environmental conditions (Joshi et al., 2001; Byars et al., 2007; 79 

Maracahipes et al., 2018).  In particular, environmental variation induces changes in the 80 

functional traits of trees (Anderson and Gezon, 2015; Lázaro-Nogal et al., 2015; 81 

Niinemets, 2016), at morphological (Capuzzo et al., 2012), anatomical (Rossatto and 82 

Kolb, 2010, 2012; De Paula et al., 2018) and physiological levels (Rossatto et al., 2010). 83 

This scenario highlights the set of functional traits that allow plants to survive in 84 

contrasting environments has fundamental consequences for our understanding of the 85 
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dynamics of vegetation, especially in highly complex and hyperdiverse areas such as 86 

savanna–forest transitions (Marimon et al., 2014; Oliveras and Yadvinder, 2016). 87 

The Amazonia–Cerrado transition is a natural laboratory in the open, as it 88 

presents a marked gradient (savanna–forest) with high diversity of species and 89 

contrasting environmental aspects (Marimon-Junior and Haridasan, 2005; Marimon et 90 

al., 2014; Araújo et al., 2021), that allow investigating the relationships between 91 

functional traits and the environment, providing a step forward to better understand and 92 

predict ecological patterns in a changing environment (Hoffmann et al., 2005; 93 

Maracahipes et al., 2018). Savannas have low soil fertility, lower air humidity, high 94 

temperatures and light intensity, seasonal droughts and frequent fires (Marimon-Junior 95 

and Haridasan, 2005; Reis et al., 2015) and can favour trees with conservative resource 96 

use strategies (Pausas et al., 2017; Maracahipes et al., 2018) that tolerate such 97 

environmental conditions, reflected in leaf traits such as the high leaf water content to 98 

avoid desiccation (Bündchen et al., 2015), long petioles to reduce leaf surface 99 

temperature preventing thermal leaf damage (Yates et al., 2010), thick leaves to reduce 100 

leaf damage (Dahlgren et al., 2006; Rossatto et al., 2010). In addition, savanna-adapted 101 

species can display a set of anatomical traits to prevent excessive water loss such as the 102 

high density of trichomes and stomata (Gianoli and Gonzalez-Teuber, 2005; Galmés et 103 

al., 2007) and also smaller stomata sizes and maximum opening of the stomata pore that 104 

benefits more efficient control in the use of water (Franco, 2002; Rossatto et al., 2009). 105 

On the other hand, trees in forests tend to present resource acquisition strategies 106 

(Hoffmann et al., 2012), with a combination of functional traits linked to greater uptake 107 

by light, water and nutrients. For example, it is expected to find species with high 108 

specific leaf area, thin leaves, larger stoma sizes and maximum opening of the stomatal 109 

pore (Grime, 1979; Westoby, 1998; Ogburn and Edwards, 2010) that promote higher 110 

growth rates. 111 

Although interest in functional traits has grown more and more in plant ecology, 112 

in hyperdiverse and complex tropical systems, such as the most diverse transition on the 113 

planet to the Amazonia and the Cerrado, we still do not know how the variation in 114 

functional traits, especially the anatomical traits (e.g., stomata density, stomata size and 115 

maximum opening of the stomatal pore) differ between ecological scales, such as 116 

vegetation, species and individuals (Albert et al., 2010; Messier et al., 2010; Salazar et 117 

al., 2018). This fact has made it difficult to determine the scale-dependent aspects of the 118 

variation in functional traits (Messier et al., 2010).  At the individual level, the 119 
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variability in the functional traits of trees is influenced by climatic drivers (e.g., 120 

temperature and precipitation) (Fajardo and Piper, 2011; Richardson et al., 2013). In 121 

addition, soil texture, successional stage and disturbance regimes can also contribute to 122 

this variation (Salazar et al., 2018). In terms of vegetation, the availability of water and 123 

nutrients, soil compaction, salinity and microclimate variations can induce variations in 124 

traits (Messier et al., 2010). However, at the species level, the variation may result from 125 

interspecific competition for resources such as water, light and nutrients (Schemske et 126 

al., 2009; Albert et al., 2010; Messier et al., 2010). As far as we know, no research has 127 

used a wide scan of leaf anatomical traits to measure the change in traits on a series of 128 

ecological scales. Knowing which scales have the greatest variation in functional traits 129 

will provide important explanations about the causes of variability in functional traits 130 

and may contribute to subsidies on patterns and processes on spatial and temporal scales 131 

that are ecologically more significant (McGill et al., 2006). 132 

In this study we report how the variation in leaf functional traits (e.g., 133 

morphological and anatomical) changes in three nested ecological scales (vegetations, 134 

species and individuals) along a savanna–forest gradient in the Amazonia–Cerrado 135 

transition, which is making it increasingly dry and hot and where some species can 136 

already be affected by climate change (Tiwari et al., 2020; Araújo et al., 2021). In 137 

addition, we have introduced little-explored valuable information on the variability of 138 

intraspecific characteristics in leaf functional traits of co–occurring trees in contrasting 139 

environments in tropical systems. We test two hypotheses: (1) among ecological scales, 140 

vegetation will contribute to greater variation in leaf traits, since the distinct habitats 141 

present contrasting environmental aspects, as shown in Marimon-Junior and Haridasan 142 

(2005) and Figure S1; (2) species have significant intraspecific variability in leaf 143 

functional traits irrespective of the habitat. We expected smaller and thicker leaves with 144 

higher trichome density in habitats under higher incidence of light, high temperature, 145 

and low water availability. On the other hand, larger and thinner leaves with larger 146 

stomata will be found in woodland savanna vegetation, a habitat with lower light 147 

incidence, lower temperature, and higher water availability (Rossatto et al., 2010; 148 

Rossatto and Kolb, 2010, 2012; Capuzzo et al., 2012; Reich et al., 2014; Souza et al., 149 

2015). 150 

 151 

2. Materials and methods 152 
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 153 

2.1. Study area and species description 154 

We carried out the study at the Bacaba Municipal Park (BMP), a conservation 155 

unit of approximately 500 ha, in the municipality of Nova Xavantina-MT, Brazil 156 

(Figure 1), located in the transition region between the Amazonia and Cerrado biomes 157 

(Marimon-Junior and Haridasan, 2005; Marimon et al., 2014). The climate shows 158 

marked seasonality with two well-defined periods, one rainy (October to March) and the 159 

other dry (April to September; Alvares et al., 2013), with average annual rainfall of 160 

1.500 mm, elevation of 340 m (Marimon et al., 2010). Mean monthly temperature is 25 161 

ºC, ranging from 18.7 to 33.5 ºC, according to data obtained from INMET 162 

(Instituto Nacional de Meteorolologia –http://www.inmet.gov.br) considering data from 163 

14 years period (2004-2019). 164 

>>insert Fig. 1 here 165 

The typical cerrado occupies 153.77 ha of the BMP, is a savanna 166 

phytophysiognomy composed of low vegetation cover, with trees spaced from each 167 

other, and also presents a dense low stratum (Mews et al., 2011; Gomes et al., 2016). 168 

Generally, it occurs on deep, well-drained, dystrophic, acidic Latosols and Neosols 169 

(Marimon-Junior and Haridasan, 2005). In contrast, the rocky cerrado occupies about 170 

25.44 ha of the BMP area, on shallow soils and with rocky outcrops (Litholic Neosols). 171 

In this environment, trees are positioned in the gaps between the rocks, where 172 

accumulation and decomposition of organic matter and sand deposition resulting from 173 

weathering of the rocks occurs (Maracahipes et al., 2011; Gomes et al., 2016). The 174 

rocky cerrado has a flora with a high degree of endemism (Alves and Kolbek, 2010) 175 

and many endangered species (Mendonça and Lins, 2000). The woodland savanna 176 

occupies about 162.02 ha of the BMP area, comprising large trees, with thick litter layer 177 

(Marimon et al., 1998; Franczak et al., 2011; Reis et al., 2015) and dystrophic soil 178 

(Marimon-Junior and Haridasan, 2005). 179 

For our study we selected four co-occurring species (Hymenaea stigonocarpa 180 

Mart. ex Hayne – Fabaceae, Qualea parviflora Mart. – Vochysiaceae, Vatairea 181 

macrocarpa (Benth.) Ducke – Fabaceae and Pseudobombax longiflorum (Mart.) 182 

A.Robyns – Malvaceae) in cerrado vegetation (rocky cerrado and typical cerrado) and 183 

a woodland savanna in BMP. These species have extensive geographic distributions and 184 

belong to three important botanical families of the Cerrado biome (Ratter et al., 2006), 185 

in addition to having high importance value indices locally, in terms of density, 186 



frequency and relative dominance (Mews et al., 2011; Reis et al., 2015; Gomes et al., 187 

2016). For each species, we haphazardly selected five individuals per vegetation type, 188 

totaling 15 individuals per species. 189 

 190 

2.2. Leaf morphological and anatomical parameters 191 

For each individual of each species, we selected eight leaves, five for 192 

morphological characterization and three leaves for anatomical determinations (Table 193 

1). As a standardization criterion, we collected fully expanded leaves, exposed to full 194 

sunlight, and free of pathogens (i.e. leaf standardization protocol). We measured leaf 195 

thickness, specific leaf area (ratio between leaf area and leaf dry mass) and leaf water 196 

mass content for each species. We determined the thickness of the fresh leaves with an 197 

electronic digital micrometer and digitized them with a scanner to determine leaf area 198 

and calculate the specific leaf area (Abràmoff et al., 2004). We estimated the wet weight 199 

of the leaves with a precision balance (± 0.001 g), then placed them in paper bags in an 200 

oven at 60 ºC, and after 72 h determined the dry weight. The leaf water content was 201 

calculated as the ratio between wet and dry weights (Pérez-Harguindeguy et al., 2013). 202 

For anatomical characterization, we took imprints of the leaf surface with high-203 

tech molding silicon (Speedex), as proposed by Weyers and Johansen (1985). 204 

Subsequently, we used colorless enamel to make the impression of the mold on slides, 205 

which was visualized with an optical microscope, with an attached camera, to view 206 

stomata and trichomes. We took stomatal size and stomatal density measurements under 207 

10× microscopic amplification selecting haphazardly 10 fields per leaf. Microscope 208 

images were processed with the ImageJ software (Abràmoff et al., 2004). 209 

We calculated stomatal density, for each individual, as the average number of 210 

stomata counted in the same fields of view recorded previously, and then we estimated 211 

the average stomatal densities, lengths, and widths per species, measuring 25 stomatal 212 

complexes from 3 leaves per individual. We measured the length of the guard cell (“L” 213 

in µm), the width of the pair of guard cells (“W”, µm), the size of the stomata (“S”, 214 

estimated as S = L * W, according to Franks et al., 2009, 2012) and the maximum area 215 

of the stomatal pore (“amax”, µm²). We calculated the maximum area of the stomatal 216 

pore as amax = α * S, α = 0.12 (Franks and Beerling, 2009). We determined the trichome 217 

density (when present) as the average number of trichomes counted in the same fields of 218 

view recorded previously and estimated the densities. 219 



For each of the three leaves described above, we took 2 cm × 2 cm sample from 220 

the median portion of the leaf blade and used a freehand cross-section. We fixed the leaf 221 

fragment on a half-open petiole (Cecropia sp.) and cut it freehand with the help of a 222 

razor blade. Afterwards, we stored the samples in Petri dishes and with the aid of a 223 

Pasteur pipette we added 3 ml of sodium hypochlorite, and we waited for 5 to 10 min 224 

until the samples became translucent. Then, we rinsed three times with distilled water 225 

and stained the samples with a solution of 50% methylene blue and 50% safranin. We 226 

photographed the slides with a camera attached to an optical microscope, haphazardly 227 

selecting 10 fields from each leaf with a 10× magnification objective to assess the 228 

thickness of the adaxial cuticle, adaxial epidermis, and palisade and spongy parenchyma 229 

(Roeser 1962). 230 

 231 

2.3. Data analysis 232 

Before the analysis, we tested for normality and homoscedasticity of the data 233 

using the Shapiro-Wilk and Levene tests (Levene, 1961; Shapiro-Wilk, 1965). To 234 

compare leaf traits between species and vegetation we used split-plot ANOVAs, where 235 

species and the interaction between species and vegetation were nested within 236 

vegetation. We used the lmer function from nlme package (Pinheiro et al., 2017) and 237 

lsmeans (Lenth and Lenth, 2018) and multcomp (Hothorn et al., 2008) packages for the 238 

post-hoc analyses. To test whether humidity and air temperature and the photosynthetic 239 

photon flux density (PPFD) were different between vegetation types, we performed 240 

univariate analysis of variance (ANOVA) individually for each variable. Subsequently, 241 

we used Tukey post-hoc tests to identify significant differences between specific 242 

vegetation types. We also calculated the coefficient of variation for the functional traits 243 

to observe which traits are more variable and how they varied in terms of species and 244 

vegetation types (Garnier et al., 2001). We further performed a principal component 245 

analysis (PCA) to verify which functional traits were associated with vegetation types 246 

and species. 247 

To understand controls on trait variability, we used different groupings of mixed 248 

linear models, adjusting the separate models for each trait (Rosas et al., 2019). 249 

Vegetation types, species, and individuals were introduced as nested random factors to 250 

assess how the variability of functional traits was distributed among these different 251 

levels of organization. All variables were checked for normality and log10-transformed 252 



whenever necessary to ensure normality. All data analyses were performed using the R 253 

program, version 3.6.1 (R Core Team, 2019) with a 5% significance level. 254 

 255 

 256 

3. Results 257 

 258 

3.1. Distribution of leaf morphological and anatomical traits 259 

Qualea parviflora and V. macrocarpa showed higher stomatal density and 260 

trichome density, regardless of the vegetation type they occurred, while H. stigonocarpa 261 

and P. longiflorum were generally characterized by higher petiole length and leaf water 262 

mass content (Figure 2). The first two axes of the PCA explained 65.1% of the variation 263 

and presented a very evident difference between species, which allowed identification 264 

of different groups (Figure 3). PC1 explained 37.4% of the variation and was related to 265 

differences between species, while PC2 explained 27.7% of the variation, and separated 266 

the vegetation types. 267 

>>insert Fig. 2 here 268 

We verified the separation of the three vegetation types (PC2), with a clear 269 

distinction between those with extreme environmental conditions such as the rocky 270 

cerrado (shallow and rocky soil, high temperature and high light intensity) and the 271 

woodland savanna (deep soil, low light intensity and high humidity), while the typical 272 

cerrado occupied an intermediate position (Figure 3). Adaxial cuticle thickness 273 

presented the highest correlation with PC2 (Table S1). 274 

>>insert Fig. 3 here 275 

 276 

 277 

3.2. Variability of leaf morphological and anatomical traits at different organizational 278 

levels 279 

For most of the traits evaluated, vegetation type and species together explained 280 

most of the variance (Figure 4). The vegetation type explained between 42 and 85% of 281 

the variation in adaxial epidermis thickness, adaxial cuticle thickness, and specific leaf 282 

area. Species explained between 68 to 91% of the variation in stomatal size, stomatal 283 

density, leaf water mass content, and maximum opening of the stomatal pore. On the 284 

other hand, some traits showed low variation at the individual level, which varied from 285 

4 to 11% of the variation in adaxial cuticle thickness, leaf water mass content and 286 



adaxial epidermis thickness (Figure 4). To access the decomposition of variance for all 287 

organizational levels, see Table S2. 288 

>>insert Fig. 4 here 289 

 290 

3.3. Intraspecific variability of leaf morphological and anatomical traits  291 

The effect of species was significant for most traits, except for adaxial epidermis 292 

thickness (Table S3). The interactions between the two effects were significant, except 293 

for leaf water mass content (Table S3). These effects (i.e. species and vegetation types) 294 

will be examined successively, combining the results shown in Table S3 with the data 295 

obtained in all individual species (Figure 2). 296 

Patterns within species across vegetation types showed that individuals 297 

occurring on cerrado formations generally have more conservative strategies than those 298 

in woodland savanna formations. For example, specific leaf area, a trait associated with 299 

resource acquisition, was higher for individuals in the woodland savanna (P < 0.001; 300 

Figure 2) while leaf water mass content, associated with resistance to desiccation, was 301 

higher for individuals of the typical cerrado and rocky cerrado (P = 0.010; Figure 2).  302 

Similarly, individuals occurring on cerrado formations, especially those on the rocky 303 

cerrado, generally had higher spongy parenchyma, compared to individuals of the same 304 

species in the woodland savanna (P < 0.001; Figure 2). On the other hand, the 305 

trichomes density and the thickness of the cuticle and adaxial epidermis and the palisade 306 

parenchyma showed differences with the species and vegetation interaction. (P < 0.001; 307 

Figure 2). 308 

For other traits, differences across vegetation types were less consistent across 309 

species. For example, petiole length widely varied among individuals, being highest for 310 

Q. parviflora individuals in the rocky cerrado, whereas for H. stigonocarpa and P. 311 

longiflorum, they were higher in the woodland savanna (P = 0.003; Figure 2). Similarly, 312 

stomatal traits did not exhibit consistent variation across vegetation types. For Q. 313 

parviflora and V. macrocarpa, stomatal density was higher for individuals in the 314 

cerrados, whereas for P. longiflorum the stomata density values were higher in the 315 

woodland savanna (P = 0.002; Figure 2). Qualea parviflora recorded the highest 316 

stomatal size values in the rocky cerrado, whereas V. macrocarpa and P. longiflorum 317 

recorded the highest values in the woodland savanna (P < 0.001; Figure 2). 318 

In general, for all traits, the coefficient of variation was variable at the species 319 

level (Figure S2): higher values for P. longiflorum in the rocky cerrado, for Q. 320 



parviflora in the typical cerrado and for V. macrocarpa in the woodland savanna 321 

(Figure S2). Hymenaea stigonocarpa generally showed the lowest variability in terms 322 

of species and vegetation (Figure S2). The coefficient of variation was always higher for 323 

species in the woodland savanna and decreased with the canopy opening (Figure S2). 324 

For all species, the most variable trait in the rocky cerrado was the spongy parenchyma 325 

thickness while palisade parenchyma thickness was the most variable in the typical 326 

cerrado and leaf thickness was most variable in the woodland savanna (Figure S2). 327 

 328 

3. Discussion 329 

The species here evaluated in the largest and most diverse transition between 330 

biomes on the planet, the Amazonia–Cerrado, showed variability in their leaf 331 

morphological and anatomical traits. Spongy parenchyma thickness, palisade 332 

parenchyma thickness and leaf thickness were the most variable traits at the 333 

intraspecific level. On the other hand, petiole length and adaxial epidermis thickness are 334 

the least variable. These variations between the leaf morphological and anatomical traits 335 

are driven by different factors such as species, environmental and genetic modification 336 

(Garnier et al., 2001; Cássia-Silva et al., 2017; Smedt et al., 2018). Variations in leaf 337 

traits diverged widely between organizational levels. The variance explained by 338 

vegetation, species, and individuals allowed us to understand separate contribution to 339 

leaf traits’ variability. In this study, intraspecific variation of the thickness of the cuticle 340 

and the adaxial epidermis were mostly explained by vegetation, which may be driven by 341 

water availability, nutrients, and microclimate variations (Marimon-Junior and 342 

Haridasan, 2005). Surprisingly, vegetation did not influence leaf water content, which 343 

>90% of its variability was explained by species, which may be related to interspecific 344 

differences in ecological strategies to use and compete for resources (Albert et al., 345 

2010; Messier et al., 2010). The stomatal dimensions (i.e., the maximum opening of the 346 

stomatal pore, stomata size and stomata density) exhibited greater variation also 347 

explained at the species level, which may be more related to water and nutrient 348 

limitations (Marimon-Junior and Haridasan, 2005; Schemske et al., 2009; Albert et al., 349 

2010). On the other hand, a relatively small percentage of variation (4–35%) was 350 

explained by the individual level for all leaf traits, which may be due to the marked 351 

climate seasonality and edaphic contrasts in this region (Marimon et al., 2014). 352 
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Therefore, our findings show that plants co-occurring in open and closed-canopy 353 

environments adopt different ecological strategies to establish in vegetation with 354 

contrasting environmental properties (Hoffmann and Franco, 2003; Laureto and 355 

Cianciaruso, 2015; Araújo et al., 2021). Our results are corroborated by another large-356 

scale study conducted by Maracahipes et al. (2018), who found intraspecific differences 357 

in five traits across generalist species occurring in savanna and forest formations in the 358 

Cerrado Biome. Here, we provide a new set of little-explored leaf characteristics, 359 

including anatomical traits, which can be integrated into the group of key characteristics 360 

that describe the ecological strategies of plant species, not only in transition areas but to 361 

understand the responses of vegetation facing climate change worldwide (Gillison, 362 

2019). In addition, we show that, in savanna-forest systems that occur side by side, 363 

regardless of the size of the scale, environmental differences drive changes in functional 364 

diversity of vegetation. 365 

Variations in the traits of trees that occur in vegetation with contrasting abiotic 366 

stresses can be interpreted as a result of the pressure of disruptive selection (Lemos-367 

Filho et al., 2008) which reflects the functional divergence between individuals of the 368 

same species that are adapted to different conditions (Hoffmann and Franco, 2008). 369 

Therefore, intraspecific variation found for the species evaluated here can provide a role 370 

in adapting to environmental and climatic changes. It also contributes to expanding the 371 

ecological and geographical distribution of the species (Bedetti et al., 2011). We 372 

showed that, within species, traits associated with drought tolerance (such as cuticle 373 

thickness and trichome density) showed higher values in habitats with greater canopy 374 

opening, while traits related to productivity (e.g. specific leaf area) were higher in 375 

closed-canopy habitats. In addition, species with high variation in traits usually occupy 376 

broader ecological niche and can occur in different habitats (Jung et al., 2010). 377 

There was a clear distinction between woodland savanna and other vegetation 378 

types, mainly driven by differences in leaf morphology and anatomy, reflected in the 379 

principal component analysis (Figure 3). While woodland savanna individuals showed 380 

higher specific leaf area compared to individuals of the same species occurring in the 381 

other cerrado formations, rocky cerrado individuals showed higher thicker cuticles, 382 

epidermis, palisade and spongy parenchyma reflecting in higher leaf thickness. High 383 

specific leaf area is associated with lower investment in the biosynthesis of tissues that 384 

provide support and protection (Grime, 1979; Franco et al., 2005). On the other hand, 385 

low specific leaf area for individuals growing in cerrado is essential to reduce leaf 386 
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surface area and prevent water loss through transpiration (Poorter et al., 2009). The 387 

lower investment in specific leaf area may be a strategy to increase resource retention 388 

and allocation to other organs of the plant (Reich et al., 1992; Westoby, 1998; Pérez-389 

Harguindeguy et al., 2013). In addition, the greater investment for the formation of 390 

protective tissues and structures, such as the cuticle and epidermis, with thicker cell 391 

walls (Fahn and Cutler, 1992), help to reduce the harmful effects of ultraviolet radiation 392 

and to prevent leaf damage caused by herbivores and high temperatures (Turner, 1994; 393 

Rozendaal et al., 2006). Under high temperature, vapor pressure deficit, and light leaf 394 

mesophyll tissues can be affected (Grime, 1979; Reich et al., 1999; Dahlgren et al., 395 

2006; Gratani et al., 2006; Rossatto and Kolb, 2010), resulting in leaf area and tissue 396 

thickness changes (Goulet and Bellefleur, 1986) as observed for the evaluated species 397 

(Figure S3).  398 

In the cerrado formations, individuals also showed higher trichome density and 399 

higher stomata density for Q. parviflora and V. macrocarpa. These traits represent an 400 

adaptive strategy to prevent or control the increase in leaf temperature (Ehleringer and 401 

Björkman, 1978), as well as reducing water loss (Gianoli and Gonzalez-Teuber, 2005). 402 

On the other hand, in P. longiflorum stomata density was higher for individuals in the 403 

woodland savanna, which represents greater CO2 assimilation and, consequently, higher 404 

evapotranspiration rates that promote greater growth of the species (Ogburn and 405 

Edwards, 2010). Stomata size and petiole length differences varied depending on the 406 

species consideres. V. macrocarpa and P. longiflorum, showed smaller stomata in 407 

individuals from cerrado formations. Smaller stomata and stomatal openings allow 408 

more efficient control over water use (Abrams et al., 1994; Franco, 2002; Goldstein et 409 

al., 2008), especially in areas under high temperatures, intense light and low humidity 410 

(Shields, 1950; Ackerly, 2004; Poorter et al., 2009), as the studied cerrados. H. 411 

stigonocarpa and P. longiflorum showed longer petioles in individuals located in the 412 

woodland savanna and shorter petioles for those from cerrado formations. In general, 413 

petioles with greater length allow greater light uptake (Poorter and Bongers, 2006), 414 

which is an advantageous trait in woodland savanna environments, where species are 415 

subject to greater competition for light (Carswell et al., 2000). Moreover, longer petioles 416 

also contribute to reducing leaf clumping and overlapping around the stem (Takenaka, 417 

1994; Poorter, 2009), which can be a key feature in woodland savanna. On the other 418 

hand, Q. parviflora showed longer petioles in individuals that grow in the rocky 419 

cerrado, which could probably contribute to reduce the leaf surface temperature, 420 



dissipating heat and preventing thermal leaf damage (Yates et al., 2010; Ye et al., 2011; 421 

Leigh et al., 2012). 422 

Together, these characteristics are important to increase the efficiency of plants 423 

in the conservation and use of water (Pallardy, 1981; Rossatto and Kolb, 2010), 424 

dissipate excessive light and heat (Feller, 1996; Gratani et al., 2006) and promote an 425 

increase in photosynthetic rates (Pearce et al., 2006). In fact, the greater water 426 

availability in the woodland savanna soil (Marimon-Junior and Haridasan, 2005) may 427 

allow individuals to invest in traits not only related to water storage and drought 428 

tolerance (Larcher, 2003; Monteiro et al., 2016; Lin et al., 2017), while in cerrado 429 

formations these strategies could be crucial for the individual survival.  430 

Future climate changes are predicted to increase extreme weather events, such as 431 

droughts and heatwaves (Meehl and Tebaldi, 2004; Collins et al., 2013). These changes 432 

may negatively affect the ecophysiological fitness of the trees and, consequently, 433 

increase the risk of mortality, especially for species in the Amazonia–Cerrado transition 434 

that already experience critical levels of temperature increase (Araújo et al., 2021), 435 

about 2-fold greater than the average heating recorded for the planet (Coe et al., 2016; 436 

Hoegh-Guldberg et al., 2018). Therefore, intraspecific variation may represent a key 437 

mechanism for species survival in future climates. In this case, functional traits that 438 

allow greater water storage and water use efficiency, and assist in the dissipation of heat 439 

may be more advantageous for trees subject to extreme weather events (Nicotra et al., 440 

2010; Benito Garzón et al., 2011).  441 

The high intraspecific variation observed for the species in this study is 442 

important for persistence over time, especially in this region, where climate change is 443 

already affecting trees (Tiwari et al., 2020; Araújo et al., 2021). Therefore, we suggest 444 

that these species are good candidates for the recovery of degraded areas in the 445 

Amazonia–Cerrado transition. This aspect is of ultimate importance, since this region is 446 

known as the “Arc of deforestation” due to seasonal droughts, fires and uncontrolled 447 

deforestation occurring concurrently (Schmidt and Eloy, 2020; Brando et al., 448 

2020). Moreover, the Amazonia–Cerrado transition, which suffers more deforestation 449 

than forests and savannas in each individual biome, is close to collapse due to the 450 

intense use of land for crops and pastures (Marques et al., 2020). This scenario is 451 

particularly concerning because this transitional region comprises greater local 452 

biodiversity than each biome separately (Marimon et al., 2006; Mews et al., 2012; 453 

Marimon et al., 2014). 454 



Adding up to previous studies across distinct environmental gradients (Scalon et 455 

al. 2017; Silva et al. 2019; Xu et al., 2020), we showed that intraspecific variability in 456 

leaf traits is substantial and should not be ignored in trait-based studies, especially in 457 

heterogeneous environment, such as transitional zones (Albert et al. 2010; Jung et al. 458 

2010). Our findings showed that widespread species in the Amazonia–Cerrado 459 

transition have different functional strategies to establish and maintain populations in 460 

contrasting environments through their high potential for intraspecific variation in their 461 

functional traits. Whereas trees in the cerrado have leaf morphological and anatomical 462 

traits linked to competition for water and conservation of resources, trees of the same 463 

species growing in woodland savanna, have traits that increase efficiency in the 464 

competition for light and generate higher productivity. Our results highlight the 465 

importance of the interaction between the environment and the leaf morphological and 466 

anatomical traits for understanding how selective pressures affect the functional 467 

diversity of species in tropical ecosystems. 468 
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 858 

Figure Legends 859 

 860 

Figure 1. Neotropical savannas and woodland savanna in the Amazonia–Cerrado 861 

transition, Brazil, South America. 862 

Figure 2. Trait differences of four tree species from the Amazonia–Cerrado transition 863 

that co-occur in three contrasting vegetation types. Different lowercase letters denote 864 

significant differences (Split-plot ANOVA, P < 0.05). 865 

Figure 3. Principal component analysis of the morphological and anatomical traits of 866 

four tree species from the Amazonia–Cerrado transition, co-occurring in rocky cerrado, 867 

typical cerrado and woodland savanna. Maximum opening of the stomatal pore (amax), 868 

stomata size (STS), stomata density (STO), trichome density (TRD), spongy 869 

parenchyma thickness (SPT), palisade parenchyma thickness (PPT), adaxial epidermis 870 

thickness (AET), adaxial cuticle thickness (ACT), petiole length (PEL), leaf thickness 871 

(LT), leaf water mass content (LWMC) and specific leaf area (SLA). 872 

Figure 4. Partitioning of the variance of the nested linear models of the morphological 873 

and anatomical traits of four species in the Amazonia–Cerrado transition. Maximum 874 

opening of the stomatal pore (amax), stomata size (STS), stomata density (STO), 875 

trichome density (TRD), spongy parenchyma thickness (SPT), palisade parenchyma 876 

thickness (PPT), adaxial epidermis thickness (AET), adaxial cuticle thickness (ACT), 877 

petiole length (PEL), leaf thickness (LT), leaf water mass content (LWMC) and specific 878 

leaf area (SLA). Within means the residual error, all data were transformed (log-10) 879 

before analysis. 880 
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 892 

Table 1. Leaf morphological and anatomical traits evaluated for tropical trees in the 893 

Amazonia–Cerrado transition. 1 Grime, 1979; 2 Bündchen et al., 2015; 3 Poorter and 894 

Bongers, 2006; 4 Turner, 1994; 5 Pallardy, 1981; 6 Gratani et al., 2006; 7 Westoby, 1998; 895 

8 Pearce et al., 2006; 9 Weyers and Meidner, 1990; 10 Ehleringer and Björkman, 1978; 11 896 

Abrams et al., 1994; 12 Rossatto et al., 2009. 897 

Traits Acronym Unit Functional significance  

Specific leaf area SLA cm2g-1 Resource uptake, resource 

use efficiency, structural 

defense, and growth 

strategies1; 

 

Leaf water mass content LWMC mg g-1 Leaf temperature reduction 

and protection against 

desiccation2; 

 

Petiole length PEL mm Light capture and heat 

dissipation3; 

 

Leaf thickness LT mm Resource acquisition and 



use, and resistance to 

physical damage4; 

 

Adaxial cuticle thickness ACT µm Water conservation5; 

 

Adaxial epidermis thickness AET µm Light and heat dissipation6; 

 

Palisade parenchyma thickness PPT µm Photosynthetic rates7; 

 

Spongy parenchyma thickness SPT µm Efficient gas exchange8; 

 

Stomatal density STO mm-2 Carbon assimilation and 

water use efficiency9;  

 

Trichome density TRD mm-2 Preventing the increase in 

leaf temperature10; 

 

Stomatal size STS µm Water use efficiency11; 

 

Maximum opening of the stomatal pore AMAX µm2 Prevent water loss12; 
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