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Abstract 
 

Investigating the genomic distribution and potential contribution of 

retrotransposable elements in relation to their potential impact on genome 

function and predisposition to human diseases. 

Randa Aweis Ali 

Active retrotransposable elements (RTEs) provide a continuous source of 

genomic diversity in humans. The potential impact of a novel RTE insertion 

depends on its genomic location. Previous studies investigating the landscape of 

polymorphic RTEs report their higher fraction in functional regions compared with 

fixed elements, thereby highlighting the potential impact of RTE activity on 

genome function (GF). However, studies have only recently begun incorporating 

RTE variants (RTEV) in association with complex human diseases. This study 

aimed to investigate the impact of RTEs activity on GF and the potential 

association of RTEV with disease susceptibility. A comprehensive database of all 

non-reference L1s, Alus, and SVA insertions reported in the literature to April 

2019 was curated (n=39,798 RTEs). The curated database includes numerous 

singleton and rare RTE insertions. Such insertions potentially faced fewer 

selection pressures compared with common RTEs, thus are likely more 

representative of RTEs preferred integration site. The genomic distribution of the 

curated RTEs was compared with the distribution of ancient RTEs that are fixed 

in the human genome to hypothesise the likely effect of new RTE insertions. Non-

reference insertions were found at higher frequencies in functional regions and 

had a more even genomic distribution than fixed RTEs, suggesting their ability to 

impact GF. The positional overlap between RTEs and trait-associated SNPs 



VI 
 

(TASs) was investigated to determine the potential of RTEs as causal variants in 

GWAS risk loci. L1s, Alus, and SVA elements were significantly enriched in 

GWAS risk regions, suggesting the potential impact of RTEV on human health. 

Next, 354 novel RTE-TAS associations were identified via linkage analysis 

between RTEVs and genome-wide significant SNPs identified in European 

populations. Finally, SVA elements likely impose the highest impact on GF and 

human health based on their genomic accumulation in functional regions and 

their higher proportion in GWAS risk regions. Collectively, the results of this thesis 

depict the functional impact of RTEs on GF and human health, which have proven 

to be invaluable for future association studies to further the current knowledge 

regarding the aetiology of complex traits and disorders. 

 

Keywords: Transposable elements; Polymorphic retrotransposable elements; 

Structural variants; Causative variant; GWAS; Genome function; Human health 
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1. Introduction 

 

1.1. Transposable elements (TEs):  

 

Transposable elements (TE) are a common genomic feature in the genomes of 

many organisms, including prokaryotic and eukaryotic organisms (Kleckner, 

1981; Bowen and Jordan, 2002; Touchon and Rocha, 2007). They are genomic 

segments capable of relocating their position in the genome through one of two 

mechanisms depending on their class (Bire and Rouleux-Bonnin, 2012). 

Although the evolutionary origin of TEs in eukaryotes remain murky, numerous 

studies has suggested horizontal transfer as a common occurrence involved in 

the evolutionary history of all major TE class (Smit, 1996; Bourque et al., 2018; 

Zhang et al., 2020). 

There are two major classes of TEs that are known to exist within the human 

genome: DNA transposons and retrotransposable elements (Lander et al., 2001). 

DNA transposons mobilise through a cut-and-paste mechanism that results in the 

parent element inserting elsewhere in the genome so that it is no longer present 

in its original genomic location (Muñoz-López and García-Pérez, 2010). In 

contrast, retrotransposable elements (RTEs) mobilise through a copy-and-paste 

mechanism via an RNA intermediate resulting in two elements: the parent 

element at the original genomic location and a new copy elsewhere in the 

genome (Boeke et al., 1985; Viollet et al., 2014).  

The initial sequencing of the human genome has revealed that at least 45% of 

the genome is composed of TEs (Figure 1), with potentially more of the human 

genome owing to sequences derived from TE activity (Lander et al., 2001).  
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The majority of TEs in the human genome are remnants of ancient TE 

retrotransposition events that amplified in the genome throughout the 

evolutionary lineage of modern humans (Boissinot et al., 2004; Ewing and 

Kazazian, 2010).  

  

 

Ancient TEs are no longer capable of mobilising in the human genome due to the 

build-up of random inactivating mutations or internal rearrangements (Lander et 

al., 2001; Wei et al., 2001; Hancks and Kazazian, 2016). DNA transposon activity 

has reportedly been non-existent in the human genome for the past 50 million 

years (Lander et al., 2001). Still, several RTE subfamilies retain their ability to 

Figure 1: Components of the human genome. Over 45% of the human 
genome is derived from transposable elements, the majority of which are from 
the non-LTR (long terminal repeat) retrotransposons including LINEs, SINEs, 
and SVA elements. Figure adapted from “Synergy between sequence and 
size in Large-scale genomics” by Gregory, 2005, Nature Reviews Genetics, 
6(9), p.702; “Transposable elements and psychiatric disorders” by Guffanti et 
al., 2014, Am J Med Genet B Neuropsychiatr Genet, 165B(3), p. 203. 
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transpose, thus creating insertional polymorphisms in human populations (Wang 

et al., 2005; Mills et al., 2007; Huang et al., 2010).  

RTE insertional polymorphisms can interfere with the function of the human 

genome (Kazazian, 2004; Hancks and Kazazian, 2016; Bourque et al., 2018), yet 

the extent to which RTE polymorphisms contribute to human health and disease 

has not yet been fully explored. This study investigates the effect of relatively 

recent RTE insertions from the active RTE subfamilies on genome function and 

how RTE variants from these subfamilies may influence predisposition to 

complex diseases. It is first necessary to review some of the relevant features of 

retrotransposable .elements found within the human genome before describing 

the analyses of this study. 

 

1. 2. Retrotransposable elements (RTEs) 

 

1.2.1. Classes of retrotransposable elements (RTEs) 

 

RTEs are classified depending on the presence or absence of flanking long 

terminal repeats (LTR). LTR retrotransposons include mammalian apparent LTR 

(MaLR) and three classes of endogenous retroviruses (ERVs): ERV-class I, ERV 

(K)-class II, and ERV (L)-class III (Lander et al., 2001). The non-LTR 

retrotransposons include long interspersed nuclear elements (LINE), short 

interspersed nuclear elements (SINE) encompassing Alu elements, and SINE-

VNTR-Alu (SVA) elements (Lander et al., 2001; Cordaux and Batzer, 2009).  

Each RTE subclass is further organized into families and subfamilies, reflecting 

the evolution of RTE propagation in the human genome (Lander et al., 2001; 

Cordaux and Batzer, 2009). RTE subfamilies are distinguishable by sequence 
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variations from the consensus sequence shared by all members of the same RTE 

subclass (Ovchinnikov et al., 2002; Price et al., 2004; Wang et al., 2005). RTEs 

of the non-LTR class are the most abundant in humans, which together comprise 

over a third of the human genome (Figure 1) (Lander et al., 2001; Cordaux and 

Batzer, 2009). The non-LTR retrotransposons are the main focus of this study, 

which is why a more detailed description of these RTEs is discussed below. 

 

1.2.2.  Structural organisation of non-LTR RTEs  

 

1.2.2.1. LINE 

 

Three LINE families exist in the human genome: LINE1, LINE2, and LINE3 

(Lander et al., 2001). The LINE1 (or L1 for short) family is the most recently 

evolved LINE family and the most abundant TE type in the human genome 

comprising 16.9% of the genome (Lander et al., 2001). A typical LINE is about 6 

kilobases (kb) long and consists of: an internal promoter for RNA polymerase II 

located in its 5’ untranslated region (UTR), two open reading frames (ORF1 and 

ORF2), separated by 63 base pairs (bp), a 3’ UTR and an adenine-rich tail i.e. 

poly(A) tail (Dombroski et al., 1991) (Figure 2A).  

Members of the human-specific L1 subfamily (L1Hs) are the only type of LINE 

elements that remain active in the human genome (Kazazian et al., 1988). L1s 

are described as autonomous elements due to their ability to code for the proteins 

required for their mobilisation in the genome (Moran et al., 1996). SINEs and SVA 

elements, on the other hand, do not encode any proteins. Instead, they hijack the 

L1 machinery for their own retrotransposition (i.e. the mechanism of mobilisation), 

thus they are non-autonomous elements (Dewannieux et al., 2003; Ostertag et 

al., 2003).  
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1.2.2.2. SINE: Alu 

 

Alus are the most abundant RTEs in terms of copy number in the human genome, 

with over 1 million copies that accumulated in the genome from continuous 

retrotransposition over the past 80 million years of human evolution (Lander et 

al., 2001). Alu elements diverged from the 7SL RNA gene (Ullu and Tschudi, 

1984). Three Alu families exist in the human genome, AluJ, AluS, and AluY, with 

AluJ showing the most sequence similarity to the 7SL RNA gene and AluY being 

the most diverged, representing the evolutionary age of the Alu families (Jurka 

and Smith, 1988; Price et al., 2004). Members of the AluY family, as well as a 

few subfamilies of AluS, remain active in the human genome (Bennett et al., 

2008). A typical Alu element is about 300 bps and consists of two homologous 

monomers rich in guanine and cytosine nucleotides (GC-rich) and separated by 

an adenine-rich (A-rich) linker region. The 5’ monomer contains A and B boxes, 

representing the internal promoter derived from the 7SL RNA gene for RNA 

polymerase III, and the 3’ monomer is followed by a poly(A) tail (Figure 2B) 

(Fuhrman et al., 1981; Dewannieux et al., 2003). 

1.2.2.3. SVA 

 

SVA composite elements are the evolutionary youngest TE type in the human 

genome that potentially evolved during the divergence between humans and the 

other great apes (Orangutans, Gorillas, and Chimpanzees) about 15 million years 

ago (Wang et al., 2005). SVAs are also the most recently discovered TE type 

identified in 1994 by Shen et al. during their investigation of the RP gene structure 

(Shen et al., 1994). Sequence divergence analysis revealed the existence of 6 

SVA subfamilies in the human genome named alphabetically from oldest 
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(SVA_A) to the most recently evolved (SVA_F) (Wang et al., 2005). SVAs from 

the E and F subfamilies are human-specific and remain active in the human 

genome (Wang et al., 2005). A typical SVA element is about 2kb long and is 

composed of five components: a 5’ (CCCTCT)n hexamer tandem repeat region, 

a region homologous to Alu elements (i.e. an Alu-like region consisting of two 

antisense Alu fragments), a variable number of tandem repeat (VNTR) region 

made up of between 35 and 50 bp repeats, a SINE region about 490 bp long 

derived from the human endogenous retrovirus (HERV)-K10, and a poly(A) tail 

(Figure 2C) (Shen et al., 1994; Ostertag et al., 2003). Unlike L1 and Alu elements, 

an internal promoter region for SVA elements has not been identified and it has 

been suggested that these elements rely on the promoter activity of the flanking 

genomic regions (Wang et al., 2005). Wang et al. (2005) suggested that SVA 

elements are potentially transcribed by RNA polymerase II, similar to L1 

elements, which was later confirmed in the literature via cell culture 

retrotransposition reporter assays (Hancks et al., 2011; Raiz et al., 2012).  
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Figure 2: Schematic representation for the structural organization of (A) LINE1, 
(B) Alu, and (C) SVA elements and multiple sequence alignment from various 
subfamilies of each element. Sequence alignments are shown below each 
element, beginning with the oldest to the youngest subfamily that remain active 
in the human genome. The partial alignment shows the positions of some of the 
nucleotides that are diagnostic of each subfamily. A| A typical full-length long 
interspersed nuclear element-1 (LINE1 or L1) is about 6 kilobases (kb) long and 
consists of a 5' untranslated region (UTR), open reading frame 1 (ORF-1), and 
2 (ORF-2) encoding the proteins required for L1 transposition, a 3' UTR, and 
ends with a polyadenylation tail (A)n. B| The structural organisation of a full-
length Alu element. Alus are typically 300 base pairs (bp) long and consist of 
two homologous monomers separated by an adenine-rich (A-rich) linker region. 
The 5' monomer contains an internal promoter for RNA polymerase III (A and B 
boxes), while the 3' monomer ends with a polyadenylation tail (A)n. C| SVAs are 
composite elements consisting of 5 units: a 5’ (CCCTCT)n hexamer tandem 
repeat region, an Alu-like region consisting of two antisense Alu fragments, a 
variable number of tandem repeat (VNTR), a SINE region derived from the 
endogenous HERV-K10 retrovirus, and a 3' polyadenylation tail (A)n. Figure 
adapted from “The insertional history of an active family of L1 retrotransposons 
in humans” by Boissinot et al., 2004, Genome Research, 14(7), p.1222; 
“Standardized nomenclature for Alu repeats” by Batzer et al., 1996, Journal of 
Molecular Evolution, 42(1), p.4; “Mobile DNA elements in the generation of 
diversity and complexity in the brain” by Erwin et al., 2014, Nature Reviews 
Neuroscience, 15(8), p.498; “Identification of polymorphic SVA retrotransposons 
using a mobile element scanning method for SVA (ME-Scan-SVA)” by Ha et al., 
2016, Mobile DNA, 7(1), p.2. 
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1.2.3.  Mechanism of L1 retrotransposition 

 

 

 

The L1 retrotransposition cycle begins with transcription of a full-length L1 source 

element (FL-L1) by RNA polymerase II from its internal promoter, generating a 

bicistronic (i.e. encoding two proteins) L1 messenger RNA (mRNA) (Figure 3.A). 

The generated mRNA is exported into the cytoplasm (B), where the two L1-

encoded proteins are translated (C). ORF1p is a small protein with RNA-binding 

properties, and ORF2p is a larger protein, with both endonuclease (EN) and 

reverse transcriptase (RT) activities.  

Figure 3: L1 retrotransposition cycle: A| Full- length L1 source element (FL-L1) is 
transcribed in the nucleus producing an L1 mRNA. B and C| The mRNA is 
exported into the cytoplasm, where its ORF1 and ORF2 proteins are translated 
into ORF1p and ORF2p. D| The translated proteins bind to the source L1 mRNA 
to form an RNP complex, which is imported back into the nucleus (E). F.| A new 
L1 that is a copy of the source L1 element is inserted into a new genomic location 
by target-primed reverse transcription. Figure adapted from “Mobile DNA 
elements in the generation of diversity and complexity in the brain” by Erwin et al., 
2014, Nature Reviews Neuroscience, 15(8), p.498. 
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The source L1 mRNA and translated proteins bind to form a ribonucleoprotein 

complex (RNP) (D) that is imported into the nucleus (E). The EN domain of 

ORF2p creates a single-strand nick at the opposite strand of its target site (5’-

TTTT/AA-3’, where “/” indicates the site of EN cleavage). The cleavage exposes 

a 3’-OH which is used by the ORF2p-RT domain to prime reverse transcription of 

the L1 mRNA in the new genomic location (F), starting from its 3’ -poly(A) tail end, 

through a process known as target-primed reverse transcription (TPRT). The 

outcome of this process is a novel L1 insertion, which is a copy of the original FL-

L1 source element, at a second genomic location. The source FL-L1 element is 

capable of producing further L1 copies, flanked by target site duplications, which 

are characteristic of the retrotransposition process (Hancks, Kazazian and Jr., 

2016; Scott and Devine, 2017).   

 

1.2.4.  Alu and SVA elements hijack the L1 machinery  

 

Alu and SVA insertions are typically flanked by target site duplications 

characteristic of the L1 retrotransposition process and suggest that these 

elements hijack the L1 machinery since they lack any open reading frames 

(Dewannieux et al., 2003; Wang et al., 2005). A model describing the process by 

which Alu elements hijack the L1 machinery was described by Dewannieux et al. 

(2003). This model explains how a domain of the 7SL gene that is conserved in 

Alu elements associates with the binding site of the signal recognition particle 

(SRP), a ribonucleoprotein complex that can bind to specific signal peptides. The 

Alu-bound SRP then interacts with the ribosome, positioning the Alu transcript in 

close proximity to the L1 mRNA, thus allowing it to capture the L1 ORF2 protein 

as it is being translated (Figure 3.C). Alu elements that successfully capture the 



10 
 

L1 ORF2 protein during its translation can then replace the L1 transcript with their 

own during the TPRT process (Figure 3.F) (Dewannieux et al., 2003). Note that 

the L1 ORF1 protein is not required for Alu retrotransposition, therefore L1 

elements with a non-functional ORF1 gene but a functional ORF2 gene can still 

facilitate Alu mobilisation.  

Compared to Alu elements, the process by which SVA transcripts replace the L1 

mRNA during the TPRT process is not very well defined. Reporter assays in cell 

culture confirmed the requirement for both L1 ORF1 and L1 ORF2 proteins for 

SVA retrotransposition (Hancks et al., 2011; Raiz et al., 2012). The Alu-like 

domain of the SVA element has been hypothesised to anneal to the SVA 

transcript with Alu transcripts bound to the SRP ribonucleoprotein complex, which 

will potentially allow the SVA transcript to capture the L1 ORF2 protein (Mills et 

al., 2007). This hypothesis is consistent with the results of Raiz et al. (2012) that 

reported a decrease in the retrotransposition activity of SVA reporter elements 

with a deleted Alu-like domain in cell cultures by an average of 32-46%, 

compared with a full-length reporter element. 

 

1.2.5.  Effect of retrotransposition on genome function and integrity 

 

The L1 ORF2 protein activity is an obvious source for the potential negative 

impact of retrotransposition on genome integrity, as it is capable of inducing DNA 

breakage, as previously discussed. RTE activity can harm genome function and 

integrity through a variety of mechanisms (Cordaux and Batzer, 2009; Guffanti et 

al., 2014; Savage et al., 2019). The effect of a new RTE element on genome 

function depends on the location in which it is inserted. Insertions into gene 

regions can interfere with mRNA splicing or even introduce new exons within the 
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interrupted gene (Lev-Maor et al., 2008; Chénais, 2016). RTE insertions can also 

cause inactivating mutations through inserting into exonic regions (Kazazian et 

al., 1988; Hancks and Kazazian, 2016). The poly(A) tail of RTE elements can 

provide polyadenylation signals that can affect the elongation of gene 

transcription, either by resulting in premature termination or by reducing 

transcription, consequently reducing gene expression (Perepelitsa-Belancio and 

Deininger, 2003; Chen et al., 2009).  

RTE insertions upstream of gene regions can also affect gene function in many 

ways. RTEs can induce local epigenetic modifications which could affect the 

expression of neighbouring genes (Goodier, 2016). Alu and L1 elements carry 

internal promoter regions that can modulate gene expression of nearby genes 

(Nigumann et al., 2002; Zhang et al., 2015). Although SVA elements do not have 

an internal promoter, they are still able to bind to transcription factors, thus are 

able to modulate the expression of nearby genes (Quinn and Bubb, 2014; 

Gianfrancesco et al., 2017). 

RTE retrotransposition has the potential to destabilise local genomic stability and 

mediate post-insertional rearrangements. An in vitro study reported that the L1 

ORF2 protein created more DNA double-strand breaks (DSBs) than the number 

associated with successful L1 insertions, suggesting the negative impact of L1 

activity on genome stability (Gasior et al., 2006). DSBs can drastically effect 

genome function. Unrepaired DSBs can potentially result in cell death, while 

incorrectly repaired DSBs can create chromosomal abnormalities such as 

translocations (Jeggo and Löbrich, 2007).  

RTE integration can also cause deletion of genomic DNA at the integration site 

(Callinan et al., 2005; Han et al., 2005; Lee et al., 2012). Significant deletions and 
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duplications, resulting from RTE-mediated homologous and non-allelic 

homologous recombination events, can occur due to the high copy number and 

sequence homology between RTE elements (Startek et al., 2015; Nazaryan-

petersen et al., 2016). RTE elements are also able to duplicate 5’ and 3’ flanking 

genomic regions during their retrotransposition, a phenomenon known as 

sequence transduction. This occurs when RTE transcription starts or carries on 

outside the element itself as a result of transcription initiation, using a promoter 

located upstream of the element or transcription elongation past the 

polyadenylation signal of the element, resulting in 5’- and 3’ transduction, 

respectively (Goodier et al., 2000; Xing et al., 2009). These and other various 

effects of RTE activity on genome function are extensively reviewed in the 

literature (Cordaux and Batzer, 2009; Beck et al., 2011; Hancks and Kazazian, 

2012; Guffanti et al., 2014; Bourque et al., 2018; Savage et al., 2019). 

 

1.2.6.  Mechanisms of retrotransposition silencing 

 

The human genome evolved many methods that act at every stage of the 

retrotransposition process to suppress RTE activity due to the many negative 

impacts associated with its activity on genome function and integrity. Pre-

transcriptional silencing methods include epigenetic silencing methods such as: 

repressive histone modifications, heavy methylation of CpG dinucleotides in the 

promoter region, and KRAB-associated protein 1 (KAP1) mediated chromatin 

remodelling (Bestor and Bourc'his, 2004; Garcia-Perez et al., 2010; Jacobs et al., 

2014).  

Post-transcriptional silencing methods include degradation of RTE transcripts 

through endonucleases guided by short non-coding RNAs (typically 20-30 bp) 
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such as small interfering and Piwi-interacting RNAs (siRNA and piRNAs, 

respectively) (De Fazio et al., 2011; Chen et al., 2012; Goodier, 2016).  

Additional host defence mechanisms exist that appear to limit the size of RTE 

insertions during the final stage of integration (Perepelitsa-Belancio and 

Deininger, 2003; Coufal et al., 2011). A detailed explanation of the named 

silencing mechanisms plus additional silencing mechanisms are reviewed in the 

literature (Goodier, 2016; Hancks and Kazazian, 2016; Yang and Wang, 2016).  

 

1.3. Functional role of TE activity in genome evolution  

 

The persistence of TE activity in the human genome despite their potential to 

negatively impact genome function and the many mechanisms of 

retrotransposition silencing poses the question about their role in genome 

function and evolution. Empirical studies owed the continuity of TE activity 

throughout the evolutionary history of eukaryotic genomes to the selfish and 

parasitic properties of these elements, evident by their ability to replicate faster 

than their host (Doolittle and Sapienza, 1980; Orgel and Crick, 1980; Kidwell and 

Lisch, 2001). There is now growing evidence supporting the original perspective 

of Barbara McClintock, the scientist responsible for TE discovery, who suggested 

that TEs may contribute to gene regulation (McClintock, 1956). TEs are now 

believed to have provided the source for the evolution of the majority of regulatory 

elements in the human genome through exaptation, i.e., the process by which 

TEs are harnessed to provide new functions, thereby facilitating the adaptation 

of their host to defined selective pressures (Jacques et al., 2013; Su et al., 2014; 

Chuong et al., 2017; Bourque et al., 2018).  
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Many mechanisms by which TE-derived sequences contribute towards the 

regulation of the human genome, both in cis and in trans, have been reported in 

the literature (Smalheiser and Torvik, 2005; Johnson and Guigó, 2014; Elbarbary 

et al., 2016; Trizzino et al., 2018). Genome-wide assays have revealed that most 

TE-derived regulatory elements originate from ancient insertions that are now 

fixed in the human genome (Lowe and Haussler, 2012; Lynch et al., 2015; 

Trizzino et al., 2018). TE-derived cis-regulatory sequences include promoters, 

enhancers, and transcription factor (TF) binding sites that can interact with 

regulatory elements such as activator and repressive elements (Jordan et al., 

2003; Lowe and Haussler, 2012; Su et al., 2014). At least 475 experimentally 

validated promoters and ~20% of TF binding sites in the human genome contain 

sequences derived from TEs (Jordan et al., 2003; Sundaram et al., 2014). TEs 

also provided the source for many micro RNAs (miRNAs) and long non-coding 

RNAs (IncRNAs) that can act as cis- or trans-regulatory elements with the 

potential to modulating gene expression or contribute towards post-

transcriptional regulation of many genes (Smalheiser and Torvik, 2005; Johnson 

and Guigó, 2014).  

Qin et al. (2015) identified 409 miRNAs derived from TE sequences, while Kelley 

and Rinn (2012) reported that about 42% of >7,600 human lncRNA sequences 

are derived from TEs. Other TE-derived regulatory sequences include 

transcription terminators (Conley and Jordan, 2012) and chromatin looping 

binding sites (Diehl et al., 2020). In addition to donating regulatory elements, TEs 

can also source and modulate regulatory networks that control complex biological 

pathways (Wray et al., 2003; Feschotte, 2008; Sundaram et al., 2014).  
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Studies have demonstrated the contribution of TE elements in mediating novel 

regulatory networks in the uterus during the evolution of mammalian pregnancy 

(Lynch et al., 2011; Lynch et al., 2015). Genome-wide ChIP analysis revealed 

that about one-third of the p53 regulatory protein binding sites are mediated by 

primate-specific ERV TEs, suggesting the role of TE elements in mediating 

species-specific transcriptional networks (Wang et al., 2007). An integrated 

genome-wide analysis has also confirmed the greater impact of species-specific 

TEs in mediating gene regulations (Zeng et al., 2018). Taken together, the 

process by which TEs contribute towards their host adaptation to selective 

pressures by providing the source for novel gene regulations is still ambiguous. 

One of the main challenges in achieving this knowledge is working backward, to 

study events that have already taken place millions of years ago, to understand 

the specific steps that led to TEs exaptation. 

 

1.4. RTEs as structural variants 

 

1.3.1. RTE variants and their detection in the human genome 

 

Despite the many genomic mechanisms to suppress RTE activity, some active 

elements escape such that individual genomes acquire additional RTE copies 

(Kazazian et al., 1988; Wang et al., 2005; Bennett et al., 2008; Guffanti et al., 

2014; Hancks and Kazazian, 2016). When this occurs in tissues, the active RTEs 

create intra-individual somatic variations, which are not inherited by future 

generations (Reilly et al., 2013; Scott et al., 2017; Faulkner and Billon, 2018). In 

contrast, active RTEs that escape genome suppression in the germline create 

inter-individual variations that are inherited by future generations (Huang et al., 
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2010; Akagi et al., 2013). Such insertions can create structural polymorphisms 

within and between populations depending on the time of their integration with 

respect to human evolution (Rishishwar et al., 2015). Initial studies investigating 

the rate of new RTE insertions per generation estimated that 1 new L1, Alu, and 

SVA elements occur in every 20-270, 20, and 900 births, respectively (Cordaux 

et al., 2006; Xing et al., 2009; Ewing and Kazazian, 2010; Beck et al., 2011). More 

recent pedigree-based estimates for the rate of new RTE elements are 1 new L1 

and SVA elements for every 63 births, and 1 new Alu element per 40 births 

(Feusier et al., 2019). These new estimates suggest that SVA elements are more 

active while Alu elements are not as active in the human genome as previously 

thought. RTEs are often neglected in genomic studies despite their ongoing 

contribution to creating structural variations in humans, because of their repetitive 

nature and high sequence homology, which makes them difficult to detect and 

study (Rishishwar et al., 2017; Bourque et al., 2018). Detection of RTE variants 

from next-generation sequencing (NGS) data requires specialised computational 

tools (Ewing, 2015; Goerner-potvin and Bourque, 2018). Currently, the most 

accessible method of RTE detection rely on short-read NGS data and 

computational detection tools such as MELT (Gardner et al., 2017) and Mobster 

(Thung et al., 2014). These tools are designed with the consideration of the 

uniqueness of short-read NGS data alignment to the reference human genome 

and to RTE consensus sequences (Goerner-potvin and Bourque, 2018). 

However, different tools analysing the same sample produce varying results, 

despite the similarity in the fundamental algorithmic design (Rishishwar et al., 

2016). Consequently, the full scope of structural variations mediated by RTE 

insertions is still under-represented in RTE detection studies.  
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Long-reads from sequencing technologies such as PacBio (Pacific Biosciences; 

Rhoads and Au, 2015) and MinION (Oxford Nanopore; Lu et al., 2016) are more 

likely to span the entire length of an RTE insertion plus their flanking genomic 

sequences. As such, the increasing length of NGS reads plus the continuous 

improvement of RTE detection tools is likely to resolve the issues of accuracy 

and precision of RTE detection within the human genome.  

1.4.2. The effect of RTE variants on human health and disease 

 

RTE elements that are fixed in the human genome tend to accumulate in non-

functional genomic regions (Lander et al., 2001) yet de novo germline RTE 

insertions do insert in functional regions. Such insertions are responsible for 

~1/1000 disease-causing mutations (Lutz et al., 2003), and about 124 germline 

RTE-mediated insertional mutations that are known to cause monogenic 

diseases are reported in the literature (Hancks and Kazazian, 2016). The lack of 

RTE fixation in coding regions, despite their ability to integrate into functional 

regions, supports the role of natural selection in shaping the genomic landscape 

of ancient insertions (Medstrand et al., 2002; Abrusán and Krambeck, 2006; 

Kvikstad and Makova, 2010; Zhang et al., 2011).  

In contrast, the landscape of recent RTE insertions is unlikely shaped by 

selection, a slow process that takes place over many generations (Huang et al., 

2010). Conflicting results about the genomic distribution of recent RTE insertions 

have been reported in the literature (Ovchinnikov et al., 2001; Medstrand et al., 

2002; Boissinot et al., 2004; Beck et al., 2010). The integration of active RTEs 

into coding regions suggests the negative impact of retrotransposition on genome 

function and the potential implication of recent insertions with regards to human 

health and disease. Indeed, recent studies have shown that somatic RTE 
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insertions in epithelial cells frequently drive tumorigenesis, so much so that it is 

now believed to be a hallmark feature of epithelial cancers in humans (Shukla et 

al., 2013; Scott et al., 2016; Zampella et al., 2016). Moreover, accumulating 

evidence supporting the role of somatic retrotransposition in neuronal plasticity 

and possibly in neuropsychiatric disorders has been published (Baillie et al., 

2011; Erwin et al., 2014; Upton et al., 2015; Doyle et al., 2017). Structural variants 

derived from germline RTE insertions are also likely contributors towards 

phenotypic variations and individual predisposition to complex disorders. RTE 

variants are often in linkage disequilibrium with nearby SNPs (Higashino et al., 

2014; Kuhn et al., 2014), and they can modulate the expression of nearby genes 

(Wang et al., 2017; Spirito et al., 2019). This suggests that they may cause 

differential gene expression between individuals in the population. Nevertheless, 

the relationship between germline RTE variants and predisposition to complex 

disorders remains ambiguous. 

1.5. Summary of current study 

 

Active RTE elements are an ongoing source of threat to the human genome given 

their disruptive nature and ability to impact genome regulation, yet the full scope 

of their integration, genomic distribution, and contribution towards complex 

disorders remains ambiguous. A comprehensive database of polymorphic RTE 

insertions was curated using online RTE databases and peer-reviewed 

publications in the literature. The curated database was used to investigate the 

genomic distribution of polymorphic RTEs by comparing it with the distribution of 

fixed RTE elements. The distribution analysis revealed the extent of RTE 

retrotransposition impact on genome function. Polymorphic RTEs in linkage 

disequilibrium with SNPs significantly associated with risk of various complex 
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traits and disorders were identified, providing a list of putative causative variants 

in risk loci.  

1.6. Aims and Objectives 

 

1.6.1. Research Aims: 

 

Several RTE elements retain their ability to transpose in the human genome, 

thereby creating new insertions that contribute to the genomic diversity of 

humans. Yet, the extent of the continuous effect of RTE activity on genome 

function and the potential contribution of recent insertional polymorphisms as 

causative variants of diseases remains an open question. This thesis aimed to 

investigate the impact of RTE activity on genome function and the potential 

association of RTE variants with disease susceptibility. To this end, the landscape 

of recent RTE insertions and their positional overlap with trait-associated SNPs 

has been investigated to establish whether RTE activity may pose a high risk to 

genome function and contribute to human health and disease. 

1.6.2. Main Objectives: 

 

1. Curate a comprehensive database of known RTE variants from the active 

L1, Alu, and SVA subfamilies using publicly available online databases 

plus peer-reviewed journal articles. 

2. Use the curated database to investigate the potential effect of RTE activity 

on genome function by comparing the genomic distribution of polymorphic 

RTE insertions against the distribution of endogenous RTE elements fixed 

in the human genome. 
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3. Investigate the enrichment of polymorphic RTE elements in GWAS risk 

loci to establish the potential contribution of polymorphic RTEs as 

causative variants of complex diseases. 

4. Curate a list of RTE variants in linkage disequilibrium with trait-associated 

SNPs that could potentially be causative variants of complex disease. 

 

2. Database curation 

 

2.1. Introduction: 

 

The average human genome is composed of 17% L1s, 11% Alus, and 0.13% 

SVA elements, the majority of which are remnants of ancient retrotransposition 

events that took place throughout the evolutionary lineage of modern humans 

(Lander et al., 2001; Gregory, 2005; Quinn and Bubb, 2014). RTE insertions of 

ancient subfamilies are now fixed in the genome of individuals from all races i.e. 

they are present in the same location in the genome of all individuals in all 

populations (Lander et al., 2001; Ewing and Kazazian, 2010). These ancient RTE 

subfamilies are no longer capable of retrotransposition due to 5’ and 3’ 

truncations, build-up of random inactivating mutations, or internal 

rearrangements (Lander et al., 2001; Wei et al., 2001; Hancks and Kazazian, 

2016). Only the youngest, most recently evolved RTE subfamilies remain capable 

of active retrotransposition in humans including elements from the L1Hs (for 

human-specific), AluY, and SVA_E/F subfamilies (Myers et al., 2002; Wang et 

al., 2005; Feusier et al., 2017). The evolutionary young and active RTE 

subfamilies are distinguishable from ancient subfamilies by sequence variations 

that deviate from the consensus sequence (Myers et al., 2002; Raiz et al.,2012; 
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Witherspoon et al., 2013; Konkel et al., 2015) as previously shown on Figure 2 

(Chapter 1, page 7).  

The average human genome is estimated to carry between 80-100 L1Hs 

elements (Brouha et al., 2003), 852 Alus (Bennett et al., 2008), and 56 SVAs 

(Bennett et al., 2004) that are actively transposing. Retrotransposition events of 

the active RTE subfamilies create insertional polymorphisms within and between 

populations. As such, an insertion within a defined genomic location can be either 

present or absent in the genome of two unrelated individuals within a population. 

Such insertions are not part of the reference genome assembly. These 

polymorphic RTEs contribute to the genetic diversity of the human genome, and 

have the potential to influence host susceptibility to disease depending on their 

genomic location (Bourque et al., 2018; Gardner et al., 2019; Hormozdiari et al., 

2019).  

2.1.1. Early methods of RTE discovery: 

 

Characterising polymorphic RTE insertions in the human genome is troublesome 

due to their repetitive nature and high sequence homology with ancient sub-

families. PCR display was one of the early methods of polymorphic RTE detection 

in the human genome (Sheen et al., 2000; Ovchinnikov et al., 2001). It involved 

two successive PCR experiments: the first experiment being amplified using a 

set of RTE-specific and non-specific arbitrary primers, and the second reaction 

amplified with a nested primer characteristic of the active RTE subfamily plus the 

same non-specific primer of the first experiment. The nested PCR experiment 

was then followed by southern blot hybridisation using an oligonucleotide probe 

that is also complementary to the diagnostic sequences of the active subfamily. 

The chromosomal location of polymorphic insertions were then characterised as 
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the insertions that are only visible in few of the tested individuals (Sheen et al., 

2000; Ovchinnikov et al., 2001). A second example of the early efforts to 

characterise polymorphic RTE detection involved DNA shredding/fragmentation 

and PCR amplification with primers complementary to the diagnostic sequences 

of the active RTE subfamily (Boissinot et al., 2004; Mamedov et al., 2005). The 

PCR products were then cloned into vectors that were grown in bacterial cultures 

followed by a number of steps that were designed to identify clones holding 

polymorphic insertions. Clones that were long enough to contain a polymorphic 

insertion plus flanking genomic sequences were eventually sequenced via 

Sanger sequencing and the genomic location of the sequenced insertions were 

finally identified in the public databases using BLAST and BLAT (Boissinot et al., 

2004; Mamedov et al., 2005). Consequently, previous studies characterizing 

polymorphic RTE insertions using these labour-intensive methods were limited 

by the number of samples and in the number of insertions they were able to 

characterise (Sheen et al., 2000; Ovchinnikov et al., 2001; Myers et al., 2002).  

 

2.1.2. Current methods of RTE discovery: 

 

Advances in high throughput next-generation sequencing (NGS) technologies 

and the development of computational detection tools facilitated their genome-

wide detection. Genome-wide detection of polymorphic RTE insertions via short-

read NGS typically involves the use of targeted enrichment of the active RTE 

elements in the sequencing libraries. PCR-based amplification (David et al., 

2015; Streva et al., 2015; Ha et al., 2016) and hybridization-based capture (Baillie 

et al., 2011; Shukla et al., 2013; Upton et al., 2015) are the most commonly used 

enrichment techniques. These pre-sequencing enrichment techniques use 
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specific primers and oligonucleotide probes to target specific DNA sequences 

that are characteristic of the active RTE subfamilies. The enriched libraries are 

then sequenced typically using a short-read NGS platform (~150-200bp) such as 

illumina (Quail et al., 2012; Rishishwar et al., 2016). Reads passing the quality 

filtering criteria are then mapped to the reference human genome using a 

sequencing alignment tool such as BWA-MEM (Li and Durbin, 2009) or SOAP2 

(Li et al., 2009). Putative insertion sites are then called using various 

computational tools that are specifically designed for the detection of polymorphic 

RTE insertions from short-read NGS data (Baillie et al., 2011; David et al., 2015; 

Streva et al., 2015; Gardner et al., 2017). The many polymorphic RTE detection 

tools available in the literature typically function using the same fundamental 

method. Essentially, two main types of sequencing reads that point to the 

presence of a polymorphic insertion: discordant read pairs and split-reads. 

Paired-end sequencing reads are individual reads produced from both ends of 

the same DNA segment (Paterson et al., 2015). Such reads can be paired 

together as the distance between them is known, hence the name. The Paired-

end sequencing method increases the accuracy of read mapping, especially in 

repetitive genomic regions, thus facilitates the detection of structural 

rearrangements. Discordant read pairs (DPs) where only one read aligns at the 

expected genomic location facilitate the detection of insertions, such as those 

produced by RTEs (Paterson et al., 2015; Goerner-potvin and Bourque, 2018). 

In contrast, split reads (SRs) describe sequencing reads where only a part of an 

individual read aligns with the genome while its other part does not (Goerner-

potvin and Bourque, 2018). Polymorphic RTE detection tools use DPs and SRs, 

usually referred to as unmapped sequencing reads, to identify polymorphic RTE 
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insertions by aligning those unmapped reads with the consensus sequence of the 

active RTE subfamilies (Figure 4; Goerner-potvin and Bourque, 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Schematic representation of polymorphic retrotransposable elements 
(RTE) detection using next-generation sequencing data. Paired-end reads are 
represented as rectangles connected by a solid line representing the un-
sequenced middle region of the DNA segment. A| Genomic region with a 
polymorphic RTE insertion. Sequencing reads are initially mapped to the 
reference genome. Unmapped reads that do not partially or fully align with the 
reference genome as expected are suggestive of an RTE insertion. There are 
two main types of sequencing reads that are informative for polymorphic RTE 
identification: 1). Discordant read pairs (DPs) where one read pair aligns with 
the reference genome while the other align to an RTE sequence, and 2). Split 
reads (SRs) where only part of one read aligns with the reference genome while 
the other part aligns to an RTE sequence. B| Genomic region without a 
polymorphic RTE insertion. Both types of sequencing reads align to the 
reference genome as expected in the absence of an RTE insertion. Figure 
adapted from “Benchmarking computational tools for polymorphic transposable 
element detection” by Rishishwar et al, 2016, Briefings in Bioinformatics, (April).  

Discordant read 

pairs (DPs)

Split read (SR)

Reference Sequence (No RTE insertion) 
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2.1.3. Limitations of RTE discovery using NGS data: 

 

Characterising and genotyping genomic variants mediated by RTE insertions 

using short-read NGS data and RTE detection tools, although convenient, 

remains a challenging task due to the limited length of sequencing reads that 

does not span the whole integration site. Consequently, the many computational 

tools developed for RTE detection that follow the same general method often 

produce unstandardized findings, with different calls being retrieved from the 

same sequencing sample due to discrepancies in the algorithmic design and 

choice of parameters (Ewing, 2015). Recent benchmarking studies have 

demonstrated the utility of combining multiple RTE detection tools in increasing 

the accuracy and precision of RTE calling (Rishishwar et al., 2016; Nelson et al., 

2017).  

2.1.4. Online databases for non-reference RTE insertions: 

 

Active RTEs have the potential to implicate human health and disease as their 

mobilization activity provides a continuous source of structural variations and has 

the potential to interfere with gene function, epigenetic regulation, and local 

genomic stability. As such, a comprehensive database of RTE insertions from the 

active RTE subfamilies is an essential tool for studying RTE-derived SV and for 

investigating the effects of their continuous activity on genome function. Many 

studies have been performed for characterising RTE-mediated variants over the 

last couple of decades. Some of these RTE-derived variants have been collected 

in online databases, while the majority of them remain scattered in the literature.  

Two online databases of polymorphic RTE insertions identified in the human 

genome exist: the database of retrotransposon insertion polymorphisms (dbRIP; 



26 
 

http://dbrip.brocku.ca/; Wang et al., 2006) and the European database of L1Hs 

retrotransposon insertions (euL1db; http://eul1db.unice.fr; Mir et al., 2014). At the 

time of its construction, dbRIP (Wang et al., 2006) queried all the available studies 

and curated a database of 2,095 unique RTE insertions, including 407 L1s, 1,625 

Alus, and 63 SVAs from over 50 studies. At the time of this study, dbRIP (Wang 

et al., 2006) has not been updated comprehensively since 2009, as only five 

studies have been added in the second release of dbRIP, bringing the total 

number of unique insertions up to 2,761, including 598 L1s, 2,086 Alus, and 77 

SVAs. Note that the third release of dbRIP, expected in May 2021, was pre-

announced on the dbRIP website (https://dbrip.brocku.ca/announcements.html), 

yet there have been no new file uploads or announcement updates from the date 

of the pre-announcement up to this date.  

The euL1db (Mir et al., 2014) provides a detailed source of recent L1Hs elements, 

including germline and somatic insertions. It consists of 8,991 non-redundant 

L1Hs insertions identified in the genomes of 741 individuals that have been 

curated from 32 studies published up to 2014. The non-redundant list of L1Hs 

insertions was generated by merging L1 elements located within 200 base pairs 

(bp) from each other to account for variations in the accuracy of different detection 

tools and to avoid splitting insertions corresponding to the same 

retrotransposition event. 

2.1.5. Study aims: 

 

Existing online RTE databases are not up-to-date, and thus do not include data 

from the most recent studies, such as RTE variants from phase 3 of the 1000 

genome project (1kGP) (Sudmant et al., 2015). This study aims to update and 

build on data in existing online databases by curating a comprehensive list of 

http://dbrip.brocku.ca/
http://eul1db.unice.fr/
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polymorphic RTE insertions from the L1Hs, AluY, and SVA_E/F subfamilies from 

peer reviewed journal articles. The updated database of polymorphic RTE 

insertions will be used for downstream analyses, including inferring the potential 

impact of RTE activity on genome function and identifying RTE variants that may 

influence complex traits and predisposition to multifactorial diseases. 

 

2.2. Methods:  

 

RTEs were curated from freely available online databases and peer-reviewed 

publications in the literature. 

 

2.2.1. Criteria of RTE database curation:  

 

The inclusion and exclusion criteria of the curated database, as summarized in 

Table 1, were established to ensure the specific inclusion of polymorphic RTE 

insertions that segregate within the population. Such RTE insertions have the 

potential to influence complex traits and predisposition to disease. The effect of 

recent RTE insertions on the fitness of its host depends on where it lands in the 

genome, thus only studies that report the exact genomic location of recent RTE 

insertions were selected for inclusion. Studies reporting engineered RTE 

insertions in transfected cell lines were excluded as such insertions may not be 

true representatives of insertions that segregate in the population. Similarly, 

Somatic RTE insertions such as those found in tumour cells were also excluded 

as such insertions does not get passed on to future generations. Germline 

insertions were included as these are the only type of insertions that segregate 

in the population, thus contributes towards inter-individual variation and disease 

risk. 
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Table 1: Summary of the inclusion and exclusion criteria for curating a 
comprehensive database of retrotransposable element insertions that contribute 
to the inter-individual genomic diversity. 

 

 

2.2.2. Study selection: 

 

Studies referenced in dbRIP (http://dbrip.brocku.ca/; Wang et al., 2006) and 

euL1db (http://eul1db.unice.fr; Mir et al., 2014) online databases that were 

published within the cut-off dates of this study (01/01/2009-11/04/2019) were 

selected. This cut-off date was decided based on the period all three RTE 

subtypes were simultaneously updated in dbRIP (http://dbrip.brocku.ca/; Wang et 

al., 2006). Additional studies were selected via PubMed using the search terms 

listed in table 2. MeSH terms refer to controlled PubMed vocabulary used for 

indexing journal articles for easier retrieval of relevant publications via automatic 

term mapping. The MeSH terms are arranged hierarchically by subject categories 

with more specific terms beneath the broader term (Ecker and Skelly, 2010). 

PubMed search results were refined by activating filters to exclude articles 

published outside the cut-off date. Additional filters were applied to ensure all 

search results concerned humans and are published in English.  

Criteria Included Excluded 

Genomic 

coordinates

Exact genomic coordinates 

reported in any human genome 

build

Does not report exact 

genomic coordinates 

Tissue type Fresh samples (e.g. Blood) or 

non-transfected cell lines. 

Transfected cell lines

Tissue state Healthy or matched non-

tumour  

Tumour cells

Insertion type Germline Somatic 

http://eul1db.unice.fr/
http://dbrip.brocku.ca/W
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Table 2: Search terms used for extract studies identifying retrotransposable 
element insertions in the human genome from PubMed.  

 

 

A second PubMed search was performed using the names of principal 

investigators (PIs) as keywords to avoid missing out on recent articles that may 

not have been indexed with the MeSH terms found in table 2 at the time of this 

study. PIs were identified from the transposable elements labs directory of the 

Mobile DNA journal (https://mobilednajournal.biomedcentral.com/labs).  

Search terms Description

Transposable elements Two classes: Retrotransposons and DNA transposons. 

Narrow MeSH term(s) included in the results: 

1.    Insertions

Retrotransposons 

Class I transposable elements that mobilise via an RNA 

intermediate. 

Narrow MeSH term(s) included in the results:                                                             

1.    Endogenous Retroviruses

2.    Genes, Intracisternal A-Particle

3.    Long Interspersed Nucleotide Elements

4.    Short Interspersed Nucleotide Elements

5.    Alu Elements

Mobile element 

polymorphisms/insertions
Synonym of transposable elements and retrotransposons. 

Structural Variation 

Differences in genomic DNA segments between/within 

individuals of a population.

Includes DNA Copy Number Variations (CNVs). 

https://mobilednajournal.biomedcentral.com/labs
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PIs interested in RTE detection and retrotransposition in humans were selected 

(Table 3). Ewing A.D. was selected based on publication record and interest in 

RTE detection. 

Table 3: Principle investigators queried in PubMed to extract potentially non-
indexed recent studies identifying retrotransposable element (RTE) insertions in 
the human genome. 

 

 

Citations retained using the terms listed in Tables 2 and 3 were collated in a text 

file. Identical citations retained from multiple search terms were removed based 

on their PubMed ids using an awk command in UNIX. Titles and abstracts of the 

Principal Investigator Research Interests

●   The role of transposable elements in human disease.

● Characterising human retrotransposon insertion 

polymorphisms.

● LINE-1 regulation and RTE insertions in cancer.

● Development of computational tools for RTE detection. 

● Inferring the functional consequences of mutations caused 

by RTE insertions. 

● Detecting and understanding LINE-1 (L1) 

retrotransposons. 

● Better the understanding about RTE role in complex human 

disorders. 

● Understanding the biology of human L1s.

● Understanding host defences against the transposition 

process. 

Jorde L.B. ● Evolution and effect of RTEs on human genome in health 

and disease. 

● Understanding the mechanism and consequences of 

genomic variations caused by RTE insertions in humans 

health and disease.

● RTEs in evolutionary genetics. 

Burns K.H.

Ewing A.D.

Moran J.V.

Kazazian H.H.

Xing J.
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remaining studies were initially manually scanned to exclude articles unrelated to 

RTE detection/identification. Studies that did not relate to L1s, Alus, or SVAs were 

excluded, e.g. those relating to DNA transposons and LTR retrotransposons i.e. 

human endogenous retroviruses (HERV). Review articles, articles about the 

origin and evolution of RTEs, and articles assessing the effect of chemical (e.g. 

drugs) or physical (e.g. radiation) agents on RTEs mobilization/epigenetics were 

also excluded. Publications that passed this initial scanning step underwent 

thorough manual survey to investigate whether they meet the inclusion criteria of 

this study as discussed above (Table 1). Articles that meet the inclusion criteria 

of this study were retained for the database curation. An overview of the study 

selection processes is shown in figure 5. 
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Figure 5: Overview of study selection process for curating a comprehensive 
database of retrotransposable elements (RTE) insertions. 

 

2.2.3. Data curation: 

 

Two types of datasets will be generated for each RTE subtype:  

1. A general dataset of RTE insertions from all of the included studies.  

2. A dataset by individual including insertions found with a matching sample 

id. 

Six databases will be created: 2 for L1s, 2 for Alus, and 2 for SVAs. The study 

intends to use the general database to investigate the genomic landscape of 

polymorphic RTE insertions, which will provide insight into the effect of recent 
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RTE activity on genome function and integrity. The intended downstream 

analysis for the database by individual is to investigate the effect of structural 

polymorphisms mediated by RTE insertions on the fitness of its host using a more 

detailed approach as discussed in chapter 4. 

The chromosomal locations of RTE insertions were extracted from the selected 

studies, either directly from the original publication, or from its supplementary 

files. Somatic RTE insertions, or insertions from subfamilies other than L1Hs, 

AluY or SVA_E/F were removed. RTE insertions not reported in GRCh37/hg19 

coordinates were converted into hg19 coordinates using the UCSC Genome 

Browser liftOver tool (available at: https://genome.ucsc.edu/cgi-bin/hgLiftOver; 

Karolchik et al., 2004). The minimal information recorded from each insertion 

include: 

1. Chromosomal location (chromosome name: insertion start-insertion end) 

2. Study reference. 

3. Study PubMed id (PMID).  

Additional information recorded when available include:  

1. Strand orientation. 

2. RTE subtype. 

3. Allele frequency.  

The database by individual (db-individual) which includes non-reference RTE 

insertions (L1Hs, AluY, or SVA_E/F) identified in the genome of individuals 

recognised by a unique sample id will hereinafter be referred to as RTE profile(s). 

RTE profiles were extracted from studies reporting sample ID information 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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following the data extraction method described in the general database section. 

Sample ethnicity was also recorded when available.  

 

2.2.4. Quality control:  

 

As there is yet to be a gold-standard method for RTE detection, each of the 

studies included in the database follows its method of RTE detection consisting 

of a unique blend of computational parameters and quality control measures. As 

such, variations in the database are bound to exist, which jeopardize the 

consistency within the intended database. The following quality control (QC) 

measures have been applied to maximize the uniformity within the curated 

database:  

1. Applying a minimum supporting reads threshold: Evrony et al. (2016) 

reported that applying a read count threshold of ≥ 3 supporting reads 

maintains the detection of at least half (53%) of true-positive insertions 

while excluding >99% of false-positive calls. As such, a minimum read 

count of ≥ 3 supporting reads was applied to reduce the likelihood of false 

positives, and insertions identified by less than 3 supporting reads were 

removed. In case of tumour studies, only the insertions supported by ≥ 3 

reads in the matched non-tumour samples were retained.  

 

2. PCR validation: Where PCR validation had been performed in a study, 

putative insertions that failed PCR validations or were located on 

unplaced/un-localised contigs were also excluded. Data from the offspring 

of trios were excluded to minimise allele frequency bias that may be 

introduced from related individuals. To minimise redundancy caused by 
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variation in breakpoint estimation of the different detection tools, RTEs 

within 200bp from each other were merged into a single insertion using the 

merge tool of BEDtools version 2.25.0 (Quinlan, 2014). The merge window 

was decided based on the analysis conducted by Mir et al. (2014) of the 

euL1db. Shared strand orientation was not required for the merging as the 

probability of two independent insertions being on different strands in the 

same location is extremely low (Sheen et al., 2000).  

2.2.5.  Addressing duplicate RTE profiles from the database by individual: 

 

Where studies characterised the RTE profile of the same individual, only one RTE 

profile was selected for inclusion in db-individual to avoid inflation of allele 

frequencies in the curated database. The RTE profile retained was based on 

investigating the overlap between the identified RTE profiles in a single individual, 

as illustrated in figure 6. First, the duplicate RTE profiles were merged by 200bp 

to account for variability in breakpoint estimation of the different detection tools. 

A minimum of 50% overlap between both RTE profiles was required for profile 

selection. Duplicate RTE profiles that failed to meet this requirement suggested 

that at least one of the studies used a detection method with poor precision or 

recall therefore all the individual RTE profiles from such a study should be 

excluded to maintain consistency within the database. Of the 317 duplicate 

profiles, 293 resulted from a number of studies analysing samples that are part 

of phase 3 of the 1,000 genomes project (1KGP) dataset (Sudmant et al., 2015). 

The 1KGP is the biggest and most reliable human genomic variation study. 

Therefore, for duplicate RTE profiles where one profile is produced by the 1KGP 

and both profiles overlap by ≥ 50%, the 1KGP profile was selected for inclusion 

in db-individual. Of the remaining 24 duplicate profiles, three resulted from two 
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studies analysing samples that are part of the pilot phase of the 1KGP (Stewart et 

al., 2011). In these cases, when the overlap between both profiles was ≥ 50%, 

the profile with the number of insertions closest to the number observed per 

typical genome was retained (128 L1s, 915 Alus, and 51 SVAs; 1000 Genomes 

Project Consortium et al., 2015). For the 21 duplicate profiles not part of the pilot 

phase or phase three of the 1KGP dataset, the profile closest to the average per 

typical genome was retained in db-individual when both profiles overlapped by ≥ 

50%. Finally, when the overlap between duplicate profiles was less than 50%, all 

individual profiles obtained from the study deemed unsatisfactory were excluded 

from db-individual to maintain consistency within the curated database.                                                     

. 

 

Figure 6: An overview of the procedure applied for selecting one 
retrotransposable element (RTE) profile for inclusion in the database by individual 
when duplicate RTE profiles for the same individual (individual x) were produced 
by two studies (study A and B). Note that an RTE profile refers to non-reference 
RTE insertions (L1Hs, AluY or SVA_E/F) identified in the genome of an individual. 

 

 

Individual X

RTE profile 
from Study A

Is the overlap between the insertional profile for 
individual x from study A and B ≥50%? 

Is one of the duplicate profiles from the 1000 genome project (1kGP) 
dataset?

Yes No

1. Include profile from 1kGP for 
individual X

2. Include all non-duplicate 
profiles from the non-1kGP 

study

Exclude the non-1kGP 
study from the curated 
database 

1. Include the profile with total 
number of insertions closest 
to the average per typical 

genome .

2. Include all non-duplicate 
profiles from both studies.

Exclude both studies 
from the curated 
database by individual

YesNo Yes No

Merge RTEs within 200bp window

RTE profile 
from Study B
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2.3. Results: 

 

2.3.1. Study selection: 

 

Articles reporting non-reference retrotransposable element insertions (RTEs) 

were selected from PubMed (https://www.ncbi.nlm.nih.gov/pubmed/). Querying 

PubMed up to the cut-off date (11/04/2019) using the terms listed in tables 1 and 

2 produced 14,632 articles in total. Removal of articles returned by multiple 

search terms (i.e. duplicates) and/or unrelated to RTE detection resulted in 254 

publications, of which 45 studies meet the inclusion criteria of this study (table 4). 

An overview of study selection process is provided in figure 5. 

 

Table 4: Studies included in the curated non-reference retrotransposable element 
(RTE) databases, including the database by individual (db-individual), along with 
the total number of samples and RTEs pre- and post- quality control (QC) steps. 
All 45 studies were included in the general database, of which 28 were included 
in the database by individual (db-individual).  

 

L1 Alu SVA

1 Achanta et al., (2016) 27843500 6 10|10 -- --

2 Cardelli et al., (2012) 22495107 12 -- 4|4 --

3 Doyle et al., (2017) 28585566 62 1161|903 -- --

4 Ewing et al., (2010)♦ 20488934 25 367|365 -- --

5 Ewing et al., (2011)♦ 20980553 310 67998|0 -- --

6 Ewing et al., (2015)● 26260970 18 1182|1052 -- --

7 Feusier et al., (2017) 28770012 213 -- 5288|4890 --

8 Hehir-Kwa et al., (2016) 27708267 769 4011|1339 8670|5950 781|602

9 Helman et al., (2014)♦ 24823667 200 1103|982 6248|6164 373|146

10 Kloosterman et al., (2015) 25883321 769 -- 5|5 --

11 Konkel et al., (2015) 26319576 35 -- 343|291 --

12 Kuhn et al., (2014)● 24847061 20 855|855 -- --

13 Kurnosov et al., (2015)● 25689626 1 19|8 9|0 --

14 Mir et al., (2014)║ 25352549 1023 142,495 S|21 M -- --

15 Payer et al., (2017) 28465436 60 Pooled -- 809|579 --

16 Rouchka et al., (2010) 21044359 3 22|0 -- --

17 Tubio et al., (2014)● 25082706 244 1478|1478 -- --

Studies in db-individual 

18 Arokium et al., (2014)● 25289675 1|1 100|73 -- --

19 Baillie et al., (2011)♦ 22037309 3 & Pooled | 3 9279|96 19007|1673 2037|21

20 Beck et al., (2010)♦ 20602998 6|1 68|21 -- --

21 Brandler et al., (2016) 27018473 235|138 1092|1092 6402|6402 417|417

22 Carreira et al., (2016)● 27843499 14|14 770|760 -- --

23 David et al., (2013) 23921633 7|5 -- 6057|4521 --

24 Erwin et al., (2016)● 27618310 3|3 317|279 -- --

25 Evrony et al., (2012)♦ 23101622 3|3 76|43 -- --

26 Evrony et al., (2015)● 25569347 1|1 24|24 48|45 8|8

27 Ha et al., (2016) 27478512 21|14 -- -- 409|409

28 Hormozdiari et al., (2011) 21131385 8|7 -- 4342|3554 --

29 Iskow et al., (2010)♦ 20603005 30|30 2174|299 3799|52 --

30 Lee et al., (2012)♦ 22745252 44|43 2639|2277 5531|5499 225|225

31 Nguyen et al., (2018) 29949758 19|19 554|186 -- --

32 Schauer et al., (2018) 29643204 61|61 559|558 2462|2459 34|27

33 Scott et al., (2016)● 27197217 1|1 104|104 -- --

34 Shin et al., (2019) 30699287 1|1 525|494 -- --

35 Shukla et al., (2013)♦ 23540693 19|19 1018|863 6283|5301 329|316

36 Solyom et al., (2012)♦ 22968929 21|21 7031|124 10429|1013 8476|18

37 Stewart et al., (2011)♦ 21876680 156|153 998|172 4499|4405 79|76

38 Streva et al., (2015)● 25887476 7|7 228|228 -- --

PMID

Total 

samples (S)| 

S in db-Indvl

Total RTEs pre|post QC
# Study ID

https://www.ncbi.nlm.nih.gov/pubmed/
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   (Table 4 continued) 

║ The euL1db publication. The number of insertions retained were from studies that did    
not require additional QC processing remove  

♦ Studies included in euL1db. Post QC for L1 elements conducted by Roxane Dunbar.  

● Studies in L1 database where QC was conducted by Roxane Dunbar.  

 

2.3.2. Database structure/content:  

 

Two databases were curated for each RTE type (L1Hs, AluY, and SVA_E/F): a 

general database that includes all non-reference RTE insertions, and a database 

by individual that includes RTE profiles identified within individual genomes. Both 

databases were curated using the same data extraction method and quality 

L1 Alu SVA

1 Achanta et al., (2016) 27843500 6 10|10 -- --

2 Cardelli et al., (2012) 22495107 12 -- 4|4 --

3 Doyle et al., (2017) 28585566 62 1161|903 -- --

4 Ewing et al., (2010)♦ 20488934 25 367|365 -- --

5 Ewing et al., (2011)♦ 20980553 310 67998|0 -- --

6 Ewing et al., (2015)● 26260970 18 1182|1052 -- --

7 Feusier et al., (2017) 28770012 213 -- 5288|4890 --

8 Hehir-Kwa et al., (2016) 27708267 769 4011|1339 8670|5950 781|602

9 Helman et al., (2014)♦ 24823667 200 1103|982 6248|6164 373|146

10 Kloosterman et al., (2015) 25883321 769 -- 5|5 --

11 Konkel et al., (2015) 26319576 35 -- 343|291 --

12 Kuhn et al., (2014)● 24847061 20 855|855 -- --

13 Kurnosov et al., (2015)● 25689626 1 19|8 9|0 --

14 Mir et al., (2014)║ 25352549 1023 142,495 S|21 M -- --

15 Payer et al., (2017) 28465436 60 Pooled -- 809|579 --

16 Rouchka et al., (2010) 21044359 3 22|0 -- --

17 Tubio et al., (2014)● 25082706 244 1478|1478 -- --

Studies in db-individual 

18 Arokium et al., (2014)● 25289675 1|1 100|73 -- --

19 Baillie et al., (2011)♦ 22037309
3 & Pooled | 

3
9279|96 19007|1673 2037|21

20 Beck et al., (2010)♦ 20602998 6|1 68|21 -- --

21 Brandler et al., (2016) 27018473 235|138 1092|1092 6402|6402 417|417

22 Carreira et al., (2016)● 27843499 14|14 770|760 -- --

23 David et al., (2013) 23921633 7|5 -- 6057|4521 --

24 Erwin et al., (2016)● 27618310 3|3 317|279 -- --

25 Evrony et al., (2012)♦ 23101622 3|3 76|43 -- --

26 Evrony et al., (2015)● 25569347 1|1 24|24 48|45 8|8

27 Ha et al., (2016) 27478512 21|14 -- -- 409|409

28 Hormozdiari et al., (2011) 21131385 8|7 -- 4342|3554 --

29 Iskow et al., (2010)♦ 20603005 30|30 2174|299 3799|52 --

30 Lee et al., (2012)♦ 22745252 44|43 2639|2277 5531|5499 225|225

31 Nguyen et al., (2018) 29949758 19|19 554|186 -- --

32 Schauer et al., (2018) 29643204 61|61 559|558 2462|2459 34|27

33 Scott et al., (2016)● 27197217 1|1 104|104 -- --

34 Shin et al., (2019) 30699287 1|1 525|494 -- --

35 Shukla et al., (2013)♦ 23540693 19|19 1018|863 6283|5301 329|316

36 Solyom et al., (2012)♦ 22968929 21|21 7031|124 10429|1013 8476|18

37 Stewart et al., (2011)♦ 21876680 156|153 998|172 4499|4405 79|76

38 Streva et al., (2015)● 25887476 7|7 228|228 -- --

39 Sudmant et al., (2015)● 26432246 2504|2504 3048|3048 12748|12748 835|835

40 Thung et al., (2014)● 25348035 3|2 233|227 1541|1488 62|54

41 Upton et al., (2015)● 25860606 5|5 395|385 -- --

42 Wildschutte et al., (2015) 26503250 53|53 -- 1614|1599 --

43 Witherspoon et al., (2013) 23599355 169|160 -- 5799|2674 --

44 Xing et al., (2009) 19439515 1|1 52|49 584|584 14|11

45 Yu Q et al., (2017) 28938719 90|90 2398|2398 6483|5975 400|367

PMID

Total 

samples (S)| 

S in db-Indvl

Total RTEs pre|post QC
# Study ID

L1 Alu SVA

1 Achanta et al., (2016) 27843500 6 10|10 -- --

2 Cardelli et al., (2012) 22495107 12 -- 4|4 --

3 Doyle et al., (2017) 28585566 62 1161|903 -- --

4 Ewing et al., (2010)♦ 20488934 25 367|365 -- --

5 Ewing et al., (2011)♦ 20980553 310 67998|0 -- --

6 Ewing et al., (2015)● 26260970 18 1182|1052 -- --

7 Feusier et al., (2017) 28770012 213 -- 5288|4890 --

8 Hehir-Kwa et al., (2016) 27708267 769 4011|1339 8670|5950 781|602

9 Helman et al., (2014)♦ 24823667 200 1103|982 6248|6164 373|146

10 Kloosterman et al., (2015) 25883321 769 -- 5|5 --

11 Konkel et al., (2015) 26319576 35 -- 343|291 --

12 Kuhn et al., (2014)● 24847061 20 855|855 -- --

13 Kurnosov et al., (2015)● 25689626 1 19|8 9|0 --

14 Mir et al., (2014)║ 25352549 1023 142,495 S|21 M -- --

15 Payer et al., (2017) 28465436 60 Pooled -- 809|579 --

16 Rouchka et al., (2010) 21044359 3 22|0 -- --

17 Tubio et al., (2014)● 25082706 244 1478|1478 -- --

Studies in db-individual 

18 Arokium et al., (2014)● 25289675 1|1 100|73 -- --

19 Baillie et al., (2011)♦ 22037309 3 & Pooled | 3 9279|96 19007|1673 2037|21

20 Beck et al., (2010)♦ 20602998 6|1 68|21 -- --

21 Brandler et al., (2016) 27018473 235|138 1092|1092 6402|6402 417|417

22 Carreira et al., (2016)● 27843499 14|14 770|760 -- --

23 David et al., (2013) 23921633 7|5 -- 6057|4521 --

24 Erwin et al., (2016)● 27618310 3|3 317|279 -- --

25 Evrony et al., (2012)♦ 23101622 3|3 76|43 -- --

26 Evrony et al., (2015)● 25569347 1|1 24|24 48|45 8|8

27 Ha et al., (2016) 27478512 21|14 -- -- 409|409

28 Hormozdiari et al., (2011) 21131385 8|7 -- 4342|3554 --

29 Iskow et al., (2010)♦ 20603005 30|30 2174|299 3799|52 --

30 Lee et al., (2012)♦ 22745252 44|43 2639|2277 5531|5499 225|225

31 Nguyen et al., (2018) 29949758 19|19 554|186 -- --

32 Schauer et al., (2018) 29643204 61|61 559|558 2462|2459 34|27

33 Scott et al., (2016)● 27197217 1|1 104|104 -- --

34 Shin et al., (2019) 30699287 1|1 525|494 -- --

35 Shukla et al., (2013)♦ 23540693 19|19 1018|863 6283|5301 329|316

36 Solyom et al., (2012)♦ 22968929 21|21 7031|124 10429|1013 8476|18

37 Stewart et al., (2011)♦ 21876680 156|153 998|172 4499|4405 79|76

38 Streva et al., (2015)● 25887476 7|7 228|228 -- --

PMID

Total 

samples (S)| 

S in db-Indvl

Total RTEs pre|post QC
# Study ID
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control procedures as described in the method section. Details about the number 

of samples and RTE insertions obtained from each selected study, including pre- 

and post- the QC steps, are found in table 4. Additional information about each 

study, including data source, is available in appendix 1. 

2.3.3. General database: 

 

The general database (db-general) includes RTEs curated from 45 studies (listed 

in table 4) across 7,285 unrelated samples (including sample redundancy). RTEs 

within 200bp window were merged to minimise the chance of the same RTE 

being counted more than once due to varying breakpoint estimation of the 

detection tools estimations of the breakpoint location. The final database contains 

39,798 non-reference RTEs from the L1Hs, AluY and SVA_E/F subfamilies. A 

breakdown of the number of RTEs per subtype is shown in table 5.  

Table 5: Counts of retrotransposable elements (RTE) curated from 45 studies. 
RTEs of the same subfamily within a 200bp window were merged to minimise 
redundancy caused by variation in breakpoint estimation produced by differences 
in the RTE detection methods of the included studies. The general database (db-
general) includes RTEs identified from all the included studies, while the 
individual database (db-individual) includes RTE profiles of individuals. The 
average number of RTEs per individual is calculated from db-individual.  

  

Note that the number of pre-merge AluY elements in db-individual does not add 

up with the numbers of post-QC for Alu elements in table 4 as 77 Alu insertions 

from Baillie et al., (2011) were identified in the pooled sample only, thus were 

only included in db-general.  

db-general db-individual

RTE counts pre|post merge RTE counts pre|post merge 
Average per 

individual

L1Hs   20,813|10,211 13,800|6,377 134

AluY   77,875|27,699   59,915|18,698 1,064

SVA_E/F   3,532|1,888   2,784|1,085 51

Total 102,220|39,798   76,499|26,160

RTE type
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2.3.4. Databases by individual for L1Hs, AluY, and SVA_E/F: 
 

The pre-QC databases by individual collectively included 3,360 RTE profiles 

(including duplicate samples) curated from a total of 28 studies, as indicated in 

table 4. Any related individuals, including the offspring of trios, were excluded to 

control allele frequency bias that may be introduced by samples relatedness. 

Some studies have analysed samples collected from the same individual 

resulting in duplicate RTE profiles. Duplicate profiles pose the potential issue of 

overcalling for some of the individual profiles within the curated database, thus 

affecting the consistency of db-individual. Therefore, when duplicate RTE profiles 

were identified, a minimum of 50% overlap between both profiles was required 

before selecting one for inclusion in db-individual (Figure 6). All but three studies 

of the 13 studies that overlapped by a total of 317 individuals were retained, as 

summarised in table 6. 

The post-QC databases collectively contains the insertional profile of 2,987 non-

related individuals with an average of 134 L1Hs, 1,064 AluY and 51 SVAs per 

individual genome (Table 5). The average number of RTEs per individual genome 

is similar to the numbers reported by the 1000 genome project (128 L1s, 915 

Alus, and 51 SVAs; 1000 Genomes Project Consortium et al., 2015). The majority 

of RTE insertions in db-individual were identified with an allele frequency (AF) 

below 1% (78% of L1Hs, 65.5% of AluY and 68% of SVA_E/F). RTEs in the 

curated database were identified in samples from diverse ethnic groups, including 

African, Asian, European, and American admixed. About one-third of the RTEs 

identified in db-individual were singletons, i.e., only present in one of the total 

samples in the database. (Table 7). 



41 
 

 

 

Table 6: Counts of duplicate RTE profiles in the database-by-individual (db-individual). A minimum of 50% overlap between 

duplicate profiles was required before selecting one of the profiles for inclusion in db-individual. All RTE profiles from the 3 

studies that failed to meet this requirement (in bold) were excluded from db-individual. 

   

 

 

 

 

 

 

 

 

 

 

Overlapping Studies 

Number of 

overlaping 

samples

Average 

frequency of 

overlaping loci 

(%)

Included profile 

reference
Reason 

Sudmant et al. (2015) and 

Stewart et al. (2011)

150 85% (Alu)           

81% (SVA)

Sudmant et al. (2015)

Sudmant et al. (2015) and 

Yu et al. (2017)

83 76% (Alu)             

70% (SVA)

''

Sudmant et al. (2015) and 

Lee et al. (2012)

2 72% (Alu)            

65% (SVA)

''

Sudmant et al. (2015) and 

Witherspoon et al. (2013)

43 73% (Alu) ''

Sudmant et al. (2015) and 

Hormozdiari et al. (2011)

3 85% (Alu) ''

Sudmant et al. (2015) and 

David et al. (2013)

2 94% (Alu) ''

Sudmant et al. (2015) and 

Ha et al. (2016) 

10 33% (SVA) ''

Thung et al. (2014) and 

Stewart et al. (2011)

2 98% (Alu)             

71% (SVA)

Thun et al. (2014) Thung et al. (2014) reported 

more RTE insertions, 

resembling the average number 

of insertions per individual as 

reported by the 1kGP and 

identified in db-individual. 

1. MELT, the RTE detection 

tool of the 1kGP (Sudmant et 

al., 2015) is one of the best 

detection tools for RTE calling 

as shown by its superior 

performance in benchmarking 

studies (Rishishwar et al., 2016; 

Gardner et al., 2017; 

unpublished in-house 

benchmarking). 

2. All RTEs in Sudmant et al. 

(2015) are genotyped and 

phased.

Overlapping Studies 

Number of 

overlaping 

samples

Average 

frequency of 

overlaping loci 

(%)

Included profile 

reference
Reason 

Sudmant et al. (2015) and 

Stewart et al. (2011)

150 85% (Alu)           

81% (SVA)

Sudmant et al. (2015)

Sudmant et al. (2015) and 

Yu et al. (2017)

83 76% (Alu)             

70% (SVA)

''

Sudmant et al. (2015) and 

Lee et al. (2012)

2 72% (Alu)            

65% (SVA)

''

Sudmant et al. (2015) and 

Witherspoon et al. (2013)

43 73% (Alu) ''

Sudmant et al. (2015) and 

Hormozdiari et al. (2011)

3 85% (Alu) ''

Sudmant et al. (2015) and 

David et al. (2013)

2 94% (Alu) ''

Sudmant et al. (2015) and 

Ha et al. (2016) 

10 33% (SVA) ''

Thung et al. (2014) and 

Stewart et al. (2011)

2 98% (Alu)             

71% (SVA)

Thun et al. (2014) Thung et al. (2014) reported 

more RTE insertions, 

resembling the average number 

of insertions per individual as 

reported by the 1kGP and 

identified in db-individual. 

1. MELT, the RTE detection 

tool of the 1kGP (Sudmant et 

al., 2015) is one of the best 

detection tools for RTE calling 

as shown by its superior 

performance in benchmarking 

studies (Rishishwar et al., 2016; 

Gardner et al., 2017; 

unpublished in-house 

benchmarking). 

2. All RTEs in Sudmant et al. 

(2015) are genotyped and 

phased.
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(Table 6 continued) 

 

 

 

 

 

 

 

 

 

 

 

 

Sudmant et al. (2015) and 

Ha et al. (2016) 

10 33% (SVA) ''

Thung et al. (2014) and 

Stewart et al. (2011)

2 98% (Alu)             

71% (SVA)

Thun et al. (2014) Thung et al. (2014) reported 

more RTE insertions, 

resembling the average number 

of insertions per individual as 

reported by the 1kGP and 

identified in db-individual. 

Yu et al. (2017) and 

Stewart et al. (2011) 

1 81% (Alu)               

64% (SVA)

Yu et al. (2017) Yu et al. (2017) reported more 

RTE insertions, resembling the 

average number of insertions 

per individual as reported by the 

1kGP and identified in db-

individual. 

Shukla et al. (2013) and 

Schauer et al. (2018)

19 83% (Alu)                  

66% (SVA)

Shukla et al. (2013) Shukla et al. (2013) reported 

more RTE insertions, 

resembling the average number 

of insertions per individual as 

reported by the 1kGP and 

identified in db-individual. 
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Wildschutte et al. 

(2015) and Hormozdiari 

et al. (2011) 

1 32.7% (Alu) Hormozdiari et al. (2011) Hormozdiari et al. (2011) 

identified >80% of the 

insertions called by Sudmant et 

al. (2015) for the 3 overlapping 

samples between the two 

studies, therby increasing the 

confidence in the sensitivity of 

its method compared to the 

method of Wildschutte et al. 

(2015). 

Xing et al. (2009) and 

Witherspoon et al. (2013)

1 46% (Alu) Witherspoon et al. (2013) Witherspoon et al. (2013) 

identified >70% of the 

insertions called by Sudmant et 

al. (2015) for the 43 overlapping 

samples between the two 

studies, therby increasing the 

confidence in the sensitivity of 

its method compared to the 

method of Xing et al. (2009). 
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Table 7: Count and frequency of singleton RTE insertions identified in each of 
the ethnic groups within the curated database.  

 

Note that the total number of insertions per ethnic group may not add up to the 

total number of insertions in db-individual as some RTE insertions are identified 

in more than one ethnic group. 

 

 

L1 Alu SVA

African 242/1616 (15.0) 1093/9992 (10.9) 39/519 (7.5)

Ad mixed American 231/1527 (15.1) 1231/8890 (13.8) 36/496 (7.3)

American 4/188 (2.1) 11/1419 (0.8) 2/60 (3.3)

European 583/2418 (24.1) 1381/8557 (16.1) 91/540 (16.9)

East Asian 1052/2338 (45.0) 1055/7392 (14.3) 85/496 (17.1)

South Asian 170/982 (17.3) 461/5351 (8.6) 18/363 (5.0)

Other 796/2166 (36.7) 941/5880 (16.0) 74/381 (19.4)

Total Singltons/Total 

RTEs in db-individual (%)
345/1085 (31.8) 6173/18698 (33.0) 3078/6377 (48.3)

Ethnicity Singltons/Total insertions per ethnic group (%)
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2.4. Discussion: 

 

A comprehensive collection of retrotransposable element insertions in humans 

have been curated and organised into two databases; a general database and a 

database by individual (Table 5). The information in this database has been 

curated from a total of 45 peer-reviewed articles (listed in table 4) published in 

the last decade up to the 12th of April 2019, including data from the final phase of 

the 1000 genome project (1kGP) (Sudmant et al., 2015) as well as the Genome 

of the Netherlands (GoNL) project (Hehir-Kwa et al., 2016). The selected articles 

have been identified via PubMed using the search terms listed in Tables 1 and 2. 

The general database (db-general) holds 10,211 L1Hs, 27,699 AluY, and 1,888 

SVAs from the E and F subfamilies (SVA_E/F). The database of individual RTE 

profiles contains 6,377 L1Hs, 18,698 AluY, and 1,085 SVA_E/F identified in 3,360 

non-related individuals from diverse ethnic backgrounds. All RTEs in the curated 

database are non-reference RTEs, referring to RTEs that are absent from the 

reference genome. 

2.4.1. Study database vs. existing online databases 

 

Compared to existing online RTE databases, the curated database holds 10-fold 

the amount of RTEs in dbRIP (http://dbrip.brocku.ca/; Wang et al., 2006; 

n=3,106), and an additional 36% germline L1Hs entries compared with the 

euL1db list (http://eul1db.unice.fr; Mir et al., 2014; n=8,012). In addition, the 

curated database only includes germline insertions that are polymorphic in the 

population as the main aim of the database is to provide a resource of RTE 

variants that potentially contribute towards host susceptibility to disease. This is 

in contrast to dbRIP and the euL1db databases that also hold insertions 
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associated with Mendelian disorders (dbRIP) that tend to segregate in specific 

families, or somatic insertions (euL1db) that do not get passed on to future 

generations (Wang et al., 2006; Mir et al., 2014).  

To our knowledge, the curated database of this study is the first to apply a 

threshold of ≥3 supporting reads. This quality control (QC) measure was 

suggested by Evrony et al. (2016) to minimize false-positive calls. Applying this 

threshold may have potentially excluded a few low-frequency true-positive 

insertions, however, it may have also excluded the majority of false-positive calls 

as demonstrated in the analysis of Evrony et al. (2016). A recent benchmarking 

study has also demonstrated the importance of applying a minimum supporting 

reads threshold. Rishishwar et al. (2016) found that the best performing tools out 

of the seven tools analysed by their study had applied a minimum supporting 

reads threshold by default. The best performing tools applying such a threshold 

included MELT (Gardner et al., 2017) and Mobster (Thung et al., 2014) used by 

the 1kGP (Sudmant et al., 2015) and the GoNL project (Hehir-Kwa et al., 2016), 

respectively.   

2.4.2. Issues with current methods of RTE detection 

 

Accurate RTE detection is essential for understanding the effect of recent RTE 

activity on genome function. Detecting true-positive RTE insertions in the human 

genome is challenging, mainly due to the repetitiveness and high sequence 

homology of these elements in the human genome. Numerous computational 

tools based on the analysis of NGS data have been developed over the past two 

decades for genome-wide detection of RTE insertions (Ewing, 2015; Goerner-

potvin and Bourque, 2018). However, most RTE detection tools rely on short 

sequencing reads that do not span the whole integration site. Consequently, 
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variations in recall sensitivity and positional accuracy do exist between the 

available RTE detection tools.   

The discrepancies in the results of the duplicate RTE profiles curated by this 

study show the extent of variations in the recalls of different RTE detection tools 

when analysing the same sample (Figure 6). There has yet to be a standard 

approach against which the performance of current and future tools operate. 

Long-read sequencing technologies such as PacBio and MinION (Rhoads and 

Au, 2015; Lu et al., 2016) have the potential to improve the recall and precision 

of RTE detection, and eventually become the standard approach for RTE 

discovery.  

  

2.4.3. Correlations between population growth rate and allele frequency 

spectrum  

 

Most RTE insertions in the curated database have low allele frequencies (AF), 

including over 65% of the insertions with an AF below 1%. The greater proportion 

of rare variants (AF < 1%) is largely due to RTEs unique to individuals, i.e., 

singletons. This is consistent with the well-established effect of the recent 

explosive growth in population size (Keinan and Clark, 2012; Gao and Keinan, 

2016). The increased load of singletons is explained by the growing population 

shifting the balance between the rate of RTE insertion and elimination from the 

population (Gazave et al., 2013; Bourgeois and Boissinot, 2019). Therefore 

populations with a higher growth rate are expected to have a higher load of 

singletons. Gravel et al. (2011) estimated the growth rate in the East Asian and 

European populations at 0.48% vs. 0.38% per generation, respectively, starting 

about 23 thousand years ago (kya) using exon and low-coverage sequencing 
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data from the 1kGP (n=40 per panel). These results are consistent with the higher 

fraction of singletons identified in East-Asian compared with European samples. 

Another recent study inferring population size changes from whole-exome 

sequencing data of 4,298 European vs. 2,217 African samples reported a higher 

growth rate in the European population compared to the African population. Chen 

et al. (2015) estimated the growth rate of the European population at 1.49% per 

generation starting ~7.26 kya vs. 0.74% per generation starting ~10.01 kya in the 

African population.  These results are also consistent with the higher fraction of 

singletons identified in the European samples in comparison to the African 

samples (Table 7).  

 

2.4.4. Correlations between population growth rate and efficiency of 

natural selection 

 

The excess of singleton RTE variants as a consequence of the recent population 

explosion has the potential to increase the genetic risk of complex disorders 

within the average individual of the growing populations by impacting purifying 

selection against deleterious insertions. A simulation-based study by Gazave et 

al. (2013) suggested that individuals in a growing population show a moderate 

increase in the fraction of deleterious mutations in comparison to individuals in a 

non-growing population. This effect was suggested to be due to the increased 

efficiency of selection at eliminating the most extremely deleterious mutations, 

resulting in a slight increase in the number of weakly deleterious mutations 

(Gazave et al., 2013; Gao and Keinan, 2016). In addition, the total number of de 

novo RTE insertions is likely to be much higher in a growing population, which 
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consequently increases the number of RTE variants that have the potential to 

contribute towards the susceptibility of complex diseases.  

Identifying rare RTE variants in the growing population that are caused by recent 

insertions requires sequencing of a very large sample size. This is because 

singletons identified in a small sample of 100 individuals have a frequency of 

0.5% and are likely caused by older insertions compared to singletons with a 

frequency of 0.005%, identified in a sample of 10,000 individuals. However, 

increasing sample size will also increase type I error which may complicate the 

analysis and reduce the ability to distinguish between true insertions and false 

positives. These issues may potentially be tackled via the development of RTE 

detection tools analysing long sequencing reads. Such tools may increase the 

sensitivity of RTE detection and reduce the complexity of RTE discovery (Ewing, 

2015; Jiang et al., 2019).   

2.4.5. Study overview 

 

In summary, a comprehensive database of RTE elements has been curated, 

updating the information reported in existing online databases. The curated 

database holds an excess of rare insertions, consistent with the well-established 

effect of the recent population explosion. Capturing such variants is of particular 

interest for studying the impact of population growth on the genetic architecture 

of complex disorders. In effect, the curated database is a useful resource for 

understanding the contribution of RTE variants towards human phenotype and 

disease.  
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3. Genomic Distribution of non-LTR RTEs 

 

3.1. Introduction 

 

Retrotransposable elements (RTEs) are the most abundant type of repetitive 

sequences, essentially constituting 45% of the human genome (Lander et al., 

2001). The majority of RTEs in the human genome are remnants of ancient 

insertions, hence they are no longer capable of transposition due to inactivating 

mutations and internal rearrangements (Lander et al., 2001; Wei et al., 2001; 

Hancks and Kazazian, 2016). Only the most recently evolved RTE subfamilies 

retain the ability to transpose within the human genome, creating insertional 

polymorphisms within and between populations (Wang et al., 2005; Mills et al., 

2007; Huang et al., 2010). The ongoing activity of the non-LTRs (Long Terminal 

Repeats) retrotransposons is driven by a single autonomous family, known as the 

long interspersed nuclear element-1 (L1 for short). 

3.1.1. Retrotransposition of L1s, Alus, and SVAs 

 

 L1s are the most abundant type of transposable elements (TE) in humans, with 

over half a million copies of L1s constituting up to 17% of the human genome 

(Lander et al., 2001). Nevertheless, only about 100 L1s from the evolutionary 

young human-specific L1 subfamily (L1Hs) in each individual genome are full-

length and capable of transposing, of which a handful have been described as 

‘hot’ L1s, due to them being highly active (Brouha et al., 2003). A full-length L1 

element is about 6 kilobases (kb) long and encode two proteins that are essential 

for its retrotransposition: a small RNA binding protein (ORF1p) and a large protein 

with endonuclease (EN) and reverse transcriptase (RT) activities (ORF2) 

(Dombroski et al., 1991; Lander et al., 2001). L1s retrotranspose via a process 
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termed target-primed reverse transcription (TPRT), whereby the ORF2p reverse 

transcribes an RNA copy of the parent L1 and integrates the complementary DNA 

(cDNA) elsewhere in the genome (Cost et al., 2002; Scott and Devine, 2017).  

The non-autonomous Alu and SVA elements have evolved to capture the L1 

ORF2p, thus L1s mediate the retrotransposition of Alu and SVA elements in trans 

during TPRT (Dewannieux et al., 2003; Raiz et al., 2012). Although the L1 

machinery mediates the mobilisation of the non-LTR RTEs, endogenous L1s, 

Alus, and SVAs, referring to reference insertions that are fixed in the human 

genome, are known to accumulate in different genomic regions.  

3.1.2. Distribution of endogenous RTEs 

 

Endogenous L1 elements accumulate in AT-rich low-activity regions whereas 

Alus and SVA elements accumulate in GC-rich, high-activity regions (Smit, 1996; 

Smit, 1999; Lander et al., 2001; Pavlíček et al., 2002; Wang et al., 2005). The 

accumulation of L1 elements in AT-rich regions have been credited to the 

specificity of the L1 endonuclease target motif (5’-TTTT/AA-3’), which is 

significantly denser in AT-rich regions of the genome (Cost and Boeke, 1998; 

Lander et al., 2001; Graham & Boissinot, 2006). Investigating the surrounding 

GC content of endogenous RTEs by evolutionary age have shown that the 

evolutionary young subfamilies of L1s, Alus, and SVAs accumulate in regions of 

lower GC content in comparison to older subfamilies, a difference that is 

potentially masked when all the endogenous elements of each type are analysed 

as one (Lander et al., 2001; Medstrand et al., 2002; Wang et al., 2005; Kvikstad 

and Makova, 2010; Costantini et al., 2012). As such the observed distribution 

bias in the genomic distribution of Alus and SVAs, in comparison to L1 elements, 
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is thought to have been reshaped by differential selection forces acting on each 

element (Dewannieux et al., 2003; Raiz et al., 2012; Tang et al., 2018).  

3.1.3. Effects of RTE activity on genome function 

 

RTE insertions are known to affect genome function in a variety of mechanisms, 

including mediating post-insertional genomic rearrangements. Insertions in genic 

regions can interfere with gene function or induce loss-of-function mutations 

through interfering with gene transcription or splicing (Conley and Jordan, 2012; 

Chénais, 2016; Hancks and Kazazian, 2016; Bourque et al., 2018). In addition, 

the high copy number and sequence similarity between RTE elements can 

promote non-allelic homologous recombination (NAHR) events that can cause 

significant deletions and duplications (Lee et al., 2012; Startek et al., 2015; 

Nazaryan-petersen et al., 2016). The reader can refer to the following review 

articles for a more detailed overview of how TE activity can impact genome 

function both directly and indirectly: Hancks and Kazazian (2016), Bourque et al. 

(2018), and Saleh et al. (2019).  

3.1.4. Effects of RTE activity on human health 

 

In terms of causing disease or susceptibility to disease, RTE elements are, on 

whole, not as well studied as single nucleotide variants (SNVs). However, 

structural variants (SV) mediated by RTE insertions have been implicated with 

genetic diseases.  

3.1.4.1. RTEs and monogenic diseases 

 

The first reported case of a disease-causing RTE insertion is a de novo L1 

insertion into exon 14 of the factor VIII (F8), identified in two unrelated 
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haemophilia A patients (Kazazian et al., 1988). Since then, 124 monogenic 

diseases mediated by RTE insertions have been reported (Hancks and Kazazian, 

2016). Nevertheless, disease-causing RTE insertions are rare events, estimated 

to be responsible for ~1/1,000 disease-causing mutations (Lutz et al., 2003). 

Advances in genome sequencing technology, and the development of efficient 

computational detection tools capable of simultaneously analysing numerous 

genomic samples to identify RTE insertions on a genome-wide level, have led to 

a substantial increase in the number of recovered RTE insertions (Ewing, 2015; 

Rishishwar et al., 2017). Such advances have also improved the recovery of 

somatic and polymorphic insertions, including insertions implicated in complex 

disorders.  

3.1.4.2. RTEs and complex diseases 

 

Somatic L1 retrotranspositions are recognised as mutagenic agents in many 

epithelial cancers (Chénais, 2016; Burns, 2017; Scott and Devine, 2017). In 

addition, increased somatic L1 retrotransposition in the brain has been reported 

in several neurological and neuropsychiatric disorders, including schizophrenia, 

amyotrophic lateral sclerosis (ALS), and Alzheimer’s disease (Guffanti et al., 

2016; Savage et al., 2019; Terry et al., 2020). As for germline insertions, a recent 

study identified a polymorphic SVA element in an intron of the TAF1 gene, 

associated with an increased risk of X-linked Dystonia-Parkinsonism (XDP) 

through promoting intron 32 retention, resulting in reduced TAF1 gene expression 

(Aneichyk et al., 2018). The length of the hexanucleotide repeat domain of the 

SVA element was found to have a significant inverse correlation with the age of 

XDP onset (Bragg et al., 2017). Another study identified a polymorphic Alu 

element in an intron of the CD58 gene, associated with an increased risk of 
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multiple sclerosis through promoting skipping of exon 3, resulting in reduced 

CD58 gene expression (Payer et al., 2019).  

Deleterious RTE insertions that affect genome function, consequently reducing 

the fitness of their host, are subject to purifying selection to such a degree that 

they cannot reach high allele frequencies in the population, and are eventually 

rendered extinct from the human genome (Loewe, 2008). In contrast, neutral 

insertions do not affect genome function, and as such, they can reach high 

frequencies and eventually become fixed in the human genome. Under these 

assumptions, insertions from the ancient subfamilies are more likely to be neutral 

than recent insertions from the actively transposing RTE subtypes.  

3.1.5. Genomic distribution of recent RTE insertions  

 

The genomic load of RTE activity on genome function can be inferred by 

comparing the distributions of RTEs from subfamilies of different evolutionary 

ages. Early studies, including ones from before the initial sequencing and 

analysis of the draft human genome, comprehensively characterised the genomic 

landscape of endogenous RTE insertions (Soriano et al., 1983; Smit, 1999; Gu 

et al., 2000; Lander et al., 2001; Wang et al., 2005). The extent to which the 

landscape of new insertions resembles that of the endogenous RTE elements 

which have become fixed in the human genome remains ambiguous. Studies 

comparing the distribution of fixed RTEs with insertions from the currently 

amplifying RTE subfamilies (Table 8), have suggested that the majority of new 

RTEs integrate in neutral or deleterious regions, in contrast to endogenous 

elements that accumulate in what have been called genomic safe-havens 

(Boissinot and Furano, 2005; Song and Boissinot, 2007). Nevertheless, the 

evolutionary fate of a new insertion, including its impact on genome function as 
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well as its ability to mobilise and generate new insertions, largely depends on 

where it inserts into the genome.  

Some studies adopted an experimental approach for investigating the genomic 

landscape of RTE insertions in the human genome. In this approach, de novo 

insertions are induced using engineered elements in cell cultures. The induced 

insertions are then recovered and their pre-insertion loci are characterised and 

compared with the distribution of endogenous or polymorphic elements (Raiz et 

al., 2012; Sultana et al., 2019; Flasch et al., 2019; Chen et al., 2020). The main 

advantage of using this method is that the induced insertions experience minimal 

selection and thus recapitulate the initial integration site of RTEs. However, the 

distribution of such insertions may not be representative of natural elements 

segregating in the human genome, as the influence of cell-line specific factors on 

the retrotransposition assay cannot be ruled out. In addition, some de novo 

insertions may integrate into genomic locations that may potentially cause 

embryonic lethality (Boissinot et al., 2004).  

The focus of the more recent RTE detection studies seems to have shifted away 

from characterising the landscape of RTE insertions. Few recent studies reported 

a partial characterisation of the insertional landscape of polymorphic RTE 

insertions, mainly reporting its distribution within gene regions (Stewart et al., 

2011; David et al., 2013; Witherspoon et al., 2013; Thung et al., 2014; Ha et al., 

2016). As such, a comprehensive study analysing the genomic distribution of 

polymorphic insertions against fixed RTE elements, in order to advance the 

current understanding regarding the role of germline RTE activity on genome 

function, has yet to be published. 
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3.1.6. Aims and objectives 

The current study aims to investigate the potential effects of germline RTE activity 

on genome function and integrity by comparing the genomic distributions of 

polymorphic RTE insertions with the distribution of endogenous RTEs that are 

fixed in the human genome. The in-house curated database discussed in chapter 

2 is utilised for this analysis. The curated database includes a high fraction of 

singleton and rare RTE insertions, as a result of its larger sample size, in 

comparison to previous studies conducting similar analysis (Ovchinnikov et al., 

2001 [n=32 L1Hs vs. 30 ancient L1s]; Boissinot et al., 2004 [n=344 L1Hs vs. 300 

ancient L1s]; Wang et al., 2005 [106 SVA_E/F vs. 2,656 SVA_A-D]; Cordaux et 

al., 2006 [43 polymorphic vs. 60 fixed AluY]; Ewing and Kazazian, 2010 [367 non-

reference vs. 772 reference L1Hs]).  

As such, the results of this study are expected to be intermediate between the 

reported distribution of de novo and polymorphic insertions. This study expands 

on previous studies in the literature by simultaneously comparing the distribution 

of L1, Alu, and SVA elements in order to understand the effect of each RTE type 

on genome function and integrity. Knowing the functional impact of recent 

germline insertions is fundamental for understanding the impact of RTEs, with 

respect to human health and disease, and the likely contribution of RTE-mediated 

SV to the missing heritability issue.
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Genomic feature Old (fixed) Young (polymorphic) Supporting references

Chromosomal distribution

L1 Enriched on the X-chromosome as a 

result of positive selection due to their 

role in propogating the X silencing 

signal. Chromosomal distribution 

correlated positively with 

chromosome size.

Not enriched or overrepresented on 

any chromosome. Distribution 

correlated positively with 

chromosome size.

Smit (1999); Bailey et al., (2000); 

Lander et al., (2001); Medstrand 

et al., (2002); Boissinot  et al., 

(2004); Ewing and Kazazian, 

(2010); Tang et al., (2018); 

Sultana et al., (2019); Flasch et al., 

(2019); Chen et al., (2020)

Alu Overrepresented on chromosome 19 

more than expected for its size. Alu 

density correlated with chromosome 

gene density.

Not enriched or overrepresented on 

any chromosome. Distribution 

correlated positively with 

chromosome size.

Lander et al., (2001); Grover et 

al., (2004); Carter et al., (2004); 

Otieno et al., (2004); Wagstaff et 

al., (2012); Tang et al., (2018)

SVA Overrepresented on chromosome 19 

more than expected for its size. SVA 

density correlated with chromosome 

gene density. 

Not enriched or overrepresented on 

any chromosome. Distribution 

correlated positively with 

chromosome size and gene density.

Wang et al., (2005); Savage et al., 

(2013); Tang et al., (2018); 

Gianfrancesco et al., (2019)

Table 8: Summary of the genomic distribution of old RTEs that are fixed in the human genome, in comparison to the 
distribution of polymorphic RTE elements. 
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(Table 8 continues) 

 

 

Local GC content 

L1 Accumulate in the most AT-rich 

regions of the genome

Accumulate in AT-rich regions, but 

are more evenly distributed in this 

region in comparision to fixed 

elements

Gu et al., (2000); Lander et al., 

(2001); Medstrand et al., (2002); 

Boissinot  et al., (2004); Sultana et 

al., (2019); Flasch et al., (2019); 

Chen et al., (2020)

Alu Accumulate in GC-rich regions Accumulate in AT-rich regions Gu et al., (2000); Lander et al., 

(2001); Medstrand et al., (2002): 

Jurka et al., (2004); Belle et al., 

(2005); Costantini et al., (2012); 

Wagstaff et al., (2012)

SVA Accumulate in GC-rich regions Accumulate in regions of higher GC-

content in comparision to fixed 

elements

Wang et al., (2005); Raiz et al., 

(2012); Savage et al., (2013); 

Gianfrancesco et al., (2019)

Genic distribution

L1 Accumulate in intergenic regions. 

Most intragenic insertions are intronic 

and significantly more often in the 

antisense strand.

Accumulate in intergenic regions. 

Significantly depleated in genic and 

intronic regions compared with 

reference insertions. 

Lander et al., (2001); Boissinot  et 

al., (2004); Ewing and Kazazian, 

(2010); Tang et al., (2018); 

Sultana et al., (2019); Flasch et al., 

(2019); Chen et al., (2020); 

Watkins et al., (2020)
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(Table 8 continues) 

Alu Accumulate in intragenic regions, 

mostly in introns. 

Significantly depleated in gene regions 

in comparision to fixed Alu elements.

Lander et al., (2001); Cordaux  et 

al., (2006); Hormozdiari et al. 

(2011); Wagstaff et al., (2012); 

Witherspoon et al., (2013); David 

et al., (2013); Watkins et al., 

(2020)

SVA Accumulate in intragenic regions, 

mostly in introns. The number of 

fixed SVA elements in gene deserts is 

lower than expected if the elements 

inserted randomly.

Accumulate in intergenic and intronic 

regions. The yonger subfamilies were 

underrepresented in gene deserts in 

comparision to the expected 

distribution, however, they were 

found in lower frequencies in gene 

deserts in comparision to the fixed 

SVA elements.

Wang et al., (2005); Hancks et al., 

(2011); Raiz et al., (2012); Savage 

et al., (2013); Ha et al., (2016); 

Tang et al., (2018)

Local Recombination rate

L1 Studies suggested that fixed L1s 

accumulate in low and non-

recombining regions as a result of 

selection 

Accumulate in low recombination 

regions.

Lander et al., (2001); Medstrand 

et al., (2002); Boissinot  et al., 

(2004); Abrusán et al., (2006); 

Song and Boissinot, (2007); 
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(Table 8 continues)  

Alu Accumulate in regions of higher 

recombination. Studies suggested that 

fixed Alu elements contain a motif 

associated with recombination and 

genome instability

No relationship between the 

distribution of polymorphic elements 

and local recombination rate

Lander et al., (2001); Medstrand 

et al., (2002); Hackenberg et al., 

(2005); Myers et al., (2008); 

Witherspoon et al., (2009)

SVA Fullerton et al., (2001); Wang et 

al., (2005); Supplementary table 3 

of Myers et al., (2008); Lee et al., 

(2012)

No direct results, however, SVA elements have been reported to cause 

recombination-mediated deletions in the human genome suggesting their 

occurrence in recombining regions. In addition, SVA elements accumulate in 

GC-rich regions, which have a positive correlation with recombination rates.
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3.2. Methods 

 

An overview of the methods workflow is presented in figure 7. 

 

3.2.1. RTE Datasets  

 

All datasets are based on the GRCh37/hg19 genome build co-ordinates. 

 

3.2.1.1. Non-reference database: 

 

The chromosomal locations of non-reference RTEs were taken from the in-house 

databases described in chapter 2. The non-reference database consists of 

10,211 L1Hs, 27,699 AluYs, and 1,888 SVAs from the E and F human-specific 

subfamilies. 

 

3.2.1.2. Reference database: 

 

In this context, the reference database consists of those RTEs that are fixed in 

the human genome, such that any two individuals will carry the same insertion. 

The RepeatMasker Table was downloaded from the UCSC table browser 

(https://genome.ucsc.edu/cgi-bin/hgTables; Karolchik, 2004) and 38,366 L1PA2-

5, 307,612 AluJ, and 1,005 SVAs from the A and B subfamilies were extracted. 

These elements are thought to be incapable of retrotransposition due to the build-

up of random inactivating mutations (Lander et al., 2001; Wei et al., 2001; Hancks 

and Kazazian, 2016).
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Reference 

RTEs (.bed)

Local GC-content

Chromosomal 

distribution

Distribution in 

gene regions

Distribution in 

enhancer regions 

Distribution in 

recombination 

regions

Non-reference 

RTEs (.bed)

Regression analysis: RTE counts vs. 

chromosome size

Regression analysis: RTE density vs. 

gene density

Create 20kb window around each insertion Calculate GC-content per window 

RTE region overlaps 

with gene region?

Intergenic insertion

Genic insertion
Intronic

Exonic

Yes

No

Overlap RTE 

insertions with 

enhancer region

Calculate the frequency of insertions 

in enhancer regions

Calculate enrichment of RTEs in 

enhancer regions

Overlap RTE 

insertions with 

recombination map

Calculate the frequency of insertions 

in regions of hot, cold, and 

intermediate recombination rates.

Compare the distribution of RTEs 

in recombination regions to 

random insertion model

Calculate enrichment of 

RTEs in genic regions

Input data

Distribution in 

accessible 

chromatin regions

Overlap RTE 

insertions with 

euchromatin region

Calculate the frequency of insertions 

in euchromatin regions

Calculate enrichment of RTEs in 

euchromatin regions

Count and density of RTEs per 

chromosome (.txt) 

Export data

List of GC-contents per RTE (.txt) 

Frequency of RTEs in 

genic/intergenic regions, 

and enrichment statistics 

(.txt)

Frequency of RTEs in 

enhancer regions and 

enrichment statistics 

(.txt) 

Frequency of RTEs in 

different recombination 

regions and hypothesis 

testing statistics (.txt)

Empirical P Values of 

RTE enrichment in 

euchromatin regions 

(.txt)

Figure 7: Genomic Distribution workflow. Each of the distribution analyses are conducted on the reference and non-reference 
RTEs input files. The number of RTE insertions per chromosome are counted. Subsequently the local genomic environment 
is investigated including local GC-content, overlap with gene and enhancer regions, and local chromatin accessibility is 
investigated by overlapping the location of RTEs with H3K4me3 epigenetic profiles associated with euchromatin domains.  
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3.2.2. Genomic Distribution analyses 

 

3.2.2.1. Chromosomal distribution  

 

The total number of RTEs per chromosome within the reference and non-

reference L1Hs, Alu, and SVA databases were counted in UNIX. To investigate 

if each of the elements were randomly distributed throughout the genome, the 

chromosomal distribution was investigated based on the size of each 

chromosome, using linear regression performed in core R (R Core Team, 2012) 

version 3.4.0. The length of each chromosome was obtained from the human 

assembly data at the Genome Reference Consortium (GRC) 

(https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh37).  

Given that endogenous L1s are known to accumulate in AT-rich regions, while 

endogenous Alu and SVA elements accumulate in GC-rich regions, and that 

genes are known to reside in GC-rich regions of the genome, the chromosomal 

distribution of RTEs based on gene density was investigated. Understanding the 

chromosomal distribution of the reference and non-reference RTEs based on 

gene density, may disentangle the combined influence of both negative selection 

against the potentially deleterious RTEs within genes, and the insertional bias of 

the particular RTE. To this end, a second linear regression analysis was 

performed to investigate the relationship between the chromosomal distribution 

of reference and non-reference RTEs and gene density across the genomes, 

defining the density of RTEs and genes as the numbers of each per one million 

base pairs. Chromosomal locations of RefSeq genes were obtained from the 

UCSC Genome Browser (University of California Santa Cruz) 

(https://genome.ucsc.edu/cgi-bin/hgTables) (Karolchik, 2004). R codes for both 

https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh37
https://genome.ucsc.edu/cgi-bin/hgTables
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regression analyses are provided in GitHub at:            . 

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis.  

3.2.2.2. Local GC content  

 

The hg19/GRCh37 human genome assembly (chromFa.tar.gz) was downloaded 

from the UCSC genome browser ftp website 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/). Individual fasta files 

were concatenated in UNIX. The start and end positions of each RTE insertion 

were extended by 10 kilobases (Kb) to create a 20 Kb window around each 

insertion using the slop function of BEDTools (Quinlan, 2014) version 2.25.0. This 

window size was chosen in concordance with previous studies (Lander et al., 

2001; Boissinot et al., 2004; Gasior et al., 2007). The GC-content for each window 

was calculated using the nuc function of BEDTools (Quinlan, 2014) version 

2.25.0, and the hg19 human genome assembly. To account for variations in GC 

content within the human genome, the hg19 genome assembly was divided into 

20 Kb adjacent windows from start to end using the makewindows function of 

BEDTools (Quinlan, 2014) version 2.25.0, and the GC-content of each genomic 

window was calculated. Windows of different GC-contents were grouped into bins 

of 2% width using R (R Core Team, 2012) version 3.4.0. The distribution of 

reference RTEs in genomic regions of different GC-contents was compared with 

the distribution of non-reference RTEs and with the GC distribution of the 

genome, using the two-sample Kolmogorov–Smirnov (K-S) test. The K-S test is 

a nonparametric goodness-of-fit test used to compare the cumulative distribution 

function of two samples to determine whether the tested samples share the same 

underlying distribution (Lall, 2015). The K-S test returns a D-statistic, 

representing the maximum difference between the cumulative distribution 

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
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functions of the tested samples and a P-value of significance (Frank and Massey, 

1951; Lall, 2015). The GC-content analysis codes are provided in GitHub at:                

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis.  

 

3.2.2.3. Distribution in functional regions 

 

3.2.2.3.1. RefSeq genes 

 

The chromosomal locations of genes across the genome were based on the 

Reference Sequence collection (RefSeq), providing a non-redundant and well-

annotated record of sequences submitted to the National Centre for 

Biotechnology Information (NCBI). The annotated NCBI RefSeq genes were 

downloaded from the UCSC table browser (https://genome.ucsc.edu/cgi-

bin/hgTables; Karolchik, 2004) (last update 11.09.2017); under the group ‘genes 

and gene predictions’ and table ‘NCBI RefSeq (refGene)’. Annotations with both 

the accession prefix NM and NR (mRNA or non-protein-coding RNAs, 

respectively) were included. The ‘output format’ was set to ‘BED – browser 

extensible data’ allowing additional user choices.  

Two files were generated containing the chromosomal locations of: 

I. All genic regions: ‘Whole gene’ option selected under the heading 

‘Create one BED record per’ to generate a file of the start and stop 

locations of all genes. The resultant genic regions file contains the 

transcript start and end of 19,407 coding and 11,173 non-coding 

genes. 

II. Exonic and intronic regions:  To generate a file including the 

chromosomal start and stop location of all genes exons and introns, 

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis
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the ‘Exons plus’ and ‘Intron plus’ options were selected under the 

heading ‘Create one BED record per’. The two separate files indicating 

the exons and introns were combined using the ‘cat’ command in UNIX.  

Non-coding genes (prefixed with NR_*) such as microRNAs (MiRNAs) were 

included, as they have been shown to have key regulatory roles within the human 

genome, and there are numerous cases where mutations in non-coding genes 

have been shown to cause diseases in humans (Kornienko et al., 2013; 

Patrushev et al., 2014; Patil et al., 2014; De Almeida et al., 2016; Quinn et al., 

2016).  

3.2.2.3.2. Enhancer file 

 

GeneHancer (Fishilevich et al., 2017) is a database of human enhancers 

generated by computationally integrating data from the following genome-wide 

databases while eliminating redundancy:  

[1] The Encyclopedia of DNA Elements (ENCODE; Zerbino et al., 2015). 

[2] Ensembl regulatory build (The ENCODE Project Consortium, 2012). 

[3] The functional annotation of the mammalian genome (FANTOM; Andersson 

et al., 2014) project.  

[4] The VISTA Enhancer Browser (Visel et al., 2017).  

The chromosomal locations of the Enhancer elements were obtained from the 

GeneHancer database (Fishilevich et al., 2017) via the UCSC table browser 

(https://genome.ucsc.edu/cgi-bin/hgTables; Karolchik, 2004), selecting the ‘GH 

Reg Elems (geneHancerRegElements)’ table as part of the ‘GeneHancer’ track 

under the ‘Regulation’ group, including a total of 250,718 entries across the 

human genome (last updated 2-09-2018). Of these enhancers, approximately 
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44% (n=110,165) were defined as ‘elite’ status based on their defined strength of 

the identification evidence (Fishilevich et al., 2017). 

 

3.2.2.3.3. Analysis: 

 

The distribution of RTEs within functional genomic regions was identified by 

overlapping the genomic position of RTEs, with that of genes and enhancer 

regions, using the intersect function of bedtools (Quinlan, 2014) version 2.25.0. 

RTE insertions that did not interrupt a gene region were considered intergenic. 

Fisher's exact tests were carried out to compare the distribution of reference and 

non-reference RTEs, in intergenic vs. intragenic regions, and in enhancer vs. 

enhancer-free regions. The analysis codes for the distribution of reference and 

non-reference RTEs in genic and enhancer regions are provided in GitHub at: 

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis.  

 

3.2.2.4. Local recombination rate  

 

The Decode recombination map (https:www.decode.com/; Kong et al., 2010) 

avoids the limitations of linkage disequilibrium (LD)-based maps, such as biases 

in recombination rate estimates due to the effect of natural selection on LD, and 

lack of information about sex differences (Kong et al., 2010). DeCODE produced 

sex-specific recombination maps using phased haplotypes of 15,257 parent-

offspring pairs and a total of 298,069 genome-wide SNPs. Recombination was 

placed in the region between the two closest flanking markers in the parent within 

a resolution of 10 Kb. The X-chromosome and 5 Mb (mega base) regions at both 

ends of autosomal chromosomes were excluded due to reduced reliability in 

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis
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placing recombination in these regions. The map used in this study is the 

standardised sex-averaged map, which is essentially the average of the male and 

female recombination maps. 

DeCODE’s sex-averaged map was downloaded from the UCSC table browser 

(https://genome.ucsc.edu/cgi-bin/hgTables; Karolchik, 2004); accessing the 

‘decodeSexAveraged’ table under the group ‘All Tables’ under the ‘hg19’ 

database. The downloaded list consisted of 244,308 non-overlapping bins. Each 

bin is given a standardised recombination rate (SRR) that indicates the tendency 

of recombination in a specific 10 Kb genomic region. Bins with an SRR of 0 

represent recombination cold-spots while bins with an SRR of 10 or above 

represent recombination hotspots. 

The nearest recombination rate for each RT insertion was identified using the 

closest function of BEDTools (Quinlan, 2014) version 2.25.0. The expected 

number of RTEs in each recombination region was determined by calculating the 

number of elements that would be present in each region in relation to the size of 

the region. Specifically, if half of the human genome is non-recombining, the 

expected number of RTEs in non-recombining regions would be 50%. Fisher's 

exact tests were carried out to compare the distribution of reference and non-

reference RTEs in non-recombining and recombination regions of the genome. 

The distribution of each RTE in regions of different recombination rates was 

compared with the expected distribution using the chi-squared goodness of fit 

test. The codes for the local recombination rate analyses are provided in GitHub 

at: https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis.  

 

 

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis
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3.2.2.5. RTEs Enrichment in functional regions and accessible chromatin 

domains 

 

Roadmap segmented the human genome into various regulatory classes, 

reflecting different degrees and types of regulatory activity (Roadmap 

Epigenomics Consortium, 2015). This study took advantage of this classification 

to define accessible chromatin regions using the H3K4me3 profiles associated 

with euchromatin domains. Roadmap-annotated BED files for each of the 127 

cell types, across 30 types of human tissues, were downloaded 

(https://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPea

k/; last modified: October 2013). One file per cell type was downloaded using the 

epigenome identifier (EID) (EID-H3K4me3.broadPeak.gz). Each file was 

decompressed using the gunzip command in UNIX. An additional column was 

added to each file containing the associated EID identifier. The resulting 127 files 

were then grouped into one file using the cat command in UNIX. Broad peak calls 

were used since genomic regions bound with chromatin domains can be very 

wide.  

A control database, known as the Random Database, was generated to test 

whether the associations observed between the genomic locations of RTEs with 

functional regions were random or based on the composition of the genomic 

features. The control database was also used to investigate whether RTEs are 

enriched in euchromatin domains in any cell type or tissue. The enrichment of 

non-reference RTEs in the euchromatin domain of any cell type or tissue may 

potentially affect its function, as active retrotransposition is more likely to occur 

in accessible chromatin regions. To make the random dataset, the random 

function of BedTools (Quinlan, 2014) version 2.25.0 was used to generate a 

random set of intervals in a Bed file format. For each RTE the random dataset 

https://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPeak/
https://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPeak/
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was subsampled based on the non-reference curated database, including 1000 

x the size of each database; 10,211 L1Hs; 27,699 AluYs and 1,888 SVAs. 

  

Figure 8: Schematic representation of RTEs enrichment in functional and 
accessible chromatin domains. A random dataset is generated using BEDtools. 
First, a samples is extracted based on the size of each of the non-reference curated 
database. Next, the random sample is overlapped with functional genomic regions 
including genic and enhancer regions plus accessible chromatin (euchromatin) 
domains. The dotted line shows a random insertion overlapping with an exon 
region (green) and is located in euchromatin domain. The process of subsampling 
and calculating the distribution of random insertions in functional regions and 
euchromatin domains is reiterated 1000x. Finally, the observed value is compared 
with the distribution of the 1000 samples using Z-statistics for the enrichment of 
RTEs in functional regions, or using the empirical P-value for the enrichment of 
RTEs in euchromatin domains. 
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The distribution of the random datasets in functional and accessible chromatin 

regions was determined by overlapping the locations of RTEs with the RefSeq 

genes, GeneHancer, and Roadmap files using the intersect function of bedtools 

(Quinlan, 2014) version 2.25.0. The mean overlap with functional regions and 

standard deviation of the random datasets were identified using the summary () 

function in R (R Core Team, 2012; V.3.4.0). These statistics were then used to 

calculate the Z-statistics (McLeod, 2019) for the overrepresentation of RTEs in 

functional regions including intronic, exonic, and enhancer regions. The 

enrichment of RTEs in euchromatin domains was calculated using the Empirical 

P Value (North et al., 2002) calculated as: 

(𝑟 + 1) ÷ (𝑛 + 1) 

Where r is the number of replicates that produce a number of overlap greater 

than or equal to the number of overlaps observed for RTEs in euchromatin 

regions, and n is 1,000 representing the number of replicate samples that have 

been created.  The enrichment analysis is illustrated in figure 8. The codes for 

the enrichment analyses are provided in GitHub at: 

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis.  

 

 

 

 

 

 

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis
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3.3.  Results 

 

3.3.1. Chromosomal distribution 

 

The distribution of the three classes of RTEs (L1s, Alus, SVAs) across the 

chromosomes and genome was studied, comparing number of RTEs, and both 

chromosome size and the gene density. Both reference and non-reference RTEs 

were studied separately in order to understand how natural selection forces play 

a part in the distribution over time.  

 

 

Table 9: Count of reference and non-Reference LINE 1s, Alus, and SVAs per 
chromosome, displaying the percentage of the whole genome. Non-reference 
RTEs were taken from the curated RTE databases. Abbreviation: Chr = 
Chromosome. 
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The counts and frequency for each of the three RTEs studied are indicated in 

table 9 for both the reference and non-reference elements across the human 

chromosomes. The autosomes are arranged in descending order of size. Based 

on the frequency of the RTEs for individual chromosomes, table 9 suggests that 

the frequency is not consistently proportional to the size of the chromosomes. For 

example, a larger proportion of reference and non-reference LINE elements are 

located on chromosome 4 than in the larger chromosomes 1, 2, and 3 (reference 

LINEs only). A larger proportion of reference Alu and SVA elements are located 

on chromosomes 16, 17 and 18 than found on larger chromosomes; whereas 

chromosome 17 carries more non-reference Alus and SVAs than the larger 

chromosome16.  

 

3.3.1.1. Linear regression analysis of RTE and chromosome size or gene 

density 

 

To understand the chromosomal distribution of RTEs, based on the size of the 

chromosome, and the effect of selection, a linear regression analysis was 

performed for each RTE, separated into age categories (reference and non-

reference). The confident and prediction intervals were also computed. Data 

points within the confident interval are likely within the range of the true population 

mean with a 95% certainty, while the prediction interval provides a 95% likelihood 

estimate that the observed data points are the outcome of the population, as 

predicted by the regression model.  

Overall, the regression analysis shows that L1s, Alus and SVAs are not 

distributed randomly between chromosomes. Although at the chromosomal level, 

the number of elements, both the reference (fixed) and non-reference 
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(polymorphic), is generally related to the chromosome size, with a positive 

correlation to the physical length of the chromosome. There is a strong linear 

correlation between the number of insertions and chromosomal size, particularly 

for the non-reference elements (except for non-reference SVAs), as shown in 

Figures 1, 2, and 3. When comparing the RTE and gene density, there is a 

marked difference between the RTE classes, demonstrating either negative 

correlation, positive correlation, or no correlation at all. In the subsequent sections 

this will be discussed in more detail. 

3.3.1.1.1. L1 Chromosomal distribution: 

 

Initial integration of L1s, as shown by the distribution of non-reference L1s, do 

tend to show a greater correlation with chromosome size in comparison to 

reference L1s, evidenced by a greater correlation coefficient (r2 =0.81 & 0.93 

respectively for reference and non-reference L1s). There are some exceptions, 

for example, chromosome 4 for which there is an overrepresentation of non-

reference L1 elements made evident by its position just below the upper limit of 

the prediction interval. In addition, there is an enrichment of reference L1s on 

chromosome X (Figure 9.A). The weaker correlation of reference L1s with 

chromosome size compared to non-reference L1s is mainly due of the enrichment 

of reference L1s on the X-chromosome, which has been previously linked to their 

role in propagating the X-silencing signal. Conducting the regression analysis for 

reference L1s without the X-chromosome data point increases the correlation 

coefficient (r2) and statistical significance (r2 from 0.81 to 0.90 and the P-value 

from 1.76x10-9 to 4.97x10-12, respectively for reference and reference minus the 

X chromosome). Extending the analysis to include gene and L1 density across 

each chromosome revealed a weak inverse correlation for reference L1s 
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(r2=0.27, P-value = 9.38E-3). (Figure 9.B). However, no such correlation was 

observed between the non-reference L1s and the gene density. 

 
 
 

r2 = 0.81

P-value = 1.76E-9

r2 = 0.93

P-value = 5.15E-14

r2 = 0.27

P-value = 9.38E-3

r2 = 0.04

P-value = 0.32

Reference Non-referenceA

B

Figure 9: Scatter plots of the distribution of L1 elements across chromosomes and 
gene density. Elements counts as percentages of overall counts per chromosome 
are plotted against chromosomes size for reference and non-reference plots (left 
and right plots respectively) are shown in plots A. Plots B represent percentage of 
elements counts against gene density per chromosome. The fitted regression line 
is shown (blue line), along with 95% confidence intervals (grey cloud) and 95% 
prediction interval (red dotted line) for each scatter plot. Correlation between the 
count of elements and chromosome size, and element count and gene density are 
indicated within the plot, R2 and P-value are given. 
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3.3.1.1.2.  Alu Chromosomal distribution 

 
Non-reference Alu elements appear to be distributed somewhat differently to the 

reference Alu elements. The initial integration of Alus, as shown by the 

distribution of non-reference Alus, resembles the initial integration of L1 

elements. Non-reference Alus also tend to show a greater correlation with 

chromosome size (Figure 10.A) in comparison to reference Alus (r2 = 0.64 & 0.89 

respectively for reference and non-reference Alus). There are some exceptions, 

for example the X chromosome is depleted of non-reference Alus, evidenced by 

its position below the lower limit of the prediction interval (Figure 10.A). In 

addition, the correlation between the density of non-reference Alus and gene 

density is not significant. By contrast, there is a positive correlation between 

reference Alus density and gene density, suggesting that reference Alus are 

enriched in gene regions (Figure 10. B). These results reflect the enrichment of 

reference Alus on chromosome 19 more than expected for its physical length, as 

the density of reference Alus on chromosome 19 is proportional to its gene 

density. Reference Alus tend to show a greater correlation with gene density than 

chromosome size (r2= 0.64 & 0.88 respectively for chromosome size and gene 

density). Chromosome 16 is an exception, where reference Alus are better 

correlated with its physical length than its gene density.  
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r2 = 0.64

P-value = 2.43E-9

r2 = 0.89

P-value = 5.78E-12

r2 = 0.88

P-value = 1.18E-11

r2 = 0.02

P-value = 0.48

Reference Non-referenceA

B

Figure 10: Scatter plots of the distribution of Alu elements across chromosomes 
and gene density. Elements counts as percentages of overall counts per 
chromosome are plotted against chromosomes size for reference and non-
reference plots (left and right plots respectively) are shown in plots A. Plots B 
represent percentage of elements counts against gene density per chromosome. 
The fitted regression line is shown (blue line), along with 95% confidence 
intervals (grey cloud) and 95% prediction interval (red dotted line) for each scatter 
plot. Correlation between the count of elements and chromosome size, and 
element count and gene density are indicated within the plot, R2 and P-value are 
given. 
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3.3.1.1.3.  SVA Chromosomal Distribution 

 

Unlike L1 and Alu elements, reference SVAs tend to show a stronger correlation 

with chromosome size in comparison to non-reference SVAs (r2 = 0.82 & 0.58 

respectively for reference and non-reference SVAs). There are some exceptions, 

for example chromosome 19, for which there is an enrichment of reference SVA 

elements evidenced by its position above the upper limit of the prediction interval 

(Figure 11.A). In addition, non-reference SVAs are depleted on chromosome X. 

There also tends to be a positive correlation with SVA density and gene density, 

suggesting that SVAs are enriched in gene regions (Figure 11.B). The initial 

integration of SVAs, as shown by the distribution of non-reference SVAs, does 

tend to show a greater correlation with gene density in comparison to reference 

SVAs (r2 = 0.63 & 0.77 respectively for reference and non-reference SVAs). 

Chromosome X is an exception, as it is depleted of non-reference SVAs, 

evidenced by its position below the lower limit of the prediction interval (Figure 

11.B). Nevertheless, non-reference SVAs tend to show a greater correlation with 

gene density than chromosome size (r2 = 0.58 & 0.77 respectively for 

chromosome size and gene density), while the opposite trend is observed for 

reference SVAs. These results suggest that SVAs do integrate preferentially in 

gene-rich regions and reflect the combined role of chromosome size and gene 

density in shaping the chromosomal distribution of reference SVAs. As such, 

recent SVA insertions are likely to have the most negative impact on gene 

function and regulation, in contrast to L1s and Alus, which tend to avoid 

integrating into gene-rich regions. 
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r2 = 0.82

P-value = 1.56E-9
r2 = 0.58

P-value = 1.50E-5

r2 = 0.63

P-value = 3.16E-6

r2 = 0.77

P-value = 1.42E-8

B

A Reference Non-reference 

Figure 11: Scatter plots of the distribution of SVA elements across chromosomes 
and gene density. Elements counts as percentages of overall counts per 
chromosome are plotted against chromosomes size for reference and non-
reference plots (left and right plots respectively) are shown in plots A. Plots B 
represent percentage of elements counts against gene density per chromosome. 
The fitted regression line is shown (blue line), along with 95% confidence intervals 
(grey cloud) and 95% prediction interval (red dotted line) for each scatter plot. 
Correlation between the count of elements and chromosome size, and element 
count and gene density are indicated within the plot, R2 and P-value are given. 
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3.3.2. Local GC content 

 

To understand the local base-composition of RTEs, the GC content for each RTE 

separated into age categories (reference and non-reference) was studied, 

alongside the genome GC content in 20 Kb windows. Genomic regions of higher 

GC content tend to have a higher gene density and recombination rate (Fullerton 

et al., 2001; Lander et al., 2001). The GC content was calculated to determine if 

the integration of RTEs is random within the chromosomes, or have been shaped 

by factors such as selection and/or preferential integration, that may have been 

driven by genomic regions of specific base-composition.  

L1s, Alus and SVAs are not distributed randomly within different GC regions. 

Non-reference RTEs do show a tendency to accumulate in higher GC regions 

than reference elements, except for Alus. The distribution of L1s and SVA 

elements generally shifts towards lower GC bins with time, whilst the distribution 

of Alu elements shows the opposite trend and shift towards higher GC bins.  

3.3.2.1. L1 GC content 

 

Reference and non-reference L1 elements, at the genome level, appear to cluster 

in low GC regions, with maximum densities in the bin corresponding to 36-38% 

GC content. The overall accumulation of L1s in low GC regions is supported by 

the position of their frequency distribution curves being to the left of the genome 

curve, and their average GC content being below the genome-wide average of 

41% (average GC content of 38% & 39% respectively for reference and non-

reference L1s). Although L1s generally accumulate in low GC regions, non-

reference L1s do tend to accumulate in higher GC regions than reference L1s, 

made evident by the position of its frequency distribution curve to the right of the 
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distribution curve of reference L1s. In addition, the non-reference distribution 

peak is below the peak of reference L1 elements (Figure 12). The statistical 

significance of the reported observations was confirmed using the two-sample K-

S test, as shown in figure 12.  

The K-S test returns a D-statistic that varies between 0 and 1 (Lall, 2015). The 

closer the D-statistic of the K-S test is to 0, the more similar the underlying 

distributions of the two samples are to each other. That is because a D value of 

0 occurs when there is no difference between the cumulative distribution 

functions of the two samples. The D-statistic for the distribution of reference L1 

elements vs. the genome is greater in comparison to the distribution of non-

reference L1s. These results suggest that the initial integration of L1s, as shown 

by the distribution of non-reference L1s, does tend to be more uniform in the 

genome in comparison to reference L1s. In addition, the lowest D-statistic is 

observed for the K-S test between the distributions of reference vs. non-reference 

L1 elements, supporting the comparable accumulation of L1 elements in GC-poor 

regions.  

3.3.2.2. Alu GC content 

 

Non-reference Alu elements appear to accumulate in different GC regions to the 

reference Alus. The initial integration of Alu elements with respect to local base-

composition, as shown by the distribution of non-reference Alus (Figure 13), is 

similar to the distribution of L1 elements. Although the frequency curve of non-

reference Alus resembles the distribution curve of the genome, non-reference 

Alus appear to cluster in low GC regions with maximum density in the 36-38% 

GC bin. This observation is supported by the position of the frequency distribution 

curve of non-reference Alus being slightly to the left of the genome curve, and 
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their average GC content being below the genome-wide average of 41% 

(average GC content of non-reference Alus is 40%). In addition, the D-statistic of 

the K-S test is lowest for the K-S test between the distributions of non-reference 

Alus and the genome.  

In contrast, reference Alus appear to cluster in genomic regions of higher GC 

content, with maximum density in the 40-42% GC bin. The frequency distribution 

curve of reference Alus is skewed to the right and is positioned to the right of the 

genome curve. In addition, the average GC content of reference Alus is above 

the genome-wide average (average GC content of reference Alus is 43%). These 

results indicate a tendency of Alu elements to shift towards regions of higher GC 

content over time. The D-statistic is highest for the K-S test between the 

distributions of reference vs. non-reference Alus, supporting the marked 

difference in the local base-composition of Alu elements of different evolutionary 

age. 

3.3.2.3. SVA GC content 

 

Reference and non-reference SVA elements, at the genome level, appear to 

cluster in higher GC regions with maximum densities in the 40-42% GC bin 

(Figure 14). The overall accumulation of SVA elements in higher GC regions is 

supported by the position of their frequency distribution curves being to the right 

of the genome curve, and their average GC content being above the genome-

wide average (average GC content of 42% & 43% respectively for reference and 

non-reference SVAs). In addition, the lowest D-statistic is observed for the K-S 

test between the distributions of reference vs. non-reference SVA elements, 

supporting their comparable accumulation in GC-rich regions. Although SVAs are 

generally found in higher GC regions, non-reference SVAs do tend to accumulate 
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in higher GC regions, more so than reference SVAs, made evident by the 

frequency distribution curve of non-reference SVAs being positioned to the right 

of the curve of reference SVAs. In addition, the D-statistic is greatest for the K-S 

test between the distributions of non-reference SVAs vs. the genome. These 

results suggest that the initial integration of SVA elements, as shown by the 

distribution of non-reference SVAs, do tend to prefer higher GC regions of the 

genome. 
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Figure 12: Frequency distribution of L1 elements in different GC fractions of the 
human genome. The GC content around each element is calculated over 20 Kb 
window (10 Kb on each side of the insertion). The x-axis from left to right 
correspond to increasing 2% GC content, and the frequency of L1s is show on the 
y-axis. The genome GC content was calculated by dividing the genome into 20 Kb 
windows from start to end. The dotted vertical line represents the position of the 
average genome-wide GC content of 41%. K-S test statistics are indicated within 
the plot, D statistics and P-value are given. 

4 

Figure 13: Frequency distribution of Alu elements in different GC fractions of the 
human genome. The GC content around each element is calculated over 20 Kb 
window (10 Kb on each side of the insertion). The x-axis from left to right 
correspond to increasing 2% GC content, and the frequency of L1s is show on 
the y-axis. The genome GC content was calculated by dividing the genome into 
20 Kb windows from start to end. The dotted vertical line represents the position 
of the average genome-wide GC content of 41%. K-S test statistics are indicated 
within the plot, D statistics and P-value are given. 
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3.3.3. Distribution in functional regions 

 

RTE integration in functional regions has the potential to alter gene expression, 

splicing, or dosage. The distribution of each RTE in gene and enhancer regions 

was studied to determine whether the integration of RTEs is random, or if it is 

biased by factors that favour or restrict its integration, such as selection and/or 

preferential integration.  

L1s, Alus, and SVAs are not randomly distributed in functional genomic regions. 

All RTE classes show a significant difference in the distribution of their reference 

vs. non-reference elements across the functional genomic regions analysed, as 

confirmed by Fisher's exact test (Tables 10 & 11). Although RTEs are generally 

Figure 14: Frequency distribution of SVA elements in different GC fractions of the 
human genome. The GC content around each element is calculated over 20 Kb 
window (10 Kb on each side of the insertion). The x-axis from left to right 
correspond to increasing 2% GC content, and the frequency of L1s is show on 
the y-axis. The genome GC content was calculated by dividing the genome into 
20 Kb windows from start to end. The dotted vertical line represents the position 
of the average genome-wide GC content of 41%. K-S test statistics are indicated 
within the plot, D statistics and P-value are given. 
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less frequent in functional regions, non-reference RTEs do show a greater 

tendency to accumulate in intragenic (within genes) and enhancer regions than 

reference elements, with the exception of Alu elements (Figures 15 & 16). 

Overall, the distribution of L1 and SVA elements generally shifts away from 

functional regions over time, while the opposite trend is observed for the 

distribution of Alu elements.  

 

3.3.3.1. L1 distribution in functional regions 

 

L1 elements, from both age categories, are more frequent in intergenic regions 

than expected by chance alone, made evident by their positive Z-statistics in 

intergenic regions (Table 12). The initial integration of L1s, as shown by the 

distribution of non-reference L1s, do tend to accumulate more frequently in 

functional genomic regions in comparison to reference L1s. Non-reference L1s 

are 1.19 and 2.83 times more frequent in intragenic and enhancer regions, 

respectively, than reference L1s (Tables 10 & 11; Figures 15 & 16). The 

distribution of L1 elements within gene regions (from transcription, start to end, 

including the 5’ and 3’ untranslated regions) show a greater accumulation of L1s 

in intronic regions, although it should be noted, more non-reference L1s, in terms 

of frequencies, are found within intronic and exonic regions in comparison to 

reference L1 elements (Figure 15). Still, L1 elements (in both age categories) are 

depleted in functional regions in comparison to the random insertion model, 

evidenced by their negative Z-score values in intronic, exonic, and enhancer 

regions (Table 12). These results suggest that, although L1 elements in general 

tend to be depleted in functional genomic regions, the initial integration of L1 

elements in functional regions is more uniform in comparison to reference (fixed) 
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L1s. The distribution of L1 elements in functional regions is in line with their 

accumulation in low GC regions that tend to be less functional than GC-rich 

regions.   

 

  

Reference 

(%)

Non-

Reference   

(%) 

Reference 

(%)

Non-

Reference 

(%) 

Reference 

(%)

Non-Reference 

(%) 

Enhancer 1,266              

(3.30)

900          

(8.81)

47,305 

(15.38)

3,356                 

(12.12)

65              

(6.47)

300                   

(15.89)

Non-enhancer 37,100 

(96.70)

9,311           

(91.19)

260,307 

(84.62)

24,343 

(87.88)

940               

(93.53)

1,588                   

(84.11)

P-value

OR (95% CI)

SVA

4.25E-14

2.73 (2.10-3.67)

L1 Alu

1.42E-108

2.83 (2.59-3.10)

3.05E-50

0.76 (0.73-0.79)

Table 11: Counts and percentages of RTEs located within enhancer regions of 
the GeneHancer database. Reference RTEs are fixed elements in the reference 
genome obtained from the RepeatMasker table of repeats. Non-reference 
elements are polymorphic insertions curated in-house from published studies. P-
value and OR for Fisher's exact test statistics are included. Abbreviations: OR, 
Odds Ratio; CI, Confident interval. 

 

Table 10: Counts and percentages of RTEs located within intergenic and 
intragenic regions. Intragenic regions include the gene region from transcription 
start to end including the 5’ and 3’ untranslated regions of the NCBI RefSeq 
genes. Reference RTEs are fixed elements in the reference genome obtained 
from the RepeatMasker table of repeats. Non-reference elements are 
polymorphic insertions curated in-house from published studies. P-value and OR 
for Fisher's exact test statistics are included. Abbreviations: OR, Odds Ratio; CI, 
Confident interval. 
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3.3.3.2. Alu distribution in functional regions 

 

Non-reference Alu elements are distributed differently in functional regions in 

comparison to the distribution reference Alus. This result was expected, since Alu 

elements from both age categories are also distributed differently in different GC 

regions. Alu elements, from both age categories, are less frequent in intergenic 

regions than expected by chance alone, made evident by their negative Z-

statistics in intergenic regions (Table 12). In addition, the initial integration of Alus 

do tend to be less frequent in functional regions in comparison to reference Alus. 

Non-reference Alus are 0.73 and 0.76 times less common in intragenic and 

enhancer regions, respectively, than reference Alus (Tables 10 & 11; Figures 15 

& 16). Although Alu elements, both reference and non-reference, overall do show 

a tendency to be overrepresented in intronic regions in comparison to the random 

distribution model, the significance level of accumulation is greater for reference 

Alus. In addition, reference Alus are significantly more frequent in enhancer 

Reference        

Z-score (Pval)

Non-Reference      

Z-score (Pval)

Reference        

Z-score (Pval)

Non-Reference      

Z-score (Pval)

Reference        

Z-score (Pval)

Non-Reference      

Z-score (Pval)

Intergenic
16.35              

(4.10E-60)

7.60               

(2.91E-14)

-40.74             

(< 2.2E-16)

-8.01                  

(1.17E-15)

0.79                   

(0.43)

-4.54                  

(5.73E-6)

Intronic
-9.71                 

(2.63E-22)

-3.91               

(9.31E-5)

50.77              

(< 2.2E-16)

12.64               

(1.22E-36)

1.81              

(0.07)

5.95              

(2.74E-9)

Exonic
-18.44               

(6.05E-76)

-10.24              

(1.27E-24)

-26.34                

(6.15E-153)

-12.12              

(8.17E-34)

-7.39                 

(1.47E-13)

-3.53             

(4.17E-4)

Enhancer
-29.51                 

(1.09E-191)

-12.71             

(5.53E-37)

14.38                

(6.55E-47)

-4.44                  

(9.04E-6)

-8.47               

(2.56E-17)

3.48             

(5.03E-4)

SVAL1 Alu

Table 12: Z-test statistics for the distribution of RTEs located within intergenic 
and intragenic regions of the NCBI RefSeq genes in comparison with a random 
database including 1,000x iterations. Z-test statistics for the distribution of RTEs 
in comparison with the random database in enhancer regions of the GeneHancer 
database are also given. Reference RTEs are fixed elements in the reference 
genome obtained from the RepeatMasker table of repeats. Non-reference 
elements are polymorphic insertions curated in-house from published studies.  
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regions in comparison to random insertions, while non-reference Alus are 

significantly less frequent, evidenced by the positive and negative Z-score values 

for reference and non-reference Alus, respectively (Table 12). Alu elements are 

generally depleted in exon regions in comparison to random insertions, although 

it should be noted, more non-reference Alus, in terms of frequency, are found in 

exon regions. These results suggest that the initial integration of Alu elements, 

as shown by the distribution of non-reference Alus, tend to avoid functional 

genomic regions. However, post-integration factors such as selection can alter 

the relative distribution of Alus among genic and enhancer regions, increasing 

the frequency of Alus within functional regions with age.  

 

3.3.3.3. SVA distribution in functional regions 

 

Although SVA elements, from both age categories, are more frequent in 

intergenic regions than genic regions (Table 10), non-reference SVAs appear to 

be depleted in intergenic regions when compared with the distribution of the 

random dataset. In addition, the accumulation of reference SVAs in intergenic 

regions is not significantly different from the distribution of random insertions 

(Table 12). The initial integration of SVAs, as shown by the distribution of non-

reference SVAs, do tend to accumulate more frequently in functional genomic 

regions in comparison to reference SVAs. Non-reference SVAs are 1.29 and 2.73 

times more frequent in intragenic and enhancer regions in comparison to 

reference SVAs (Tables 10 & 11; Figures 15 & 16). Although SVA elements, both 

reference and non-reference, overall do show a tendency to accumulate more 

frequently in intronic regions in comparison with the random insertion model, the 

significance level of accumulation is greater for non-reference SVAs. In addition, 
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non-reference SVAs are significantly more frequent in enhancer regions than 

reference SVAs, when compared with the distribution of the random dataset 

(Table 12). SVA elements are generally depleted in exon regions in comparison 

to the random database, although it should be noted, more non-reference SVAs, 

in terms of frequency, are found in exon regions. These results suggest that SVA 

elements tend to integrate preferentially in functional genomic regions, as shown 

by significant accumulation of non-reference SVAs in intronic and enhancer 

regions, in comparison to the distribution of random insertions. However, post-

integration processes such as selection can alter the relative distribution of SVAs 

within functional genomic regions, reducing the frequency of SVAs frequency 

within functional regions with age. The distribution of SVA elements in functional 

regions is in line with their accumulation in GC-rich regions that tend to be more 

functional than GC-poor regions. The distribution of all RTEs in functional regions, 

overall, suggests that non-reference SVA elements may have the strongest 

potential to affect functional genomic regions, due to its significant 

overrepresentation in both genes and enhancer regions in comparison to the 

other RTE types.  
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Figure 16: Frequency distribution (%) of RTEs located within enhancer regions of 
the GeneHancer database. Reference RTEs are fixed elements in the reference 
genome obtained from the RepeatMasker table of repeats. Non-reference 
elements are polymorphic insertions curated in-house from published studies. 

 

Figure 15: Frequency distribution (%) of RTEs located within intergenic and 
intragenic regions. Intragenic regions include intronic and exonic gene region 
from transcription start to end including the 5’ and 3’ untranslated regions of the 
NCBI RefSeq genes. Reference RTEs are fixed elements in the reference 
genome obtained from the RepeatMasker table of repeats. Non-reference 
elements are polymorphic insertions curated in-house from published studies. 
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3.3.4. Local recombination rate  

 

The standardised sex-averaged (female and male) recombination map, 

described by Kong et al., (2010), was used to study the distribution of RTEs in 

regions of different recombination capacity. This recombination map provides a 

total of 244,308 bins, which were divided into three groups based on their 

standardised recombination rate (SRR): 104,488 bins (42.77%) are cold, 135,814 

(55.59%) are intermediate, and 4006 (1.64%) are hot. Previous studies have 

reported that recombination rates tend to be highest in genomic regions 

surrounding genes. Owing to the high copy number and sequence homology 

between RTE elements, RTE integration in higher recombination regions has the 

potential to mediate significant deletions and duplications resulting from non-

allelic homologous recombination events. Such deletions/duplications can result 

in the loss of function of many genes or an upset of the gene dosage balance. 

The distribution of each RTE, separated into age categories, in different 

recombination regions was studied to determine whether the integration of RTEs, 

with respect to local recombination rate, is random or whether it is biased by 

factors such as selection and/or preferential integration.  
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Reference 

(%)

Non-Reference 

(%) 

Reference 

(%)

Non-Reference 

(%) 

Reference 

(%)

Non-Reference 

(%) 

Non-recombining
16,517 

(48.38)

4,354            

(44.80)

115,431           

(39.44)

11,496          

(42.77)

454        

(48.61)

747            

(40.14)

Recombining
17,622 

(51.62)

5,364             

(55.20)

177,278 

(60.56)

15,382              

(57.23)

480          

(51.39)

1,114            

(59.86)

Total 34,139 9,718 292,709 26,878 934 1,861

P-value

OR (95% CI) 1.41 (1.20-1.66)

L1 Alu SVA

4.71E-10

1.15 (1.10-1.21)

1.71E-26

0.87 (0.85-0.89)

2.11E-05

Table 13: Counts and percentages of RTEs located within recombination regions 
using the standardised sex-averaged (female and male) recombination map 
described by Kong et al., (2010). Reference RTEs are fixed elements in the 
reference genome obtained from the RepeatMasker table of repeats. Non-
reference elements are polymorphic insertions curated in-house from published 
studies. P-value and OR for Fisher's exact test statistics are included. 
Abbreviations: OR, Odds Ratio; CI, Confident interval. 

 

Figure 17: Frequency distribution (%) of RTEs located within different 
recombination regions using the standardised sex-averaged (female and male) 
recombination map described by Kong et al., (2010). Reference RTEs are fixed 
elements in the reference genome obtained from the RepeatMasker table of 
repeats. Non-reference elements are polymorphic insertions curated in-house 
from published studies. 
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The initial integration of RTE elements, with the exception of Alu elements, is not 

random with respect to local recombination rates. RTEs are found in all 

recombination regions, with the highest fraction observed in intermediate regions 

for all RTEs (Figure 17). In addition, all RTE classes show a significant difference 

in the distribution of their reference vs. non-reference elements, across the 

various recombination regions analysed, as confirmed by Fisher's exact test 

(Table 13). Although RTEs are generally more frequent in intermediate regions, 

non-reference RTEs do show a greater tendency to accumulate in recombining 

regions than reference elements, with the exception of Alus (Figure 17; Table 14). 

Overall, the distribution of L1 and SVA elements generally shifts away from 

recombining regions with time, while the opposite trend is observed for the 

distribution of Alu elements.  

Reference 

(%)

Non-

Reference (%) 

Reference 

(%)

Non-

Reference (%) 

Reference 

(%)

Non-

Reference (%) 

Cold
16,517 

(48.38)

4,354       

(44.80)

115,431 

(39.44)

11,496          

(42.77)

454          

(48.61)

747         

(40.14)

Intermediate
17,219 

(50.44)

5,224     

(53.76)

171,626 

(58.63)

14,907          

(55.46)

469           

(50.21)

1,088           

(58.46)

Hot
403           

(1.18)

140                

(1.44)

5,652             

(1.93)

475          

(1.77)

11         

(1.18)

26               

(1.40)

P-value compared 

with random 

insertion model

2.99E-100 1.48E-04 1.06E-304 0.26 1.16E-03 0.040

L1 Alu SVA

Table 14: Counts and percentages of RTEs located within recombination regions 
using the standardised sex-averaged (female and male) recombination map 
described by Kong et al., (2010). Recombining regions are divided into 
intermediate and hot regions, defined by a standardized recombination rate 
(SRR) > 0 & <10 for intermediate regions, and SSR of 10 and above for hot 
recombination regions. Reference RTEs are fixed elements in the reference 
genome obtained from the RepeatMasker table of repeats. Non-reference 
elements are polymorphic insertions curated in-house from published studies. 
The random insertion model assumes that the fraction of insertions is proportional 
to the fractional size of each of the recombination regions. P-value for Chi-
squared goodness of fit test statistics are given.  
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3.3.4.1. L1 local recombination rate 

 

The initial integration of L1s, as shown by the distribution of non-reference L1s, 

tends to be more frequent in recombining regions. Non-reference L1s are 1.15 

times more frequent in recombining regions in comparison to reference L1s 

(Table 13). The distribution of L1s within recombining regions shows a greater 

accumulation of L1s, both reference and non-reference, in intermediate regions 

in comparison to hot recombination regions (Figure 17; Table 14). Overall, L1 

elements from both age categories are not randomly distributed within the 

different recombination regions analysed, as confirmed by the Chi-square 

goodness-of-fit test (Table 14). Although it should be noted, more L1 elements, 

in terms of frequencies, are found within non-recombining regions, in comparison 

to the fractional size of non-recombining bins in the genome (48.38% & 44.80% 

respectively for reference and non-reference L1s vs. 42.77% of non-recombining 

bins in the genome), suggesting the preferential integration of L1 elements in 

non-recombining regions. Overall, the initial integration of L1s in recombining 

regions is more uniform in comparison to reference (fixed) L1s. The distribution 

of L1 elements in recombination regions is in line with their preferential 

accumulation in GC-poor, non-functional genomic regions that tend to have a low 

recombination rate. 
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3.3.4.2. Alu local recombination rate 

 

Non-reference Alu elements appear to be distributed differently to the reference 

Alu elements. This result was expected, since Alu elements from both age 

categories are also distributed differently in different GC and functional regions. 

The initial integration of Alus, as shown by the distribution of non-reference Alus, 

appears to be random. In comparison, the distribution of reference Alus is 

significantly different from the distribution expected by chance, as confirmed by 

the Chi-square goodness-of-fit test (Table 14). Although the distribution of Alus, 

both reference and non-reference, show a greater accumulation in recombining 

regions, non-reference Alus are 0.87 times less frequent in recombining regions 

than reference Alus (Table 13). The distribution of Alu elements within 

recombining regions shows a greater accumulation of Alus in regions of 

intermediate recombination rates, although it should be noted, more reference 

Alus, in terms of frequencies, are found within intermediate and hot regions in 

comparison to non-reference Alu elements (Table 14). In addition, the frequency 

of non-reference Alu elements in non-recombining regions (referred to as cold 

regions in the table) is higher in comparison to the frequency of reference Alus 

(Table 14). The increased accumulation of reference Alus in recombining regions 

is in line with their significant accumulation in GC-rich, gene-rich regions of the 

genome. These results suggest that the initial integration of Alus, as shown by 

the distribution of non-reference Alus, in regions of different recombination rates, 

tends to resemble a random integration pattern. It appears that post-integration 

factors, such as selection, can alter the relative distribution of Alus in different 

recombination regions, increasing their frequency within recombining regions 

with age. 
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3.3.4.3. SVA local recombination rate 

 

Although SVA elements, from both age categories, are more abundant in 

recombining regions, non-reference SVAs are 1.41 times more frequent in 

recombining regions in comparison to reference SVAs (Table 13). The 

distribution of SVAs, both reference and non-reference, within recombining 

regions shows a greater accumulation in intermediate regions in comparison to 

hot recombination regions (Figure 17; Table 14). The distribution of SVA 

elements from both age categories, overall do appear to be significantly different 

from the distribution expected by chance, as confirmed by the Chi-square 

goodness-of-fit test (Table 14). Although it should be noted, more reference SVA 

elements, in terms of frequencies, are found within non-recombining regions in 

comparison to non-reference SVAs (48.61% & 40.14% respectively for reference 

and non-reference SVAs). In addition, reference SVA elements are more frequent 

in non-recombining regions in comparison to the fractional size of non-

recombining bins in the genome. The increased frequency of reference SVA 

elements in non-recombining regions, in comparison to non-reference SVAs, 

suggests the role of post-integration processes in re-shaping the fractional 

distribution of SVA elements in different recombination regions. Overall, the initial 

integration of SVA elements in recombining regions, as shown by the distribution 

of non-reference SVAs, is more uniform in comparison to reference (fixed) SVAs. 

These results are in line with the reduced frequency of reference SVA elements 

in functional genomic regions, and accumulation in lower GC regions, in 

comparison to non-reference SVAs. 
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3.3.5. Local chromatin accessibility 

 

This section analyses the enrichment of non-reference RTEs in accessible 

chromatin regions marked with the epigenetic modification H3K4me3, using 127 

epigenomes divided into 30 anatomical regions, characterised by the Roadmap 

epigenomics project (Roadmap Epigenomics Consortium, 2015). The non-

reference RTEs are the younger, potentially active RTEs that will have more of 

an effect in disrupting genome function in comparison to reference (fixed) RTEs 

that are no longer active. The observed density of non-reference RTEs in each 

of the 127 epigenomes was compared with the densities produced by 1,000 

datasets that have been randomly generated. RTE elements overall appear to be 

enriched in the accessible chromatin domains of a wide variety of cell types and 

anatomical regions. Non-reference RTEs were significantly enriched (empirical 

P-values > 0.05) in a total of 103/127 cell types belonging to 27/30 unique 

anatomical groups (Table 15: Figure 18). L1s, Alus, and SVAs tend to show a 

greater enrichment in cell types belonging to the blood anatomical group. In 

addition, RTEs are enriched in the accessible domains of many types of 

epithelium cell groups, such as skin, heart, breast, and gastrointestinal. L1 

elements are enriched in a narrower variety of cell types and anatomical groups 

(36 &16, respectively for cell types and anatomical groups) in comparison with 

Alu and SVA elements (Alu=65 & 22, SVA=68 & 25, respectively for cell types 

and anatomical groups). These results suggest that non-reference RTEs that 

remain active in the genome have the potential to negatively affect the function 

of a wide variety of cell types and organs. Alu and SVA elements have a greater 

potential to influence genome function in comparison to L1 elements.  
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Figure 18: Count of non-reference (polymorphic) RTEs enriched in the euchromatin domains of at least one epigenome 
reported in the Roadmap project. Axes show anatomical groups (x-axis) against the count of cell types with an 
enrichment of RTEs in its euchromatin domains (y-axis). Abbreviations: ESC, Embryonic stem cells; IPSC, Induced 
pluripotent stem cells; GI, Gastrointestinal. 

.  
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Table 15: Empirical P values for the enrichment of RTEs located within euchromatin domains using the H3K4me3 profiles of the Roadmap 
project. RTEs are polymorphic insertions curated in-house from published studies. 

 

EID Anatomy Standardized Epigenome Name

L1 Alu SVA

E001 1.0E-03 1.0E-03 1.0E-03 ESC ESnaI3 Cells

E002 1.0E-03 1.0E-03 - ESC ESnaWA7 Cells

E003 - 2.7E-02 1.0E-03 ESC H1 Cells

E004 - 1.0E-03 - ESC_DERIVED H1 BMP4 Derived Mesendoderm Cultured Cells

E005 - - 1.0E-03 ESC_DERIVED H1 BMP4 Derived Trophoblast Cultured Cells

E006 - - 3.4E-02 ESC_DERIVED H1 Derived Mesenchymal Stem Cells

E007 - - 1.3E-02 ESC_DERIVED H1 Derived Neuronal Progenitor Cultured Cells

E008 - - 1.0E-03 ESC H9 Cells

E009 - - 2.9E-02 ESC_DERIVED H9 Derived Neuronal Progenitor Cultured Cells

E010 - - 2.8E-02 ESC_DERIVED H9 Derived Neuron Cultured Cells

E011 1.0E-03 1.0E-03 1.0E-03 ESC_DERIVED hESC Derived CD184+ Endoderm Cultured Cells

E012 1.0E-03 2.0E-03 - ESC_DERIVED hESC Derived CD56+ Ectoderm Cultured Cells

E013 - - 2.0E-03 ESC_DERIVED hESC Derived CD56+ Mesoderm Cultured Cells

E014 1.0E-03 1.0E-03 1.0E-03 ESC HUES48 Cells

E015 1.0E-03 1.0E-03 1.0E-03 ESC HUES6 Cells

E016 1.0E-03 1.0E-03 1.0E-03 ESC HUES64 Cells

E017 - - 1.0E-03 LUNG IMR90 fetal lung fibroblasts Cell Line

E018 5.0E-03 - 1.0E-03 IPSC iPSna15b Cells

E019 1.0E-03 1.6E-02 4.0E-03 IPSC iPSna18 Cells

E020 1.0E-03 1.0E-03 2.0E-03 IPSC iPSna20b Cells

E023 1.0E-03 1.0E-03 1.0E-03 FAT Mesenchymal Stem Cell Derived Adipocyte Cultured Cells

E024 - 1.0E-03 - ESC ESnaUCSF4 Cells

E025 1.0E-03 1.0E-03 2.2E-02 FAT Adipose Derived Mesenchymal Stem Cell Cultured Cells

E026 - 1.3E-02 3.0E-03 STROMAL_CONNECTIVE Bone Marrow Derived Cultured Mesenchymal Stem Cells

E027 - 2.2E-02 1.0E-03 BREAST Breast Myoepithelial Primary Cells

E028 5.0E-03 1.0E-03 1.0E-03 BREAST Breast variant Human Mammary Epithelial Cells (vHMEC)

E030 - - 3.0E-03 BLOOD Primary neutrophils from peripheral blood

E031 - - 1.4E-02 BLOOD Primary B cells from cord blood

E032 - 1.2E-02 - BLOOD Primary B cells from peripheral blood

E033 - 1.0E-03 - BLOOD Primary T cells from cord blood

E035 - 3.0E-02 1.0E-03 BLOOD Primary hematopoietic stem cells

E036 - - 6.0E-03 BLOOD Primary hematopoietic stem cells short term culture

E037 1.0E-03 1.0E-03 - BLOOD Primary T helper memory cells from peripheral blood 2

E038 1.0E-03 1.0E-03 - BLOOD Primary T helper naive cells from peripheral blood

E039 - 4.0E-03 1.0E-03 BLOOD Primary T helper naive cells from peripheral blood

E040 1.0E-03 1.0E-03 - BLOOD Primary T helper memory cells from peripheral blood 1

E041 1.0E-03 1.0E-03 9.0E-03 BLOOD Primary T helper cells PMAnaI stimulated

E042 5.0E-02 1.0E-03 - BLOOD Primary T helper 17 cells PMAnaI stimulated

E043 - - 1.0E-03 BLOOD Primary T helper cells from peripheral blood

E044 - - 1.0E-03 BLOOD Primary T regulatory cells from peripheral blood

E045 1.0E-03 1.0E-03 - BLOOD Primary T cells effector/memory enriched from peripheral blood

E046 - 1.0E-03 - BLOOD Primary natural Killer cells from peripheral blood

E047 - 1.0E-03 - BLOOD Primary T CD8+ naive cells from peripheral blood

E048 2.0E-03 1.0E-03 - BLOOD Primary T CD8+ memory cells from peripheral blood

E049 - 1.7E-02 6.0E-03 STROMAL_CONNECTIVE Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells

E051 - - 2.0E-03 BLOOD Primary hematopoietic stem cells GnaCSFnamobilized Male

E052 - 1.1E-02 3.7E-02 MUSCLE Muscle Satellite Cultured Cells

E055 - - 1.0E-03 SKIN Foreskin Fibroblast Primary Cells skin01

E056 - - 1.0E-03 SKIN Foreskin Fibroblast Primary Cells skin02

E057 - - 8.0E-03 SKIN Foreskin Keratinocyte Primary Cells skin02

E058 - - 1.0E-03 SKIN Foreskin Keratinocyte Primary Cells skin03

E059 - - 1.0E-03 SKIN Foreskin Melanocyte Primary Cells skin01

E061 - - 1.0E-03 SKIN Foreskin Melanocyte Primary Cells skin03

E062 - 1.0E-03 - BLOOD Primary mononuclear cells from peripheral blood

E063 1.0E-03 - - FAT Adipose Nuclei

E065 1.0E-03 1.0E-03 - VASCULAR Aorta

E066 1.0E-03 1.0E-03 - LIVER Liver

E067 - 1.0E-03 - BRAIN Brain Angular Gyrus

E070 - - 4.6E-02 BRAIN Brain Germinal Matrix

E074 - 2.0E-03 - BRAIN Brain Substantia Nigra

E075 - - 6.0E-03 GI_COLON Colonic Mucosa

E076 - 1.0E-03 - GI_COLON Colon Smooth Muscle

E077 1.7E-02 1.0E-02 3.0E-03 GI_DUODENUM Duodenum Mucosa

E078 1.0E-03 1.0E-03 3.0E-03 GI_DUODENUM Duodenum Smooth Muscle

E081 8.0E-03 1.0E-03 - BRAIN Fetal Brain Male

E082 - - 1.1E-02 BRAIN Fetal Brain Female

E083 1.0E-03 1.0E-03 - HEART Fetal Heart

E084 - 4.0E-03 - GI_INTESTINE Fetal Intestine Large

E086 - - 7.0E-03 KIDNEY Fetal Kidney

E087 - - 4.0E-03 PANCREAS Pancreatic Islets

E088 1.0E-03 1.0E-03 - LUNG Fetal Lung

E093 - 6.0E-03 - THYMUS Fetal Thymus

E095 1.0E-03 1.0E-03 - HEART Left Ventricle

E097 1.0E-03 1.0E-03 - OVARY Ovary

E099 - 1.0E-03 1.0E-03 PLACENTA Placenta Amnion

E100 1.0E-03 1.0E-03 - MUSCLE Psoas Muscle

E101 - 1.0E-03 1.0E-03 GI_RECTUM Rectal Mucosa Donor 29

E102 1.0E-03 1.0E-03 - GI_RECTUM Rectal Mucosa Donor 31

E103 - - 1.9E-02 GI_RECTUM Rectal Smooth Muscle

E104 1.0E-03 1.0E-03 2.2E-02 HEART Right Atrium

E105 - 2.0E-03 4.7E-02 HEART Right Ventricle

E106 1.1E-02 1.0E-03 - GI_COLON Sigmoid Colon

E109 - 1.0E-03 - GI_INTESTINE Small Intestine

E110 - 1.0E-03 - GI_STOMACH Stomach Mucosa

E111 - - 4.9E-02 GI_STOMACH Stomach Smooth Muscle

E112 - - 6.0E-03 THYMUS Thymus

E113 - - 4.0E-03 SPLEEN Spleen

E114 - 1.0E-03 2.0E-03 LUNG A549 EtOH 0.02pct Lung Carcinoma Cell Line

E115 - - 1.0E-03 BLOOD Dnd41 TCell Leukemia Cell Line

E116 - 1.1E-02 2.0E-03 BLOOD GM12878 Lymphoblastoid Cells

E117 - - 1.0E-03 CERVIX HeLanaS3 Cervical Carcinoma Cell Line

E118 - - 2.0E-03 LIVER HepG2 Hepatocellular Carcinoma Cell Line

E119 - 1.0E-03 9.0E-03 BREAST HMEC Mammary Epithelial Primary Cells

E120 - - 1.0E-03 MUSCLE HSMM Skeletal Muscle Myoblasts Cells

E121 - 1.0E-03 1.0E-03 MUSCLE HSMM cell derived Skeletal Muscle Myotubes Cells

E122 - 4.0E-02 1.2E-02 VASCULAR HUVEC Umbilical Vein Endothelial Primary Cells

E123 - 1.0E-03 1.0E-03 BLOOD K562 Leukemia Cells

E124 1.0E-03 1.0E-03 1.0E-03 BLOOD MonocytesnaCD14+ RO01746 Primary Cells

E125 1.0E-03 1.0E-03 - BRAIN NHnaA Astrocytes Primary Cells

E126 - 1.5E-02 - SKIN NHDFnaAd Adult Dermal Fibroblast Primary Cells

E127 - - 1.0E-03 SKIN NHEKnaEpidermal Keratinocyte Primary Cells

E128 - - 1.4E-02 LUNG NHLF Lung Fibroblast Primary Cells

E129 - - 3.0E-03 BONE Osteoblast Primary Cells

P-value



101 
 

(Table 15 continues) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EID Anatomy Standardized Epigenome Name

L1 Alu SVA

E001 1.0E-03 1.0E-03 1.0E-03 ESC ESnaI3 Cells

E002 1.0E-03 1.0E-03 - ESC ESnaWA7 Cells

E003 - 2.7E-02 1.0E-03 ESC H1 Cells

E004 - 1.0E-03 - ESC_DERIVED H1 BMP4 Derived Mesendoderm Cultured Cells

E005 - - 1.0E-03 ESC_DERIVED H1 BMP4 Derived Trophoblast Cultured Cells

E006 - - 3.4E-02 ESC_DERIVED H1 Derived Mesenchymal Stem Cells

E007 - - 1.3E-02 ESC_DERIVED H1 Derived Neuronal Progenitor Cultured Cells

E008 - - 1.0E-03 ESC H9 Cells

E009 - - 2.9E-02 ESC_DERIVED H9 Derived Neuronal Progenitor Cultured Cells

E010 - - 2.8E-02 ESC_DERIVED H9 Derived Neuron Cultured Cells

E011 1.0E-03 1.0E-03 1.0E-03 ESC_DERIVED hESC Derived CD184+ Endoderm Cultured Cells

E012 1.0E-03 2.0E-03 - ESC_DERIVED hESC Derived CD56+ Ectoderm Cultured Cells

E013 - - 2.0E-03 ESC_DERIVED hESC Derived CD56+ Mesoderm Cultured Cells

E014 1.0E-03 1.0E-03 1.0E-03 ESC HUES48 Cells

E015 1.0E-03 1.0E-03 1.0E-03 ESC HUES6 Cells

E016 1.0E-03 1.0E-03 1.0E-03 ESC HUES64 Cells

E017 - - 1.0E-03 LUNG IMR90 fetal lung fibroblasts Cell Line

E018 5.0E-03 - 1.0E-03 IPSC iPSna15b Cells

E019 1.0E-03 1.6E-02 4.0E-03 IPSC iPSna18 Cells

E020 1.0E-03 1.0E-03 2.0E-03 IPSC iPSna20b Cells

E023 1.0E-03 1.0E-03 1.0E-03 FAT Mesenchymal Stem Cell Derived Adipocyte Cultured Cells

E024 - 1.0E-03 - ESC ESnaUCSF4 Cells

E025 1.0E-03 1.0E-03 2.2E-02 FAT Adipose Derived Mesenchymal Stem Cell Cultured Cells

E026 - 1.3E-02 3.0E-03 STROMAL_CONNECTIVE Bone Marrow Derived Cultured Mesenchymal Stem Cells

E027 - 2.2E-02 1.0E-03 BREAST Breast Myoepithelial Primary Cells

E028 5.0E-03 1.0E-03 1.0E-03 BREAST Breast variant Human Mammary Epithelial Cells (vHMEC)

E030 - - 3.0E-03 BLOOD Primary neutrophils from peripheral blood

E031 - - 1.4E-02 BLOOD Primary B cells from cord blood

E032 - 1.2E-02 - BLOOD Primary B cells from peripheral blood

E033 - 1.0E-03 - BLOOD Primary T cells from cord blood

E035 - 3.0E-02 1.0E-03 BLOOD Primary hematopoietic stem cells

E036 - - 6.0E-03 BLOOD Primary hematopoietic stem cells short term culture

E037 1.0E-03 1.0E-03 - BLOOD Primary T helper memory cells from peripheral blood 2

E038 1.0E-03 1.0E-03 - BLOOD Primary T helper naive cells from peripheral blood

E039 - 4.0E-03 1.0E-03 BLOOD Primary T helper naive cells from peripheral blood

E040 1.0E-03 1.0E-03 - BLOOD Primary T helper memory cells from peripheral blood 1

E041 1.0E-03 1.0E-03 9.0E-03 BLOOD Primary T helper cells PMAnaI stimulated

E042 5.0E-02 1.0E-03 - BLOOD Primary T helper 17 cells PMAnaI stimulated

E043 - - 1.0E-03 BLOOD Primary T helper cells from peripheral blood

E044 - - 1.0E-03 BLOOD Primary T regulatory cells from peripheral blood

E045 1.0E-03 1.0E-03 - BLOOD Primary T cells effector/memory enriched from peripheral blood

E046 - 1.0E-03 - BLOOD Primary natural Killer cells from peripheral blood

E047 - 1.0E-03 - BLOOD Primary T CD8+ naive cells from peripheral blood

E048 2.0E-03 1.0E-03 - BLOOD Primary T CD8+ memory cells from peripheral blood

E049 - 1.7E-02 6.0E-03 STROMAL_CONNECTIVE Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells

E051 - - 2.0E-03 BLOOD Primary hematopoietic stem cells GnaCSFnamobilized Male

E052 - 1.1E-02 3.7E-02 MUSCLE Muscle Satellite Cultured Cells

E055 - - 1.0E-03 SKIN Foreskin Fibroblast Primary Cells skin01

E056 - - 1.0E-03 SKIN Foreskin Fibroblast Primary Cells skin02

E057 - - 8.0E-03 SKIN Foreskin Keratinocyte Primary Cells skin02

E058 - - 1.0E-03 SKIN Foreskin Keratinocyte Primary Cells skin03

E059 - - 1.0E-03 SKIN Foreskin Melanocyte Primary Cells skin01

E061 - - 1.0E-03 SKIN Foreskin Melanocyte Primary Cells skin03

E062 - 1.0E-03 - BLOOD Primary mononuclear cells from peripheral blood

E063 1.0E-03 - - FAT Adipose Nuclei

E065 1.0E-03 1.0E-03 - VASCULAR Aorta

E066 1.0E-03 1.0E-03 - LIVER Liver

E067 - 1.0E-03 - BRAIN Brain Angular Gyrus

E070 - - 4.6E-02 BRAIN Brain Germinal Matrix

E074 - 2.0E-03 - BRAIN Brain Substantia Nigra

E075 - - 6.0E-03 GI_COLON Colonic Mucosa

E076 - 1.0E-03 - GI_COLON Colon Smooth Muscle

E077 1.7E-02 1.0E-02 3.0E-03 GI_DUODENUM Duodenum Mucosa

E078 1.0E-03 1.0E-03 3.0E-03 GI_DUODENUM Duodenum Smooth Muscle

E081 8.0E-03 1.0E-03 - BRAIN Fetal Brain Male

E082 - - 1.1E-02 BRAIN Fetal Brain Female

E083 1.0E-03 1.0E-03 - HEART Fetal Heart

E084 - 4.0E-03 - GI_INTESTINE Fetal Intestine Large

E086 - - 7.0E-03 KIDNEY Fetal Kidney

E087 - - 4.0E-03 PANCREAS Pancreatic Islets

E088 1.0E-03 1.0E-03 - LUNG Fetal Lung

E093 - 6.0E-03 - THYMUS Fetal Thymus

E095 1.0E-03 1.0E-03 - HEART Left Ventricle

E097 1.0E-03 1.0E-03 - OVARY Ovary

E099 - 1.0E-03 1.0E-03 PLACENTA Placenta Amnion

E100 1.0E-03 1.0E-03 - MUSCLE Psoas Muscle

E101 - 1.0E-03 1.0E-03 GI_RECTUM Rectal Mucosa Donor 29

E102 1.0E-03 1.0E-03 - GI_RECTUM Rectal Mucosa Donor 31

E103 - - 1.9E-02 GI_RECTUM Rectal Smooth Muscle

E104 1.0E-03 1.0E-03 2.2E-02 HEART Right Atrium

E105 - 2.0E-03 4.7E-02 HEART Right Ventricle

E106 1.1E-02 1.0E-03 - GI_COLON Sigmoid Colon

E109 - 1.0E-03 - GI_INTESTINE Small Intestine

E110 - 1.0E-03 - GI_STOMACH Stomach Mucosa

E111 - - 4.9E-02 GI_STOMACH Stomach Smooth Muscle

E112 - - 6.0E-03 THYMUS Thymus

E113 - - 4.0E-03 SPLEEN Spleen

E114 - 1.0E-03 2.0E-03 LUNG A549 EtOH 0.02pct Lung Carcinoma Cell Line

E115 - - 1.0E-03 BLOOD Dnd41 TCell Leukemia Cell Line

E116 - 1.1E-02 2.0E-03 BLOOD GM12878 Lymphoblastoid Cells

E117 - - 1.0E-03 CERVIX HeLanaS3 Cervical Carcinoma Cell Line

E118 - - 2.0E-03 LIVER HepG2 Hepatocellular Carcinoma Cell Line

E119 - 1.0E-03 9.0E-03 BREAST HMEC Mammary Epithelial Primary Cells

E120 - - 1.0E-03 MUSCLE HSMM Skeletal Muscle Myoblasts Cells

E121 - 1.0E-03 1.0E-03 MUSCLE HSMM cell derived Skeletal Muscle Myotubes Cells

E122 - 4.0E-02 1.2E-02 VASCULAR HUVEC Umbilical Vein Endothelial Primary Cells

E123 - 1.0E-03 1.0E-03 BLOOD K562 Leukemia Cells

E124 1.0E-03 1.0E-03 1.0E-03 BLOOD MonocytesnaCD14+ RO01746 Primary Cells

E125 1.0E-03 1.0E-03 - BRAIN NHnaA Astrocytes Primary Cells

E126 - 1.5E-02 - SKIN NHDFnaAd Adult Dermal Fibroblast Primary Cells

E127 - - 1.0E-03 SKIN NHEKnaEpidermal Keratinocyte Primary Cells

E128 - - 1.4E-02 LUNG NHLF Lung Fibroblast Primary Cells

E129 - - 3.0E-03 BONE Osteoblast Primary Cells

P-value
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(Table 15 continues) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EID Anatomy Standardized Epigenome Name

L1 Alu SVA

E001 1.0E-03 1.0E-03 1.0E-03 ESC ESnaI3 Cells

E002 1.0E-03 1.0E-03 - ESC ESnaWA7 Cells

E003 - 2.7E-02 1.0E-03 ESC H1 Cells

E004 - 1.0E-03 - ESC_DERIVED H1 BMP4 Derived Mesendoderm Cultured Cells

E005 - - 1.0E-03 ESC_DERIVED H1 BMP4 Derived Trophoblast Cultured Cells

E006 - - 3.4E-02 ESC_DERIVED H1 Derived Mesenchymal Stem Cells

E007 - - 1.3E-02 ESC_DERIVED H1 Derived Neuronal Progenitor Cultured Cells

E008 - - 1.0E-03 ESC H9 Cells

E009 - - 2.9E-02 ESC_DERIVED H9 Derived Neuronal Progenitor Cultured Cells

E010 - - 2.8E-02 ESC_DERIVED H9 Derived Neuron Cultured Cells

E011 1.0E-03 1.0E-03 1.0E-03 ESC_DERIVED hESC Derived CD184+ Endoderm Cultured Cells

E012 1.0E-03 2.0E-03 - ESC_DERIVED hESC Derived CD56+ Ectoderm Cultured Cells

E013 - - 2.0E-03 ESC_DERIVED hESC Derived CD56+ Mesoderm Cultured Cells

E014 1.0E-03 1.0E-03 1.0E-03 ESC HUES48 Cells

E015 1.0E-03 1.0E-03 1.0E-03 ESC HUES6 Cells

E016 1.0E-03 1.0E-03 1.0E-03 ESC HUES64 Cells

E017 - - 1.0E-03 LUNG IMR90 fetal lung fibroblasts Cell Line

E018 5.0E-03 - 1.0E-03 IPSC iPSna15b Cells

E019 1.0E-03 1.6E-02 4.0E-03 IPSC iPSna18 Cells

E020 1.0E-03 1.0E-03 2.0E-03 IPSC iPSna20b Cells

E023 1.0E-03 1.0E-03 1.0E-03 FAT Mesenchymal Stem Cell Derived Adipocyte Cultured Cells

E024 - 1.0E-03 - ESC ESnaUCSF4 Cells

E025 1.0E-03 1.0E-03 2.2E-02 FAT Adipose Derived Mesenchymal Stem Cell Cultured Cells

E026 - 1.3E-02 3.0E-03 STROMAL_CONNECTIVE Bone Marrow Derived Cultured Mesenchymal Stem Cells

E027 - 2.2E-02 1.0E-03 BREAST Breast Myoepithelial Primary Cells

E028 5.0E-03 1.0E-03 1.0E-03 BREAST Breast variant Human Mammary Epithelial Cells (vHMEC)

E030 - - 3.0E-03 BLOOD Primary neutrophils from peripheral blood

E031 - - 1.4E-02 BLOOD Primary B cells from cord blood

E032 - 1.2E-02 - BLOOD Primary B cells from peripheral blood

E033 - 1.0E-03 - BLOOD Primary T cells from cord blood

E035 - 3.0E-02 1.0E-03 BLOOD Primary hematopoietic stem cells

E036 - - 6.0E-03 BLOOD Primary hematopoietic stem cells short term culture

E037 1.0E-03 1.0E-03 - BLOOD Primary T helper memory cells from peripheral blood 2

E038 1.0E-03 1.0E-03 - BLOOD Primary T helper naive cells from peripheral blood

E039 - 4.0E-03 1.0E-03 BLOOD Primary T helper naive cells from peripheral blood

E040 1.0E-03 1.0E-03 - BLOOD Primary T helper memory cells from peripheral blood 1

E041 1.0E-03 1.0E-03 9.0E-03 BLOOD Primary T helper cells PMAnaI stimulated

E042 5.0E-02 1.0E-03 - BLOOD Primary T helper 17 cells PMAnaI stimulated

E043 - - 1.0E-03 BLOOD Primary T helper cells from peripheral blood

E044 - - 1.0E-03 BLOOD Primary T regulatory cells from peripheral blood

E045 1.0E-03 1.0E-03 - BLOOD Primary T cells effector/memory enriched from peripheral blood

E046 - 1.0E-03 - BLOOD Primary natural Killer cells from peripheral blood

E047 - 1.0E-03 - BLOOD Primary T CD8+ naive cells from peripheral blood

E048 2.0E-03 1.0E-03 - BLOOD Primary T CD8+ memory cells from peripheral blood

E049 - 1.7E-02 6.0E-03 STROMAL_CONNECTIVE Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells

E051 - - 2.0E-03 BLOOD Primary hematopoietic stem cells GnaCSFnamobilized Male

E052 - 1.1E-02 3.7E-02 MUSCLE Muscle Satellite Cultured Cells

E055 - - 1.0E-03 SKIN Foreskin Fibroblast Primary Cells skin01

E056 - - 1.0E-03 SKIN Foreskin Fibroblast Primary Cells skin02

E057 - - 8.0E-03 SKIN Foreskin Keratinocyte Primary Cells skin02

E058 - - 1.0E-03 SKIN Foreskin Keratinocyte Primary Cells skin03

E059 - - 1.0E-03 SKIN Foreskin Melanocyte Primary Cells skin01

E061 - - 1.0E-03 SKIN Foreskin Melanocyte Primary Cells skin03

E062 - 1.0E-03 - BLOOD Primary mononuclear cells from peripheral blood

E063 1.0E-03 - - FAT Adipose Nuclei

E065 1.0E-03 1.0E-03 - VASCULAR Aorta

E066 1.0E-03 1.0E-03 - LIVER Liver

E067 - 1.0E-03 - BRAIN Brain Angular Gyrus

E070 - - 4.6E-02 BRAIN Brain Germinal Matrix

E074 - 2.0E-03 - BRAIN Brain Substantia Nigra

E075 - - 6.0E-03 GI_COLON Colonic Mucosa

E076 - 1.0E-03 - GI_COLON Colon Smooth Muscle

E077 1.7E-02 1.0E-02 3.0E-03 GI_DUODENUM Duodenum Mucosa

E078 1.0E-03 1.0E-03 3.0E-03 GI_DUODENUM Duodenum Smooth Muscle

E081 8.0E-03 1.0E-03 - BRAIN Fetal Brain Male

E082 - - 1.1E-02 BRAIN Fetal Brain Female

E083 1.0E-03 1.0E-03 - HEART Fetal Heart

E084 - 4.0E-03 - GI_INTESTINE Fetal Intestine Large

E086 - - 7.0E-03 KIDNEY Fetal Kidney

E087 - - 4.0E-03 PANCREAS Pancreatic Islets

E088 1.0E-03 1.0E-03 - LUNG Fetal Lung

E093 - 6.0E-03 - THYMUS Fetal Thymus

E095 1.0E-03 1.0E-03 - HEART Left Ventricle

E097 1.0E-03 1.0E-03 - OVARY Ovary

E099 - 1.0E-03 1.0E-03 PLACENTA Placenta Amnion

E100 1.0E-03 1.0E-03 - MUSCLE Psoas Muscle

E101 - 1.0E-03 1.0E-03 GI_RECTUM Rectal Mucosa Donor 29

E102 1.0E-03 1.0E-03 - GI_RECTUM Rectal Mucosa Donor 31

E103 - - 1.9E-02 GI_RECTUM Rectal Smooth Muscle

E104 1.0E-03 1.0E-03 2.2E-02 HEART Right Atrium

E105 - 2.0E-03 4.7E-02 HEART Right Ventricle

E106 1.1E-02 1.0E-03 - GI_COLON Sigmoid Colon

E109 - 1.0E-03 - GI_INTESTINE Small Intestine

E110 - 1.0E-03 - GI_STOMACH Stomach Mucosa

E111 - - 4.9E-02 GI_STOMACH Stomach Smooth Muscle

E112 - - 6.0E-03 THYMUS Thymus

E113 - - 4.0E-03 SPLEEN Spleen

E114 - 1.0E-03 2.0E-03 LUNG A549 EtOH 0.02pct Lung Carcinoma Cell Line

E115 - - 1.0E-03 BLOOD Dnd41 TCell Leukemia Cell Line

E116 - 1.1E-02 2.0E-03 BLOOD GM12878 Lymphoblastoid Cells

E117 - - 1.0E-03 CERVIX HeLanaS3 Cervical Carcinoma Cell Line

E118 - - 2.0E-03 LIVER HepG2 Hepatocellular Carcinoma Cell Line

E119 - 1.0E-03 9.0E-03 BREAST HMEC Mammary Epithelial Primary Cells

E120 - - 1.0E-03 MUSCLE HSMM Skeletal Muscle Myoblasts Cells

E121 - 1.0E-03 1.0E-03 MUSCLE HSMM cell derived Skeletal Muscle Myotubes Cells

E122 - 4.0E-02 1.2E-02 VASCULAR HUVEC Umbilical Vein Endothelial Primary Cells

E123 - 1.0E-03 1.0E-03 BLOOD K562 Leukemia Cells

E124 1.0E-03 1.0E-03 1.0E-03 BLOOD MonocytesnaCD14+ RO01746 Primary Cells

E125 1.0E-03 1.0E-03 - BRAIN NHnaA Astrocytes Primary Cells

E126 - 1.5E-02 - SKIN NHDFnaAd Adult Dermal Fibroblast Primary Cells

E127 - - 1.0E-03 SKIN NHEKnaEpidermal Keratinocyte Primary Cells

E128 - - 1.4E-02 LUNG NHLF Lung Fibroblast Primary Cells

E129 - - 3.0E-03 BONE Osteoblast Primary Cells

P-value
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(Table 15 continues) 

 

 

 

 

 

 

 

 

 

 

EID Anatomy Standardized Epigenome Name

L1 Alu SVA

E001 1.0E-03 1.0E-03 1.0E-03 ESC ESnaI3 Cells

E002 1.0E-03 1.0E-03 - ESC ESnaWA7 Cells

E003 - 2.7E-02 1.0E-03 ESC H1 Cells

E004 - 1.0E-03 - ESC_DERIVED H1 BMP4 Derived Mesendoderm Cultured Cells

E005 - - 1.0E-03 ESC_DERIVED H1 BMP4 Derived Trophoblast Cultured Cells

E006 - - 3.4E-02 ESC_DERIVED H1 Derived Mesenchymal Stem Cells

E007 - - 1.3E-02 ESC_DERIVED H1 Derived Neuronal Progenitor Cultured Cells

E008 - - 1.0E-03 ESC H9 Cells

E009 - - 2.9E-02 ESC_DERIVED H9 Derived Neuronal Progenitor Cultured Cells

E010 - - 2.8E-02 ESC_DERIVED H9 Derived Neuron Cultured Cells

E011 1.0E-03 1.0E-03 1.0E-03 ESC_DERIVED hESC Derived CD184+ Endoderm Cultured Cells

E012 1.0E-03 2.0E-03 - ESC_DERIVED hESC Derived CD56+ Ectoderm Cultured Cells

E013 - - 2.0E-03 ESC_DERIVED hESC Derived CD56+ Mesoderm Cultured Cells

E014 1.0E-03 1.0E-03 1.0E-03 ESC HUES48 Cells

E015 1.0E-03 1.0E-03 1.0E-03 ESC HUES6 Cells

E016 1.0E-03 1.0E-03 1.0E-03 ESC HUES64 Cells

E017 - - 1.0E-03 LUNG IMR90 fetal lung fibroblasts Cell Line

E018 5.0E-03 - 1.0E-03 IPSC iPSna15b Cells

E019 1.0E-03 1.6E-02 4.0E-03 IPSC iPSna18 Cells

E020 1.0E-03 1.0E-03 2.0E-03 IPSC iPSna20b Cells

E023 1.0E-03 1.0E-03 1.0E-03 FAT Mesenchymal Stem Cell Derived Adipocyte Cultured Cells

E024 - 1.0E-03 - ESC ESnaUCSF4 Cells

E025 1.0E-03 1.0E-03 2.2E-02 FAT Adipose Derived Mesenchymal Stem Cell Cultured Cells

E026 - 1.3E-02 3.0E-03 STROMAL_CONNECTIVE Bone Marrow Derived Cultured Mesenchymal Stem Cells

E027 - 2.2E-02 1.0E-03 BREAST Breast Myoepithelial Primary Cells

E028 5.0E-03 1.0E-03 1.0E-03 BREAST Breast variant Human Mammary Epithelial Cells (vHMEC)

E030 - - 3.0E-03 BLOOD Primary neutrophils from peripheral blood

E031 - - 1.4E-02 BLOOD Primary B cells from cord blood

E032 - 1.2E-02 - BLOOD Primary B cells from peripheral blood

E033 - 1.0E-03 - BLOOD Primary T cells from cord blood

E035 - 3.0E-02 1.0E-03 BLOOD Primary hematopoietic stem cells

E036 - - 6.0E-03 BLOOD Primary hematopoietic stem cells short term culture

E037 1.0E-03 1.0E-03 - BLOOD Primary T helper memory cells from peripheral blood 2

E038 1.0E-03 1.0E-03 - BLOOD Primary T helper naive cells from peripheral blood

E039 - 4.0E-03 1.0E-03 BLOOD Primary T helper naive cells from peripheral blood

E040 1.0E-03 1.0E-03 - BLOOD Primary T helper memory cells from peripheral blood 1

E041 1.0E-03 1.0E-03 9.0E-03 BLOOD Primary T helper cells PMAnaI stimulated

E042 5.0E-02 1.0E-03 - BLOOD Primary T helper 17 cells PMAnaI stimulated

E043 - - 1.0E-03 BLOOD Primary T helper cells from peripheral blood

E044 - - 1.0E-03 BLOOD Primary T regulatory cells from peripheral blood

E045 1.0E-03 1.0E-03 - BLOOD Primary T cells effector/memory enriched from peripheral blood

E046 - 1.0E-03 - BLOOD Primary natural Killer cells from peripheral blood

E047 - 1.0E-03 - BLOOD Primary T CD8+ naive cells from peripheral blood

E048 2.0E-03 1.0E-03 - BLOOD Primary T CD8+ memory cells from peripheral blood

E049 - 1.7E-02 6.0E-03 STROMAL_CONNECTIVE Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells

E051 - - 2.0E-03 BLOOD Primary hematopoietic stem cells GnaCSFnamobilized Male

E052 - 1.1E-02 3.7E-02 MUSCLE Muscle Satellite Cultured Cells

E055 - - 1.0E-03 SKIN Foreskin Fibroblast Primary Cells skin01

E056 - - 1.0E-03 SKIN Foreskin Fibroblast Primary Cells skin02

E057 - - 8.0E-03 SKIN Foreskin Keratinocyte Primary Cells skin02

E058 - - 1.0E-03 SKIN Foreskin Keratinocyte Primary Cells skin03

E059 - - 1.0E-03 SKIN Foreskin Melanocyte Primary Cells skin01

E061 - - 1.0E-03 SKIN Foreskin Melanocyte Primary Cells skin03

E062 - 1.0E-03 - BLOOD Primary mononuclear cells from peripheral blood

E063 1.0E-03 - - FAT Adipose Nuclei

E065 1.0E-03 1.0E-03 - VASCULAR Aorta

E066 1.0E-03 1.0E-03 - LIVER Liver

E067 - 1.0E-03 - BRAIN Brain Angular Gyrus

E070 - - 4.6E-02 BRAIN Brain Germinal Matrix

E074 - 2.0E-03 - BRAIN Brain Substantia Nigra

E075 - - 6.0E-03 GI_COLON Colonic Mucosa

E076 - 1.0E-03 - GI_COLON Colon Smooth Muscle

E077 1.7E-02 1.0E-02 3.0E-03 GI_DUODENUM Duodenum Mucosa

E078 1.0E-03 1.0E-03 3.0E-03 GI_DUODENUM Duodenum Smooth Muscle

E081 8.0E-03 1.0E-03 - BRAIN Fetal Brain Male

E082 - - 1.1E-02 BRAIN Fetal Brain Female

E083 1.0E-03 1.0E-03 - HEART Fetal Heart

E084 - 4.0E-03 - GI_INTESTINE Fetal Intestine Large

E086 - - 7.0E-03 KIDNEY Fetal Kidney

E087 - - 4.0E-03 PANCREAS Pancreatic Islets

E088 1.0E-03 1.0E-03 - LUNG Fetal Lung

E093 - 6.0E-03 - THYMUS Fetal Thymus

E095 1.0E-03 1.0E-03 - HEART Left Ventricle

E097 1.0E-03 1.0E-03 - OVARY Ovary

E099 - 1.0E-03 1.0E-03 PLACENTA Placenta Amnion

E100 1.0E-03 1.0E-03 - MUSCLE Psoas Muscle

E101 - 1.0E-03 1.0E-03 GI_RECTUM Rectal Mucosa Donor 29

E102 1.0E-03 1.0E-03 - GI_RECTUM Rectal Mucosa Donor 31

E103 - - 1.9E-02 GI_RECTUM Rectal Smooth Muscle

E104 1.0E-03 1.0E-03 2.2E-02 HEART Right Atrium

E105 - 2.0E-03 4.7E-02 HEART Right Ventricle

E106 1.1E-02 1.0E-03 - GI_COLON Sigmoid Colon

E109 - 1.0E-03 - GI_INTESTINE Small Intestine

E110 - 1.0E-03 - GI_STOMACH Stomach Mucosa

E111 - - 4.9E-02 GI_STOMACH Stomach Smooth Muscle

E112 - - 6.0E-03 THYMUS Thymus

E113 - - 4.0E-03 SPLEEN Spleen

E114 - 1.0E-03 2.0E-03 LUNG A549 EtOH 0.02pct Lung Carcinoma Cell Line

E115 - - 1.0E-03 BLOOD Dnd41 TCell Leukemia Cell Line

E116 - 1.1E-02 2.0E-03 BLOOD GM12878 Lymphoblastoid Cells

E117 - - 1.0E-03 CERVIX HeLanaS3 Cervical Carcinoma Cell Line

E118 - - 2.0E-03 LIVER HepG2 Hepatocellular Carcinoma Cell Line

E119 - 1.0E-03 9.0E-03 BREAST HMEC Mammary Epithelial Primary Cells

E120 - - 1.0E-03 MUSCLE HSMM Skeletal Muscle Myoblasts Cells

E121 - 1.0E-03 1.0E-03 MUSCLE HSMM cell derived Skeletal Muscle Myotubes Cells

E122 - 4.0E-02 1.2E-02 VASCULAR HUVEC Umbilical Vein Endothelial Primary Cells

E123 - 1.0E-03 1.0E-03 BLOOD K562 Leukemia Cells

E124 1.0E-03 1.0E-03 1.0E-03 BLOOD MonocytesnaCD14+ RO01746 Primary Cells

E125 1.0E-03 1.0E-03 - BRAIN NHnaA Astrocytes Primary Cells

E126 - 1.5E-02 - SKIN NHDFnaAd Adult Dermal Fibroblast Primary Cells

E127 - - 1.0E-03 SKIN NHEKnaEpidermal Keratinocyte Primary Cells

E128 - - 1.4E-02 LUNG NHLF Lung Fibroblast Primary Cells

E129 - - 3.0E-03 BONE Osteoblast Primary Cells

P-value
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3.4. Discussion  

 

A comparison between the genomic distributions of reference RTEs (fixed) and 

non-reference RTEs (polymorphic) was conducted. Polymorphic RTEs, 

specifically rare insertions (MAF ≥ 1%), experience selection to a lesser extent 

than ancient RTE insertions that are now fixed in the human genome. As such, 

the genomic landscape of non-reference RTEs was expected to be in-between 

that observed for fixed endogenous elements and de novo insertions that 

potentially reflect integration site preference. To this end, a database of 

polymorphic non-reference RTEs was curated. The in-house curated database 

is, to the best of our knowledge, the most comprehensive list of non-reference 

RTEs in the human genome, encompassing 39,798 RTE insertions identified in 

over 7,000 individuals. The landscape of L1, Alu, and SVA elements in the human 

genome was investigated by studying the distribution of RTEs within the following 

genomic features: 

I. Chromosomal distribution; investigated to determine whether the 

properties of any chromosome allow it to harbour more RTE insertions. 

II. Local base composition and functionality; investigated to understand the 

potential effect of RTE insertions on genome function and stability. 

III. Local recombination rate; investigated as there is a strong positive 

correlation between selection and recombination, and also because of the 

risk NAHR between homologous RTEs can pose on genome integrity and 

rearrangement.    
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IV. Chromatin accessibility; investigated to understand whether RTEs 

integrate preferentially into regions that allow them to propagate and 

create new insertions.   

Overall, the distribution of non-reference RTEs do display aspects of the interplay 

between integration preference and differential selection. Reference and non-

reference RTEs are characterised by unique genomic distributions, with 

polymorphic non-reference RTEs displaying a closer genomic landscape to de 

novo insertions than reference RTEs. On average, and in agreement with 

previous studies, non-reference L1 and Alu elements were similarly distributed in 

GC-poor, low activity regions, while non-reference SVAs accumulated in GC-rich, 

high activity regions of the human genome. Below is a discussion of the 

distribution results for each of the studied RTE elements in each of the studied 

genomic features.  

 

3.4.1. Chromosomal distribution  

 

The distribution of L1 elements is in line with previous studies. The strong linear 

correlation between the number of non-reference L1s and chromosome size is 

consistent with the chromosome-wide distribution of de novo L1s (Flasch et al., 

2019; Sultana et al., 2019; Chen et al., 2020). The chromosomal distribution 

analysis shows an over-representation of reference L1 elements on the X-

chromosome, which have been associated with its role in propagating the X-

inactivation signal (Lyon, 1988; Bailey, et al., 2000). In contrast, non-reference 

L1s are not significantly enriched on the X-chromosome (Figure 9). The lack of 

obvious enrichment of non-reference L1s on the X-chromosome is consistent 

with the reported distribution of de novo L1 insertions (Sultana et al., 2019; Chen 
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et al., 2020), confirming that the accumulation of reference L1s in the X-

chromosome results from post-integration selection processes. Non-reference 

L1s are slightly over-represented in chromosome 4, consistent with a previous 

study analysing the distribution of 344 non-ref L1s (Boissinot et al., 2004). 

Boissinot et al. (2004) suggested that the observed bias of L1Hs elements on 

chromosome 4 is not likely due to preferential integration on this chromosome, 

but rather a reflection of the amplification of active L1 elements. The 

chromosomal distribution of de novo insertions obtained using engineered L1s 

supports this suggestion. Two recent studies reported an over-representation of 

de novo L1s in chromosome 1 and chromosome 5 (Sultana et al., 2019 and 

Flasch et al., 2019, respectively), suggesting that the integration of L1 elements 

is not perfectly random. The accumulation of non-reference L1s in low GC regions 

of the genome is consistent with the non-random distribution reported for de novo 

L1 elements. The study by Sultana et al. (2019) attributed the biased integration 

of L1s in GC-poor regions to pre-existing biases in the distribution of the L1 ORF1 

target motif. Nevertheless, it was found that new L1s integrate into higher GC 

regions and broadly target all genomic regions in comparison to endogenous L1s, 

a difference that was predominantly attributed to evolutionary selection (Flasch 

et al., 2019; Sultana et al., 2019; Chen et al., 2020).  

Sultana et al. (2019) reported that de novo L1s are not significantly enriched or 

depleted in gene regions. In contrast, non-reference L1Hs elements, endogenous 

in HeLa-S3 cells and reference L1s, are significantly depleted in genic regions 

and enriched in low activity regions. In addition, Chen et al. (2020) reported that 

the distribution of polymorphic L1s in both gene and active regions is closer to 

the distribution of reference L1Hs elements than de novo L1s. The reported 

significant depletion of polymorphic L1s in active regions is consistent with the 
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results of this study, yet their comparison with the control dataset suggests less 

significant depletion in contrast to the depletion of reference L1s. As such, the 

results of this study do show that selection pressures acting on polymorphic L1s 

are in-between those of de novo and fixed L1 elements.  

Previous studies investigating the genomic distribution of Alu elements have 

suggested the occurrence of differences between the density of Alus from 

different evolutionary families across different chromosomes (Grover et al., 2004; 

Kim et al., 2004). Grover et al. (2004) when examining Alu elements from repeat 

masker (AluS, AluJ, and Alu Y) reported that, in terms of Alu elements density, 

chromosome 19 is the densest and chromosome Y is the least dense 

chromosome. When examining the reference Alu density across chromosomes 

in this study and others, the same trend is observed, and chromosome 19 

appears to hold an increased Alu density in comparison to its size (Figure 10). 

Reference SVAs are also overrepresented on chromosome 19 (Figure 11). In line 

with previous studies, the higher density of fixed Alu and SVA elements on 

chromosome 19 is proportional to the high gene density of this chromosome, as 

shown by the strong correlation between Alu and SVA density with gene density 

(Lander et al., 2001; Grover et al., 2004; Wagstaff et al., 2012; Tang et al., 2018; 

Gianfrancesco et al., 2019).  

In contrast to previous studies, non-reference Alu and SVA elements appear to 

be underrepresented on the X-chromosome (Figures 10 & 11). Wang et al. (2006) 

and Cotton et al. (2014) both reported a positive correlation between the Alu 

content of genes on the X-chromosome and their ability to escape the inactivation 

signal. These observations may explain the under-representation of non-

reference Alu and SVA elements on the X-chromosome, given that SVA elements 
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contain an Alu-like segment in their sequence. Another possibility for the 

underrepresentation of non-reference Alu and SVA elements on the X-

chromosome may be due to sampling bias caused by the heterozygosity of the 

X-chromosome in males, however, this is unlikely since this phenomenon was 

not observed for the distribution of non-reference L1 elements. 

3.4.2.  Local GC content  

 

Alu and SVA elements are both non-autonomous RTEs that use the L1 

machinery for transposition, yet SVAs and reference Alu elements (Figures 13 

and 14) accumulated in GC-rich regions while L1s (Figure 12) and non-reference 

Alus accumulated into AT-rich regions. L1 and Alu elements initially integrate into 

AT-rich regions as the target site of the L1 ORF2 (5’-TTTT/AA-3’) are more 

frequent in these genomic regions (Costantini et al., 2012). In contrast, SVA 

elements preferentially integrate into GC-rich regions, even though their target 

site resembles the L1 consensus sequence (Raiz et al., 2012). The reasons 

behind the preferential integration of SVA elements in GC-rich regions are yet to 

be understood. Nevertheless, the shift in the GC distribution pattern observed 

between reference and non-reference RTEs has been associated with natural 

selection. Alu elements in GC-rich regions were subject to positive selection, due 

to their role in regulating gene expression and increasing gene stability 

(Costantini et al., 2012). This explains the shift in GC distribution patterns 

observed between reference and non-reference Alu elements (Figure 13). 

Another explanation is that negative selection mostly acts on Alu elements in AT-

rich regions, as their removal from these regions is less likely to be harmful to the 

genome function than the removal of Alu elements in GC-rich/gene-rich regions 

(Abrusán & Krambeck, 2006). Either explanation would have resulted in shifting 
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the distribution pattern of Alu elements over time to higher GC regions and would 

explain the over-representation of reference Alu elements in intron regions 

(Figures 13 & 15). The removal of deleterious L1 and SVA elements by unequal 

crossover is thought to contribute to the shifting of the GC distribution pattern of 

these elements (Wang et al., 2005; Song & Boissinot, 2007). Nevertheless, the 

preferential integration of SVA elements in GC-rich regions, together with their 

low density in the human genome (Figure 11.B), gives them a better chance of 

becoming fixed in GC-rich gene-rich regions. This may explain the over-

representation of SVA elements in intron regions, more so than expected by 

chance (Figure 15, Table 12).  

 

3.4.3. Distribution in genomic regions of functional relevance  

 

The functional impact of RTEs on genome function was examined by analysing 

their location in relation to known genes and enhancer regions. Non-reference L1 

and SVA elements are more frequent in functional regions than their reference 

counterparts (Figures 15 and 16). The shift in the distribution of L1 and SVA 

elements in functional genomic regions with time has been attributed to the role 

of purifying selection in removing deleterious insertions from the genome 

(Boissinot et al., 2001; Belle et al., 2005; Wang et al., 2005). The over-

representation of L1 elements in gene-free regions has been suggested to be 

due to its retrotransposition mechanism, that may have evolved to target what 

was called “genomic safe havens” (Levin and Moran, 2014), to minimise the 

damage of its transposition on the genome function of its host (Cost & Boeke, 

1998; Levin & Moran, 2014). A more recent study analysing the target sites of 

1,565 L1 insertions that had been experimentally induced suggested that pre-
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existing biases in the distribution of the L1 ORF2 motif in the human genome may 

have impacted the observed distribution of recent L1 insertions (Sultana et al., 

2019).  

Reference Alu elements are also over-represented in intronic and enhancer 

regions. The over-representation of reference Alus in intron and enhancer 

regions suggests their preferential retention in functional regions, possibly due to 

their positive effect on genome function. This observation is in line with previous 

studies that suggested the contribution of ancient Alu elements in gene 

regulation, by providing genes with promoters and enhancers (Cordaux & Batzer, 

2009; Su et al., 2014; Trizzino, Kapusta, & Brown, 2018). New Alu insertions do 

not necessarily offer ‘‘ready-to-use’’ regulatory elements (Warnefors et al., 2010), 

but their potential ability to gain functional advantages may explain the over-

representation of non-reference Alu elements in intron regions compared to the 

control distribution. Non-reference SVA elements are over-represented in intron 

and enhancer regions, compared with the control distribution and the distribution 

of reference SVAs (Figures 15 & 16, Table 12). These results suggest that SVA 

elements in functional regions are subject to purifying selection due to their 

negative impact on genome function. The preferential integration of SVA 

elements in gene regions has been previously reported in the literature (Raiz et 

al., 2012; Savage et al., 2013; Gianfrancesco et al., 2019).  

SVA elements have the potential to influence genome function and regulation 

through a variety of mechanisms (Kwon et al., 2013; Savage et al., 2013; Bragg 

et al., 2017; Gianfrancesco et al., 2017; Pontis et al., 2019). The GC-rich 

sequence of SVAs gives them the potential to create G-quadruplexes (G4) 

structures (Savage et al., 2013; Bragg et al., 2017). These secondary DNA 
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structures are strongly associated with their negative impact on genomic and 

epigenomic stability (Bragg et al., 2017; Spiegel, et al., 2020). Evidence of the 

ongoing co-evolution of SVA retrotransposons and zinc finger genes that are 

known to suppress SVA mobilisation, supporting the harmful effect of SVA 

insertions on genome function and integrity (Jacobs et al., 2014; Gianfrancesco 

et al., 2019).  

 

3.4.4. Local recombination rate 

 

The distribution of RTEs in regions of different recombination rates may be 

associated with their local GC content, due to the significant correlation between 

recombination rate and local base composition. Local GC content is positively 

correlated with recombination rate, while local AT content correlates negatively 

with recombination rate (Kong et al., 2002; Mugal et al., 2015). Consistent with 

previous studies, L1 and SVA elements shift to regions associated with lower 

recombination rate, while Alu elements shift to regions of higher recombination 

rate with age (Lander et al., 2001; Medstrand et al., 2002; Wang et al., 2005; 

Myers et al., 2008). In contrast, Alu elements shift to genomic regions of higher 

recombination rate with age (Figure 17). This observed shift may be associated 

with the reduced strength of selection in genomic regions of low recombination 

rates (Boissinot et al., 2001; Abrusán & Krambeck, 2006; Dolgin & Charlesworth, 

2008) and complements the observed shift in the GC distribution pattern of L1 

and SVA elements with time to regions of lower GC-content (Figures 12 and 14). 

In comparison, the observed shift in local recombination rate of Alus from cold to 

intermediate with age reflects their preferential retention in gene regions, as 

mentioned above. Interestingly, Abrusán & Krambeck (2006) reported the lack of 
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difference in the distribution of L1 and Alu elements over time in gene-poor 

regions on chromosomes 4 and X, suggesting the importance of genes in shaping 

the genomic distribution of RTEs in the genome. In addition, a recent review 

article has reported the growing number of studies supporting the co-evolution 

between RTEs integration and local recombination rate, implicating the 

importance of transposons in the evolution of the genome structure and 

recombination rates (Kent et al., 2017).  

 

3.4.5. Local chromatin accessibility 

 

The distribution of RTEs within active (euchromatin) and repressed 

(heterochromatin) chromatin states were investigated. Reference SVAs are the 

highest of the RTEs in heterochromatin regions, followed by non-reference L1s. 

In contrast, non-reference SVAs are the most predominant RTEs in euchromatin 

regions followed by reference Alus and non-reference L1s (Figure 18). The 

differential distribution of reference and non-reference SVAs in genomic regions 

of different chromatin accessibility, suggests the negative effect of SVA 

transposition on the fitness of its host. These observations are consistent with the 

continuous co-evolution of zinc finger genes with SVA elements to suppress SVA 

activity. The high fraction of reference Alus in euchromatin domains is consistent 

with its accumulation in intron regions. Non-reference L1 elements are more 

frequent in both euchromatin and heterochromatin domains compared to the 

reference L1s, however, they are more frequent in heterochromatin domains. 

These results are inconsistent with that of a recent study reporting that new L1 

insertions are not affected by chromatin states (Sultana et al., 2019). The 

discrepancy between both studies may be due to this study using an average 
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percentage of L1s from different cell types that belong to the same group of 

tissue, while Sultana et al. (2019) investigated the insertion of de novo L1 

insertions in HeLa S3 cells. Sultana et al. (2019) have also suggested that L1 

integration is influenced by replication timing of the target region. Chromatin 

states of different cell types may potentially have a different effect in shaping the 

integration pattern of L1 insertions.  

 

 

3.4.6. Study overview and concluding remarks 

 

This chapter demonstrates the differential genomic distribution of reference RTEs 

that are fixed in the human genome, and non-reference RTEs that are 

polymorphic in the population. The current study builds on previous reports, 

supporting the role of selection in shaping the genomic distribution of endogenous 

elements, while revealing aspects of the interplay between integration preference 

and selection forces in shaping the distribution of polymorphic RTEs. 

Nevertheless, the genomic distribution of non-reference elements suggests that 

RTE activity has the potential to cause detrimental effects on genome function 

and increase susceptibility to multifactorial disorders, made evident by their ready 

occurrence in regions of functional relevance. In theory, RTE activity has the 

potential to affect all human diseases. Indeed, RTE activity has already been 

associated with several complex disorders such as cancer (Burns, 2017), ALS 

(Savage et al., 2019), schizophrenia and Alzheimer’s disease (Guffanti et al., 

2014; Terry et al., 2020). We hypothesise that SVA transposons in particular pose 

the largest detrimental effect on the human genome, based on the increased 

accumulation of non-reference SVAs in active regions in comparison to non-
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reference L1 and Alu elements. This finding is significant since it demonstrates 

the importance of co-analysing the distribution of all active RTE elements 

simultaneously, in order to achieve a comprehensive understanding about the 

effect of all RTE activity on genome function as a whole. 

Although this study analysed a larger sample size than any previous study, 

potentially analysing more of the most recent insertions of low and rare allelic 

frequencies, the heterogeneity of allele frequency may have masked some 

variations in the genomic distribution of RTE elements. Future in-depth analysis 

of the genomic distribution of RTEs separated into groups of similar allele 

frequencies is required to gain a deeper understanding regarding the interplay 

between selection and integration preference of the currently amplifying RTE 

families. In addition, a recent analysis of de novo SVA insertions in culture, similar 

to the recent analyses of de novo engineered L1s (Flasch et al., 2019; Sultana et 

al., 2019; Chen et al., 2020), is required to gain a better understanding about the 

integration preference of SVA elements in gene-rich regions.  

 

 

 

 

 

 

 

 



115 
 

 

 

4. RTEs as potential variants of disease 

 

4.1. Introduction 
 

Structural variants (SVs), defined as sequence variations (> 50bp) between 

individual genomes (Sudmant et al., 2015), are an important class of genomic 

variations that account for most base pair (bp) differences between the genomes 

of individuals within a population. SVs include, amongst other types, deletions, 

duplications, copy-number variations (CNVs), and insertions (Feuk et al., 2006; 

Stankiewicz and Lupski, 2010; Weischenfeldt et al., 2013; Escaramís et al., 

2015). These types of genomic variations are known to influence gene expression 

and pathological traits in humans (Feuk et al., 2006; Weischenfeldt et al., 2013; 

Chiang et al., 2017). As such, SVs have been proposed as a potential source of 

genomic variants accountable for part of the missing heritability problem of 

complex traits.  

 

4.1.1. The missing heritability of complex traits: 

 

Complex traits are traits determined by multiple genetic and environmental 

factors. Such traits are more common than monogenic traits (i.e., traits influenced 

by a single allele/gene) and show a continuous range of phenotypic 

characteristics, influenced by the interplay between the genetic and 

environmental factors (Rowe and Tenesa, 2012; Barton et al., 2017). Examples 

of complex traits include natural hair colour, height, body mass index (BMI), and 

many diseases, including Autism spectrum disorders (ASDs), Parkinson's 

disease, and Alzheimer's disease. Genome-wide association studies (GWAS) 
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aim to identify associations between genetic variants, typically single-nucleotide 

polymorphisms (SNPs), and the observed phenotypic variation. However, for 

many complex traits, the cumulative effect size of all genome-wide significant 

SNPs (P < 5x10-8) can only explain a small portion of the trait heritability as 

inferred from family-based studies, thus raising the missing heritability issue 

(Maher, 2008; Manolio et al., 2009; Rowe and Tenesa, 2012). 

Two distinct models have been proposed for explaining the missing heritability of 

complex traits. The first model suggests that complex traits are controlled by 

many common variants, each contributing an infinitely small additive effect on the 

observed phenotype (Gibson, 2012; Hu et al., 2012; Weiner et al., 2017). This 

model proposes that variants with an effect size too small to be significant are 

usually missed from association studies, thus, heritability is not so much missing 

but rather hidden beneath the stringent significant level required by GWAS. 

Recent studies have indeed demonstrated that the majority of the missing 

heritability for several complex traits is recoverable from many variants of small 

effect sizes (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014; Wood et al., 2014; Abraham et al., 2016). The second model 

suggests that the missing heritability is largely caused by a smaller number of 

large-effect rare variants that are neither well tagged by local SNPs nor covered 

by commercial SNP arrays that are typically used in GWAS (Dickson et al., 2010; 

Gibson, 2012; Yang et al., 2015). It has been suggested that both models are 

likely to contribute by different degrees to the heritability of complex traits and 

disorders (Gibson, 2012; Agarwala et al., 2013). Recent studies have confirmed 

that integrating both common and rare variants in the heritability analysis does 

recover a larger proportion of the expected heritability for several traits (Weiner 

et al., 2017; Wainschtein et al., 2019). However, heritability estimates derived 
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from GWAS can be further enhanced by incorporating other types of genomic 

variations that continue to segregate in humans. 

 

4.1.2. Structural variants and complex traits: 

 

SVs are likely to have a greater impact on genome function than SNPs because 

of their larger genomic size, spanning hundreds and thousands of base pairs (bp). 

In addition to their large genomic size, SVs account for the majority of bp genetic 

variations in humans, therefore, integrating these variants in association studies 

could improve estimating the genetic variance of complex traits (Manolio et al., 

2009). Indeed, numerous studies have implicated SV with complex human traits 

and diseases including obesity, cancer, cognitive ability, and psychiatric 

disorders plus many others (Stankiewicz and Lupski, 2010; Kawamura et al., 

2011; Malhotra and Sebat, 2012; Lacaria et al., 2013; Weischenfeldt et al., 2013; 

Waddell et al., 2015; Carvalho et al., 2016; Cuccaro et al., 2016; Smoller, 2016; 

Shorter, 2017; Weiner et al., 2017). However, association studies of this sort have 

mainly focused on few SV types, such as copy number variants (CNVs) and 

megabase-scale deletions and duplications. As such, associations of other SV 

types, such as polymorphic RTE insertions, with complex human traits and 

diseases are not well described. 

 

4.1.3. RTE insertions as SV: 

 

Active RTE subfamilies provide an ongoing source of SVs in the human genome. 

Germline RTE insertions are capable of creating inter-individual insertional 

polymorphisms, defined as insertions showing variations in their presence or 

absence state at specific genomic loci across the genome of individuals within a 
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population (Wang et al., 2005; Mills et al., 2007; Huang et al., 2010; Rishishwar 

et al., 2015). Active RTEs are also capable of mediating other types of SV, 

including deletions and duplications. (Xing et al., 2009; Startek et al., 2015; 

Bourque et al., 2018). The repetitive nature of RTE elements in the human 

genome plus their high sequence homology with ancient RTE subfamilies that 

are no longer active makes it difficult to detect polymorphic insertions that 

contribute to human genetic diversity (Ewing, 2015; Rishishwar et al., 2017; 

Bourque et al., 2018). RTE detection studies post the development of 

computational detection tools enabled the genome-wide discovery of 

polymorphic RTEs. Such studies were able to show that RTE variants are a 

natural component of the human genome and can be present at both common 

(minor allele frequency (MAF) ≥ 0.01) and rare (MAF < 0.01) allele frequencies 

within a population (Rishishwar et al., 2017). A recent analysis of human genetic 

variations from phase 3 of the 1,000 genome project (1kGP) proposed that RTE 

insertions account for a large proportion of inter-individual genetic diversity, 

estimating that about 691 kilobases per individual genome are composed of 

polymorphic RTEs (Sudmant et al., 2015). Still, SVs mediated by RTE insertions 

have been frequently overlooked by previous association studies possible due to 

the complexity of their discovery within the human genome (Ewing, 2015; 

Goerner-potvin and Bourque, 2018). As such, the clinical significance of many 

RTE variants remains unknown. 
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4.1.4. RTE-mediated SVs and Complex traits: 

 

Trait-associated SNPs (TAS) rarely have a direct causal effect on trait phenotype. 

Instead, TAS act as genomic markers that are co-inherited with the causing 

variant in the same haplotype (Frayling, 2014). This provides the opportunity for 

associating polymorphic RTE insertions with complex traits and diseases. Recent 

studies have shown that RTE insertions can be found in genomic regions that 

have been associated with complex traits. Sudmant et al. (2015) reported that 

GWAS loci are enriched for common SVs by up to threefold, however, the 

enrichment analysis combined many SV types including RTE-mediated SVs, and 

the enrichment was most pronounced for large deletions (>20 Kb). Alu elements 

are the most active and abundant class of RTEs by copy number in the human 

genome. A recent study investigating the association of these elements with 

complex traits reported a significant enrichment of Alus in GWAS risk loci (P-

value = 0.013) (Payer et al., 2017). The previously mentioned studies plus others 

found that some polymorphic RTE insertions in GWAS loci are in linkage 

disequilibrium (LD) with the TASs (Sudmant et al., 2015; Hehir-Kwa et al., 2016; 

Payer et al., 2016; Wang et al., 2017). In addition, Wang et al. (2017) and Spirito 

et al., (2019) have shown that some RTEs in LD with TAS are associated with 

altered gene expression in a tissue-specific manner. These results suggest the 

RTE variants can potentially be the causative variant within some GWAS loci. 

Characterizing the association between RTE variants with complex human traits 

and diseases will improve as additional GWAS and RTE detection studies identify 

more TAS and RTE variants, respectively.  
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4.1.5. Study overview: 

 

This study conducts an enrichment analysis of L1s, Alus, and SVAs in GWAS risk 

loci using an updated list of TAS from the NHGRI-EBI Catalog of published 

GWAS (www.ebi.ac.uk/gwas; Buniello et al., 2019), and a comprehensive in-

house curated database of polymorphic RTE insertions reported in the literature 

up to April 2019. The total number of RTEs in the in-house curated database is 

2-fold higher than the number reported in phase 3 of the 1kGP (Sudmant et al., 

2015) and includes an additional 750, 718, and 35 common L1s, Alus, and SVAs, 

respectively. Although L1 and SVA elements are not as active or abundant as Alu 

elements, their larger size and genomic distribution are suggestive of their 

potentially harmful effect on genome function. The genomic distribution analysis 

of this study identified several L1 and SVA variants within gene regions, including 

genes critical for cellular maintenance, proper development, and 

neurophysiological processes. This study will also conduct a genome-wide 

screen for additional RTE polymorphisms in LD with TAS.  
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4.2. Methods 

 

4.2.1. Overview of methods: 

 

The in-house curated database of polymorphic RTE elements is used to identify 

RTE elements in linkage disequilibrium (LD) with SNPs that have been 

associated with the risk of various complex disorders through GWAS. As LD is 

population specific, this study focuses on variants identified in individuals of 

European descent, to maximize the use of GWAS data since the majority of the 

association studies have been conducted on cohorts of European descent 

(Evans and Cardon, 2005; Medina-Gomez et al., 2015). Note that European 

descent is defined here as Caucasian individuals of European ancestry. 

Polymorphic RTEs that overlap with the LD-blocks of genome-wide significant 

(GWS) (P ≤ 5x10-8) trait-associated SNPs (TAS) were identified. The enrichment 

of RTE in the LD-blocks of TAS was calculated by comparing the fraction of RTEs 

contained within a TAS LD-block with the fraction expected by chance using 

1,000 sets of random LD-blocks that match the genomic features of the TAS. The 

non-random association between the occurrence of the RTE and the TAS, i.e., 

the likelihood of the two alleles being co-inherited in the same individual, was 

calculated using genotype data from the European population samples in phase 

3 of the 1,000 genome project (1kGP) (Sudmant et al., 2015). The distribution of 

RTEs that are in LD with TAS within functional genomic regions was compared 

with the distribution of all polymorphic RTEs of the in-house curated database.  

Note that RTE elements and LD-blocks located on the sex chromosomes or 

within the human leukocyte antigen (HLA) region were excluded from the 

analysis. RTEs and LD-blocks in these genomic regions were eliminated to 

reduce biases in the results that may arise due to the unequal effect of 
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evolutionary processes on the sex chromosomes (Johnson and Lachance, 2012) 

and the haplotype diversity of the HLA loci (Shiina et al., 2009). 

 

4.2.2. Datasets:  

 

4.2.2.1. Polymorphic retrotransposable element (RTE) insertions: 

 

A comprehensive database of non-reference L1Hs, AluY, and SVA_E/F was 

curated in-house (Chapter 2: Database Curation). The database by individual 

contains the insertional profile of 2,987 nonrelated individuals and consists of 

6,377 L1Hs, 18,698 AluYs, and 1,085 SVAs from the E and F human-specific 

subfamilies. RTEs overlapping with HLA regions were removed using the 

subtract tool of BEDtools version 2.25.0 (Quinlan, 2014). The HLA region 

coordinates were obtained from the genome reference consortium website (GRC; 

https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37). 

Insertions on the sex chromosomes were removed using a conditional awk 

statement in UNIX based on the chromosome name column.  

Low frequency and common RTEs (MAF ≥ 0.01) identified in samples of 

European descents were extracted using a conditional awk statement in UNIX 

based on the allele frequency column. In the case of missing allele frequency 

information, insertions identified in two or more unrelated individuals by more than 

one study were retained. This is because the chance of identifying a rare allele in 

the same location by more than one RTE detection method in two or more 

unrelated individuals is very slim considering that different methods produce 

different results as discussed in the database curation chapter. Alternatively, the 

AF for insertions identified in two or more unrelated individuals by the same study 

was inferred assuming heterozygosity and the total number of samples analysed 

https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37
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by the study. For example, if the study sample size was 10 and the insertion was 

identified in 2 individuals, the AF was inferred to be 0.1 and the insertion was 

retained.  

4.2.2.2. Trait associated SNPs: 

 

The trait associated SNPs (TAS) of the NHGRI-EBI Catalog of published 

genome-wide association studies (www.ebi.ac.uk/gwas) (Buniello et al., 2019) 

was downloaded from the UCSC genome browser tables (last updated: 2019-08-

07) (https://genome.ucsc.edu/cgi-bin/hgTables) (Karolchik, 2004) using the hg19 

genome assembly coordinates. Genome-wide significant (GWS) SNPs (P-value 

≤ 5x10-8) identified in European cohorts were extracted using a conditional awk 

statement in UNIX.  

 

4.2.2.3. SNP and RTE genotype files from the 1000 genome project: 

 

Genotypes of SNPs from phase 3 (version 5a) release of the 1kGP (Sudmant et 

al., 2015) were obtained from the 1kGP ftb website 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/). Two files in .vcf 

and .tbi format were obtained for each autosome (chr1-chr22). Sample names 

from the European super population were extracted into a text file from the 1kGP 

sample panel file………………………………………………………………………..                                                                                                             

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_sam

ples_v3.20130502.ALL.panel) using a conditional awk statement in UNIX. 

Vcftools version 0.1.11 ((C) Adam Auton 2009) was then used to extract SNP 

genotypes identified in the 503 European samples and convert the .vcf files to 

transposed ped (tped) and fam (tfam) files. The transposed files were converted 

http://www.ebi.ac.uk/gwas
https://genome.ucsc.edu/cgi-bin/hgTables
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel
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into plink PED/MAP files using PLINK version 1.07 (Purcell et al., 2007). A new 

dataset was created using the --maf plink filter which extracted all rare variants 

with a MAF below 0.01 (MAF < 0.01). The new dataset was then converted into 

plink binary format (.bed, .bim, .fam) using the --make-bed option. Duplicate 

markers were identified using the awk command and .bed file. Unique SNPs were 

saved into a text file and were filtered out using the --extract option. The process 

of downloading and formatting the vcf file was then repeated for each 

chromosome. The individual binary files for each autosome were then merged 

into one binary file using --merge-list option in PLINK version 1.07 (Purcell et al., 

2007). All the commands used in the steps above from downloading the vcf file 

to creating the binary PLINK files for all autosomes were uploaded to github 

(https://github.com/RandaAli1/MyPhDproject/blob/master/RTE_enrichment_in_

GWAS_loci/1kGPEuropeanGenotypes.txt). The merged binary files for all 

autosomes were then used to identify tagging SNPs for creating the LD-blocks. 

Genotypes of genomic structural variations from phase 3 (volume 1) release of 

the 1kGP (Sudmant et al., 2015) were obtained from the 1kGP ftb website 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map) as .vcf and 

.tbi files. The vcf file contained 12 different structural variation types including 

3,048 L1s, 12,748 Alus, and 835 SVAs (Sudmant et al., 2015). L1, Alu and SVA 

elements were extracted from the structural variations .vcf file using the grep 

command in UNIX. The new vcf file containing genotypes of the RTE elements 

was converted into a binary PLINK file format using the same steps mentioned 

above up to the removal of duplicate variants. The individual binary files for each 

autosome plus the binary file of the RTE variants were merged into one binary 

file using the --merge-list option in PLINK version 1.07 (Purcell et al., 2007). The 

new merged file was used for calculating LD between RTEs and TAS. 

https://github.com/RandaAli1/MyPhDproject/blob/master/RTE_enrichment_in_GWAS_loci/1kGPEuropeanGenotypes.txt
https://github.com/RandaAli1/MyPhDproject/blob/master/RTE_enrichment_in_GWAS_loci/1kGPEuropeanGenotypes.txt
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map


125 
 

4.2.2.4. Functional regions file:  

 

The Reference Sequence (RefSeq) genes (O’Leary et al., 2016) and 

GeneHancer (Fishilevich et al., 2017) enhancer files described in the genomic 

distribution chapter were used for the analysis of this chapter as well.  

 

4.2.3. Method of data analyses 

 

4.2.3.1. Overlapping RTEs with TAS LD-blocks  

 

Linkage disequilibrium (LD) blocks for each TAS were defined using the left and 

right-most (5' and 3') tagging SNPs (r2≥ 0.8) (Figure 19). The tagging SNPs were 

identified using the --show-tags option and --tag-r2 filters of PLINK version 

1.90b6.21 (Purcell et al., 2007). LD-blocks of TAS that lacked a 5’ or a 3’ tagging 

SNP were arbitrarily extended by half the median of the LD-blocks defined by 5’ 

and 3’ tagging SNPs using the slope tool and -l and -r options of BEDtools version 

2.25.0 (Quinlan, 2014). Arbitrary LD blocks for untagged TAS were created using 

the slope tool and -d option of BEDtools version 2.25.0 (Quinlan, 2014). The list 

of LD-blocks were reduced using the merge tool of BEDtools version 2.25.0 

(Quinlan, 2014) to create non-overlapping LD-blocks. LD-blocks overlapping the 

HLA region (GRC; https://www.ncbi.nlm.nih.gov/grc/human/regions 

/MHC?asm=GRCh37) were removed using the subtract tool of BEDtools version 

2.25.0 (Quinlan, 2014). LD-blocks on the sex chromosomes were removed using 

a conditional awk statement in UNIX. The final list of LD-blocks were overlapped 

with the list of polymorphic RTEs using the intersect tool of BEDtools version 

2.25.0 (Quinlan, 2014).  

https://www.ncbi.nlm.nih.gov/grc/human/regions%20/MHC?asm=GRCh37
https://www.ncbi.nlm.nih.gov/grc/human/regions%20/MHC?asm=GRCh37
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4.2.3.2. Enrichment of RTE variants in GWAS risk loci 

 

The enrichment of overlap between RTEs and TAS LD-blocks was investigated 

by creating a thousand set of random SNPs that match the genomic features of 

the TAS such as allele frequency, number of SNPs in LD, distance to nearest 

gene and gene density, were generated using SNPsnap default settings 

(https://data.broadinstitute.org/mpg/snpsnap/) (Pers et al., 2015). The TAS were 

matched in this way to control for the biased distribution of TAS in the genome, 

which are reportedly enriched in gene regions (Hindorff et al., 2009). 

Non-overlapping LD-blocks for each matching SNPs set were generated as 

previously described using an integrated R script 

(https://github.com/RandaAli1/MyPhDproject/tree/master/RTE_enrichment_in_

GWAS_loci). The script loops through each set of the 1,000 random SNPs sets 

and create a merged list of LD-blocks for it, which it then exports into a file using 

the write.table() function in R version 3.4.0 (R Core Team, 2012). The overlap 

between each of the 1,000 sets of random LD-blocks and polymorphic RTEs was 

identified using the intersect tool of BEDtools version 2.25.0 (Quinlan, 2014) via 

a loop function in R version 3.4.0 (R Core Team, 2012). The loop function 

TAS 

LD-block defined using Tag SNPs (r
2
 ≥ 0.8) 

3’ Right-most tagging SNP  5’ Left-most tagging SNP  

Figure 19: Creating LD-blocks around each trait associated SNP (TAS) using 
tagging SNPs with an r2 ≥ 0.8 

https://data.broadinstitute.org/mpg/snpsnap/
https://github.com/RandaAli1/MyPhDproject/tree/master/RTE_enrichment_in_GWAS_loci
https://github.com/RandaAli1/MyPhDproject/tree/master/RTE_enrichment_in_GWAS_loci


127 
 

intersects each set of random LD blocks with the list of polymorphic RTE 

elements (L1, Alu, or SVA) and calculates the number of LD blocks containing a 

polymorphic RTE 

(https://github.com/RandaAli1/MyPhDproject/tree/master/RTE_enrichment_in_

GWAS_loci). A density plot representing the percentages of LD blocks 

overlapped by a polymorphic RTE were created in R version 3.4.0 (R Core Team, 

2012) for each RTE type. The empirical P-value was then calculated to compare 

the percentage of TAS LD-blocks overlapping with each RTE type against the 

percentage distribution of random LD-blocks (North et al., 2002). 

4.2.3.3. LD between RTEs and TAS: 

 

An RTE in the genomic region of a TAS that is potentially the causative variant 

within the TAS haplotype is expected to be in LD with the TAS. LD analysis was 

only possible for RTEs identified by the 1kGP (Sudmant et al., 2015) as it is the 

only study within the in-house curated database that provides an accessible 

source of SNP and RTE genotypes for each sample. LD analysis between RTEs 

in risk regions and the corresponding TAS was conducted using genotype data 

of European samples (n=503) from phase 3 of the 1kGP (Sudmant et al., 2015) 

using PLINK version 1.90b6.21 (Purcell et al., 2007). RTE elements from the 

1kGP that overlapped with a TAS LD-block were extracted using a conditional 

awk statement. LD between the set of 1kGP RTEs and TASs were calculated 

using the --ld-snp-list command and the --ld-window-r2 filter using PLINK version 

1.90b6.21 (Purcell et al., 2007). A moderate r2 threshold of 0.6 (Tian et al., 2017) 

was set in order to capture as many associations between RTEs and TAS as 

possible. RTEs in LD with TAS were matched with the trait information using the 

merge by SNP function in R version 3.4.0 (R Core Team, 2012). RTEs in LD with 

https://github.com/RandaAli1/MyPhDproject/tree/master/RTE_enrichment_in_GWAS_loci
https://github.com/RandaAli1/MyPhDproject/tree/master/RTE_enrichment_in_GWAS_loci
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a TAS (r2 > 0.6) were overlapped with gene and enhancer regions using the 

intersect tool of BEDtools version 2.25.0 (Quinlan, 2014). The difference between 

the distributions of RTEs in LD with TAS in gene regions compared to all non-

reference RTEs was compared using the chi-squared goodness of fit test. 

4.3. Results 

 

4.3.1. TAS Linkage disequilibrium blocks (LD-blocks): 

 

A total of 158,654 trait associated SNPs (TASs) were downloaded from the 

NHGRI-EBI Catalog of published genome-wide association studies 

(www.ebi.ac.uk/gwas) (August 2019 & earlier). From this set, 50,171 SNPs were 

extracted that met the following criteria:  

1. Significantly association with a trait at a P-value level ≤ 5x10-8 and,  

2. Identified in a European population.  

Linkage disequilibrium blocks were identified for 64.24% of the 50,171 TASs 

(n=32,229). The generated LD blocks ranged from 3 bp to 499.964 kilobases (Kb) 

in size, with a median of 54.096 Kb. The remaining 17,942 SNPs lacked a 5’ or 

3’ tagging SNP (r2≥0.8). As such, LD blocks were created for these untagged 

TASs by extending the region either side of the TAS by half of the median 

(n=27.048) of the generated LD blocks.  

A total of 48,911 LD-blocks located on autosomes and not interrupting the HLA 

region were extracted. The 48,911 LD blocks were reduced to 10,905 non-

overlapping LD-blocks using BEDtools intersect. The 48,911 non-reduced LD 

blocks generated are available in github                   . 

(https://github.com/RandaAli1/MyPhDproject/blob/master/RTE_enrichment_in_

GWAS_loci/allEurGWS_TAS_LDblocks_nosexchrNoHLA_22082019.bed).  

http://www.ebi.ac.uk/gwas)
https://github.com/RandaAli1/MyPhDproject/blob/master/RTE_enrichment_in_GWAS_loci/allEurGWS_TAS_LDblocks_nosexchrNoHLA_22082019.bed
https://github.com/RandaAli1/MyPhDproject/blob/master/RTE_enrichment_in_GWAS_loci/allEurGWS_TAS_LDblocks_nosexchrNoHLA_22082019.bed
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4.3.2. Overlapping RTEs with TAS LD-blocks: 

 

A total of 5,240 RTEs (1,160 L1s, 3,825 Alus, and 255 SVAs) were extracted from 

the in-house curated database by individual that met the following criteria: 

1. Identified in samples of European descents. 

2. Low frequency and common RTEs identified with a MAF ≥ 0.01. 

3. Are autosomal RTE insertions.  

4. Do not overlap with the HLA region.  

The extracted RTEs were overlapped with the 10,905 TAS LD-blocks using 

BEDtools intersect. Of the 5,240 RTEs, a total of 2,063 (425 L1s, 1,523 Alus, and 

115 SVAs) overlapped the genomic regions of 19,296 TAS contained within the 

reduced TAS LD-blocks, of which 16,212 were unique TAS (Table 16). More than 

one-third of polymorphic L1s and Alus and half of the polymorphic SVAs were 

found within a TAS LD-block. The proportion of class-specific RTEs in a TAS LD-

block is significantly higher for SVA elements compared to both L1 and Alu 

variants (P-value = 0.024, Fisher exact test).  

 

Table 16: The overlap between polymorphic RTEs and the LD-blocks of genome-
wide significance      (P≤ 5x10-8) TASs. LD blocks were generated using tagging 
SNPs (r2 ≥ 0.8) in PLINK. Polymorphic RTEs were curated in-house.                                                                                                       
Abbreviations: RTE: Retrotransposable elements; TAS: Trait associated SNP; 
LD: Linkage disequilibrium. 

  L1Hs AluY SVA_E/F 

    
Total RTEs in in-house curated database by 
individual 
 

6,377 18,698 1,085 

Common autosomal RTEs identified in European 
samples, excluding RTEs in the HLA region 
 

 
1160 

 
3825 

 
255 

Common RTEs intersecting a TAS LD-block 425 
(36.64%) 

1523 
(39.82%) 

115 
(45.1%)     

Number of TAS with an RTE within its LD-block 
(TAS n= 48,911) 

4,189 13,407 1,700 
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4.3.3. Enrichment of RTEs in TAS LD-blocks: 

 

The enrichment of RTEs in TAS LD-blocks was investigated by comparing the 

observed number of overlaps with the values expected by chance using 1,000 

sets of random LD-blocks using SNPs that mirror the genomic properties of the 

TAS. A total of 42,766 were matched by SNPsnap (Pers et al., 2015) from the 

48,911 autosomal TAS list. Similar to the TAS LD-blocks, the random LD-blocks 

were also reduced to non-overlapping LD-blocks using BEDtools intersect. The 

generated LD blocks for the 1,000 random sets ranged from 1536 to 19,746 non-

overlapping LD-blocks, with an average of 17,388 LD-blocks. As such, the 

percentage of overlap was calculated to standardize the varying numbers of LD-

blocks from each of the random sets.  

On average, 3% of the random LD-blocks were interrupted by L1s, 10% were 

interrupted by Alus, and 0.7% were interrupted by SVAs. In comparison, 4% of 

the 10,905 TAS LD-blocks were interrupted by L1s, 14% were interrupted by 

Alus, and 1% were interrupted by SVA elements. The percentage of TAS LD-

blocks interrupted by RTE elements is significantly more than that observed for 

random LD-blocks (Empirical P-values = 1x10-3 for L1s and Alus, and 3x10-3 for 

SVAs) (Figure 20). 
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Figure 20: Density plot for the enrichment of polymorphic RTEs at GWAS risk loci. The 
frequency distribution of random LD-blocks intersected by polymorphic RTEs (black 
curve) was compared with the frequency observed for TAS LD-blocks intersected by 
L1Hs (3.90%; A), AluY (13.97%; B), and SVA_E/F (1.05%; C) (red vertical line). The 
1,000 sets of random LD-blocks matched the genomic properties of risk SNPs LD-
blocks. The empirical P-value was used to calculate the statistical significance of 
polymorphic RTE enrichment at GWAS risk loci. 
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4.3.4. LD between RTEs and TAS: 

 

LD analysis between genomic variants is calculated using genotype information 

of the variants within a specified population. The 1kGP study is the only study 

within the in-house curated database with accessible genotype information of 

SNPs and RTEs within the same sample. In addition, about 80% of the Alus and 

SVAs and a third of the L1s interrupting a TAS LD-blocks (Table 16) were also 

identified by the 1kGP (Sudmant et al., 2015). As such, the 1kGP genotype data 

was utilised for calculating LD between RTEs and TASs using a moderate r2 

threshold of 0.6 (Tian et al., 2017). A total of 137 RTEs (16 L1, 113 Alus, and 7 

SVAs) are in LD (r2 > 0.6) with 429 TAS, including redundant TAS associated 

with the same phenotype or trait (Appendix 2). Forty-nine RTEs (8 L1s, 38 Alus, 

and 3 SVAs) of the 136 total are in strong LD (r2 ≥ 0.8) with 157 TAS that have 

been associated with a variety of traits, including brain-related disorders such as 

Parkinson's disease, Progressive supranuclear palsy, Schizophrenia, 

Depression, and anxiety (Table 17). In cases of redundant TAS, the TAS with the 

highest r2 of association was included in the table. Where both TAS had the same 

r2 value, the TAS reported with the most significant P-value of association with 

the trait is retained in table 17.  
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Table 17: Polymorphic RTEs in LD (r2 ≥ 0.8) with GWAS TAS. The r2 values are 
to the nearest decimal place. Abbreviations: RTE: Retrotransposable element; 
TAS: Trait associated SNP; LD: Linkage disequilibrium; GWAS: Genome-wide 
association studies. Note: Table includes strongest LD/GWAS signal when there 
are multiple RTE-TAS associations of the same phenotype. 

Chr  RTE Start RTE Name TAS (rs#) Trait
P-value of 

TAS
r
2

6 141414904 ALU_5647 rs113803678 Body mass index 4.00E-08 0.9

12 24868717 LINE1_2249 rs61914312 Hair color 3.00E-10 0.9

9 11329329 ALU_7283 rs2152261 Menarche (age at onset) 2.00E-13 0.9

12 56753252 ALU_9228 rs2066819 Inflammatory skin disease 5.00E-17 0.9

1 174484646 ALU_604 rs140581634 Feeling miserable 2.00E-08 0.9

12 120130849 ALU_9540 rs17442937 Red cell distribution width 4.00E-08 0.9

17 44153977 SVA_706 rs62055546 Alcohol consumption (drinks per week) 8.00E-25 0.8

17 44153977 SVA_706 rs17563986 Cognitive ability 5.00E-12 0.8

17 44153977 SVA_706 rs62057061 Depressed affect 2.00E-22 0.8

17 44153977 SVA_706 rs12150229 Ease of getting up in the morning 4.00E-09 0.8

17 44153977 SVA_706 rs62057107 Educational attainment 5.00E-38 0.8

17 44153977 SVA_706 rs55657917 Experiencing mood swings 3.00E-20 0.8

17 44153977 SVA_706 rs56303031 Heel bone mineral density 6.00E-24 0.8

17 44153977 SVA_706 rs17563683 Hemoglobin concentration 2.00E-28 0.8

17 44153977 SVA_706 rs62055701 Irritable mood 6.00E-13 0.8

17 44153977 SVA_706 rs1864325 Lumbar spine bone mineral density 5.00E-11 0.8

17 44153977 SVA_706 rs79412431 Lung function 3.00E-49 0.8

17 44153977 SVA_706 rs12373124 Male-pattern baldness 5.00E-10 0.8

17 44153977 SVA_706 rs241036 Menarche (age at onset) 7.00E-13 0.8

17 44153977 SVA_706 rs55657917 Negative Feelings 7.00E-29 0.8

17 44153977 SVA_706 rs76761706 Neuroticism 7.00E-32 0.8

17 44153977 SVA_706 rs2942168 Parkinson's disease 1.00E-28 0.8

17 44153977 SVA_706 rs55657917 Physical activity measurement 5.00E-12 0.8

17 44153977 SVA_706 rs4606752 Reticulocyte count 1.00E-17 0.8

17 44153977 SVA_706 rs8072451 Subcortical brain region volumes 1.00E-08 0.8

17 44153977 SVA_706 rs75022332 Worry 2.00E-08 0.8

9 16682313 ALU_7311 rs12335424 Height 2.00E-21 0.8

15 76826019 ALU_10819 rs506000 Estimated glomerular filtration rate 2.00E-15 0.8

17 44153977 SVA_706 rs117124984 Daytime nap 3.00E-13 0.8

17 44153977 SVA_706 rs1981997 Interstitial lung disease 9.00E-14 0.8

17 44153977 SVA_706 rs8070723 Progressive supranuclear palsy 2.00E-118 0.8

17 44153977 SVA_706 rs2106786 Red blood cell count 3.00E-36 0.8

17 44153977 SVA_706 rs62061733 Eosinophil counts 3.00E-29 0.8

12 56753252 ALU_9228 rs59917308 Height 3.00E-32 0.8

17 44153977 SVA_706 rs112010353 Self-reported math ability 2.00E-08 0.8

2 210260754 ALU_1947 rs1080278 Lung function 1.00E-19 0.8

17 44153977 SVA_706 rs1991556 Sleep duration 3.00E-09 0.8

16 75655176 ALU_11116 rs61537885 Smoking Status 8.00E-09 0.8

17 44153977 SVA_706 rs80103986 Hand grip strength 1.00E-09 0.8

4 134596423 LINE1_967 rs12507927 Educational attainment 3.00E-11 0.8

17 44153977 SVA_706 rs17652520 Medication use (anilides) 8.00E-13 0.8

1 169524859 LINE1_164 rs6128 Blood protein levels 2.00E-26 0.8

17 44153977 SVA_706 rs62063281 Number of sexual partners 4.00E-15 0.8

17 44153977 SVA_706 rs62063281 Osteoarthritis (hip) 5.00E-12 0.8

1 163639693 ALU_559 rs12564153 Lung function 1.00E-09 0.8

5 109051004 ALU_4562 rs4388249 Schizophrenia 2.00E-08 0.8

17 44153977 SVA_706 rs62064364 Macular thickness 4.00E-35 0.8

10 106566893 ALU_8208 rs61867293 Depression 7.00E-10 0.8



135 
 

(Table 17 continues) 

 

 

21 33050849 ALU_12379 rs17660708 LDL cholesterol 1.00E-10 0.8

17 44153977 SVA_706 rs9303525 Intracranial volume 8.00E-15 0.8

20 26190974 ALU_12132 rs6051320 Lung function 2.00E-08 0.8

11 54958589 ALU_8580 rs77584654 Height 5.00E-17 0.8

7 18273084 ALU_5868 rs1528683 Lung function 2.00E-17 0.8

12 77965056 ALU_9355 rs17788937 Pathological Myopia 2.00E-12 0.8

11 43877448 ALU_8559 rs1061810 Type 2 diabetes 4.00E-10 0.8

8 110101605 ALU_7037 rs28499085 Pulse pressure 3.00E-13 0.8

14 92619420 SVA_615 rs34016308 Myopia 4.00E-14 0.8

5 40041345 LINE1_1097 rs10053502 Pathological Myopia 1.00E-16 0.8

1 174484646 ALU_604 rs75650221 Chronotype 4.00E-18 0.8

5 25233926 ALU_4154 rs111257433 General risk tolerance 5.00E-10 0.8

17 44153977 SVA_706 rs62062288 Risk-taking tendency 1.00E-29 0.8

6 56387576 ALU_5205 rs4288197 Heel bone mineral density 5.00E-17 0.8

11 49282683 ALU_8572 rs7103270 HDL cholesterol and physical activity 

interaction

7.00E-12 0.8

4 76993824 ALU_3412 rs7693693 Blood protein levels 2.00E-17 0.8

1 219558910 ALU_810 rs75128958 Heel bone mineral density 1.00E-08 0.8

1 219558910 ALU_810 rs75128958 Lung function 2.00E-23 0.8

2 30669993 ALU_1087 rs28538173 Eosinophil counts 3.00E-09 0.8

6 96009421 ALU_5389 rs80268500 Blood protein levels 2.00E-12 0.8

16 80848077 ALU_11145 rs34018670 Monocyte count 5.00E-09 0.8

1 119553366 LINE1_122 rs3790553 Male-pattern baldness 4.00E-19 0.8

17 44153977 SVA_706 rs76640332 Lymphocyte percentage of white cells 5.00E-13 0.8

3 193354185 LINE1_769 rs11925699 Educational attainment 3.00E-08 0.8

1 180857564 ALU_629 rs1043069 Systolic blood pressure 5.00E-15 0.8

9 4237141 ALU_7235 rs2224492 Intraocular pressure 4.00E-16 0.8

15 47507342 LINE1_2640 rs6493265 Educational attainment 2.00E-17 0.8

15 47507342 LINE1_2640 rs12914084 Neuroticism 3.00E-08 0.8

2 652672 ALU_958 rs13021737 Body mass index 8.00E-40 0.8

2 652672 ALU_958 rs12995480 C-reactive protein levels 1.00E-10 0.8

2 652672 ALU_958 rs12714415 Heel bone mineral density 4.00E-09 0.8

2 652672 ALU_958 rs6752706 Lung function 2.00E-13 0.8

2 652672 ALU_958 rs5017302 Menarche (age at onset) 5.00E-38 0.8

2 652672 ALU_958 rs13396935 Smoking status 4.00E-13 0.8

8 109135936 SVA_389 rs617117 Macular thickness 2.00E-09 0.8

12 28163331 ALU_9104 rs1838564 Breast size/Breast Cancer 1.00E-12 0.8

4 22043212 ALU_3139 rs62301574 Insomnia 1.00E-08 0.8

14 39875097 LINE1_2544 rs34983854 Systolic blood pressure 2.00E-11 0.8

6 140417842 ALU_5637 rs62429521 Insomnia 2.00E-09 0.8

14 55795871 ALU_10325 rs10146637 White blood cell count 4.00E-11 0.8

6 97017683 ALU_5395 rs11153071 Systolic blood pressure 3.00E-15 0.8

8 109135936 SVA_389 rs392783 Hair color 2.00E-23 0.8

15 49609604 ALU_10695 rs11632038 Lung adenocarcinoma 5.00E-10 0.8

11 49282683 ALU_8572 rs77828979 Intraocular pressure 6.00E-12 0.8

11 49282683 ALU_8572 rs11040595 Systolic blood pressure 1.00E-11 0.8

2 30669993 ALU_1087 rs829636 Eczema 6.00E-09 0.8

10 34571038 ALU_7901 rs610493 Height 2.00E-10 0.8

8 71914591 ALU_6806 rs2639935 Lung function 3.00E-08 0.8
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4.3.5. The distribution of RTEs in LD with TAS in functional genomic 

regions: 

 

The distribution of RTEs in LD (r2 > 0.6) with TAS in functional genomic regions 

was compared with the distribution of all non-reference RTE elements to 

investigate the potential effect of RTEs in LD with TAS on gene function and 

regulation. About two-thirds (59.9%) of the RTEs in LD with TAS were found in 

gene regions (Table 18). A total of 10 L1s overlapped with intronic regions of 

genes, of which 4 were on the sense strand of the gene. Note that RTE insertions 

on the sense strand of genes have a greater impact on gene function and 

regulation as RTEs contain internal promoters and 3'-poly(A) tails that can 

interfere with gene transcription and post-transcriptional regulation (Guffanti et 

al., 2014; Elbarbary et al., 2016). Of the 113 Alus in LD with TAS, 64 were found 

in the intron regions of genes, 3 interrupted the 5’ or 3’ untranslated regions 

(UTR), and 2 Alus were less than 10 Kb upstream of gene regions. Twenty-nine 

of the 67 Alu elements in gene regions were on the sense strand of the gene. 

Five SVA elements interrupted intronic genomic regions, one of which was on the 

sense strand of the gene. Nevertheless, the distribution of L1 and SVA elements 

in LD with TAS in gene regions is not significantly different from the distribution 

of all non-reference RTEs in these genomic regions (P-value = 0.135 and 0.426, 

chi-squared test). However, Alu elements are significantly more frequent in gene 

regions compared with the distribution of all non-reference AluY elements (P-

value = 0.0143, chi-squared test).  
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Table 18: A list of the overlap between gene regions and RTEs in LD (r2 > 0.6) 
with TAS. The highlighted RTEs are on the sense strand of the gene. *Long non-
coding RNA. Abbreviations: RTE: Retrotransposable element; TAS: Trait 
associated SNP; LD: Linkage disequilibrium. 

Chr Start_RTE End_RTE
RTE 

Strand
RTE Gene name

Gene 

Strand
Gene region

1 169524859 169524860 + LINE1_164 F5 - Intron

2 144010793 144010794 + LINE1_410 ARHGAP15 + Intron

3 55788580 55788581 + LINE1_590 ERC2 - Intron

3 85576571 85576572 - LINE1_629 CADM2 + Intron

3 193354185 193354186 - LINE1_769 OPA1 + Intron

6 46310306 46310307 + LINE1_1293 RCAN2 - Intron

6 46310306 46310307 + LINE1_1293 LOC101926915* + Intron

7 8019027 8019028 + LINE1_1448 GLCCI1 + Intron

9 94058487 94058488 - LINE1_1863 AUH - Intron

14 39875097 39875098 + LINE1_2544 FBXO33 - Intron

15 47507342 47507343 - LINE1_2640 SEMA6D + Intron

1 174484646 174484647 - ALU_604 RABGAP1L + Intron

1 180857564 180857565 + ALU_629 XPR1 + UTR

1 198243300 198243301 - ALU_726 NEK7 + Intron

1 227502452 227502453 + ALU_841 CDC42BPA - Intron

14 39875097 39875098 + LINE1_2544 FBXO33 - Intron

15 47507342 47507343 - LINE1_2640 SEMA6D + Intron

1 174484646 174484647 - ALU_604 RABGAP1L + Intron

1 180857564 180857565 + ALU_629 XPR1 + UTR

1 198243300 198243301 - ALU_726 NEK7 + Intron

1 227502452 227502453 + ALU_841 CDC42BPA - Intron

1 232587774 232587775 + ALU_865 SIPA1L2 - Intron

2 11353711 11353712 + ALU_1002 ROCK2 - Intron

2 98582157 98582158 + ALU_1385 TMEM131 - Intron

2 141534074 141534075 - ALU_1585 LRP1B - Intron

2 181880746 181880747 - ALU_1805 UBE2E3 + Intron

2 198763462 198763463 - ALU_1894 PLCL1 + Intron

3 42898420 42898421 - ALU_2319 ACKR2 + Intron

3 152053972 152053973 + ALU_2814 MBNL1 + Intron

3 157962934 157962935 - ALU_2845 RSRC1 + Intron

3 158089835 158089836 - ALU_2846 RSRC1 + Intron

3 168885760 168885761 + ALU_2909 MECOM - Intron

4 76993824 76993825 + ALU_3412 ART3 + Intron

5 25233926 25233927 + ALU_4154 LINC02211 + Intron

5 109051004 109051005 - ALU_4562 MAN2A1 + Intron

6 45260479 45260480 + ALU_5132 SUPT3H - Intron

6 53167475 53167476 + ALU_5181 ELOVL5 - Intron

6 56387576 56387577 - ALU_5205 DST - Intron

6 66163982 66163983 - ALU_5227 EYS - Intron

6 74504855 74504856 + ALU_5280 CD109 + Intron

6 96009421 96009422 - ALU_5389 MANEA-AS1 - Intron

6 97017683 97017684 - ALU_5395 FHL5 + Intron

6 139294734 139294735 - ALU_5628 REPS1 - Intron

6 163013855 163013856 - ALU_5742 PRKN - Intron
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(Table 18 continues) 

7 18273084 18273085 - ALU_5868 HDAC9 + Intron

7 33195329 33195330 - ALU_5942 BBS9 + Intron

7 78146522 78146523 - ALU_6127 MAGI2 - Intron

7 91751552 91751553 + ALU_6200 CYP51A1 - Intron

7 119259819 119259820 - ALU_6325 LINC02476 - UTR

8 8920127 8920128 + ALU_6560 ERI1 + Intron

8 13975433 13975434 - ALU_6584 SGCZ - Intron

8 63344481 63344482 + ALU_6774 NKAIN3 + Intron

8 100782579 100782580 + ALU_6981 VPS13B + Intron

8 110101605 110101606 - ALU_7037 TRHR + Intron

9 4237141 4237142 + ALU_7235 GLIS3 - Intron

9 16682313 16682314 - ALU_7311 BNC2 - Intron

9 117928281 117928282 + ALU_7672 DEC1 + Intron

10 3569025 3569026 + ALU_7750 LOC105376360 + Intron

10 11984965 11984966 + ALU_7788 UPF2 - Intron

10 34571038 34571039 + ALU_7901 PARD3 - Intron

10 46074893 46074894 - ALU_7934 MARCH8 - Intron

10 65356114 65356115 - ALU_8023 REEP3 + Intron

10 106566893 106566894 - ALU_8208 SORCS3 + Intron

11 43877448 43877449 - ALU_8559 HSD17B12 + UTR

11 65984338 65984339 - ALU_8622 PACS1 + Intron

12 26697612 26697613 - ALU_9091 ITPR2 - Intron

12 28417298 28417299 - ALU_9107 CCDC91 + Intron

12 28438612 28438613 - ALU_9108 CCDC91 + Intron

12 41847723 41847724 + ALU_9169 PDZRN4 + Intron

12 56753252 56753253 - ALU_9228 STAT2 - Intron

12 71525479 71525480 + ALU_9320 TSPAN8 - Intron

12 120130849 120130850 + ALU_9540 CIT - Intron

13 46647748 46647749 - ALU_9748 CPB2 - Intron

13 46647748 46647749 - ALU_9748 CPB2-AS1 + Intron

13 62588972 62588973 - ALU_9847 LINC00358 - Intron

14 55795871 55795872 - ALU_10325 FBXO34 + Intron

14 60741400 60741401 + ALU_10351 PPM1A + Intron

15 49609604 49609605 + ALU_10695 GALK2 + Intron

15 73983319 73983320 - ALU_10812 CD276 + Intron

15 76826019 76826020 + ALU_10819 SCAPER - Intron

16 75655176 75655177 - ALU_11116 ADAT1 - Intron

17 46505002 46505003 + ALU_11333 SKAP1 - Intron

18 53146075 53146076 - ALU_11714 TCF4-AS1 + Intron

18 53146075 53146076 - ALU_11714 TCF4 - Intron

20 1546228 1546229 + ALU_12014 SIRPB1 - Intron

21 33050849 33050850 + ALU_12379 SCAF4 - Intron

2 174952231 174952232 - SVA_134 OLA1 - Intron

6 153429856 153429857 + SVA_315 RGS17 - Intron

9 33130564 33130565 + SVA_401 B4GALT1 - Intron

14 92619420 92619421 - SVA_615 CPSF2 + Intron

17 44153977 44153978 + SVA_706 KANSL1 - Intron

6 140417842 140417843 + ALU_5637 LOC100507477 +  3 kb Upstream

16 80848077 80848078 - ALU_11145 CDYL2 - 10 kb Upstream

Upstream of Gene
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Twenty Alu elements and 1 SVA element interrupted enhancer regions (Table 

19), however, the distribution of RTEs in LD with TAS in enhancer regions is not 

significantly different from the distribution of all non-reference RTEs (P-value = 

0.069 and 0.908, respectively; chi-squared test).                  .   

 

Table 19: List of RTEs in LD with TAS that overlap with enhancer regions. 
Enhancer regions and names are based on data from the GeneHancer database 
of enhancers (Fishilevich et al., 2017). Abbreviations: RTE: Retrotransposable 
element; TAS: Trait associated SNP. 

 

 

 

Chr RTE start RTE end RTE name Enhancer Start Enhancer End GeneHancer name

1 78607067 78607068 ALU_276 78606737 78609541 GH01J078141

1 198243300 198243301 ALU_726 198241174 198243363 GH01J198272

1 227502452 227502453 ALU_841 227501737 227507587 GH01J227314

1 232587774 232587775 ALU_865 232586521 232589442 GH01J232450

2 30669993 30669994 ALU_1087 30669326 30671855 GH02J030446

4 76993824 76993825 ALU_3412 76993459 76994847 GH04J076072

5 56109723 56109724 ALU_4294 56109413 56115758 GH05J056814

6 53167475 53167476 ALU_5181 53164103 53169223 GH06J053299

6 139294734 139294735 ALU_5628 139291022 139295452 GH06J138969

7 38209213 38209214 ALU_5970 38208802 38210018 GH07J038169

7 50473286 50473287 ALU_6027 50472233 50475870 GH07J050404

7 120538086 120538087 ALU_6336 120536766 120540791 GH07J120896

9 16682313 16682314 ALU_7311 16682312 16684265 GH09J016682

10 3569025 3569026 ALU_7750 3567620 3571242 GH10J003525

10 34571038 34571039 ALU_7901 34568588 34571868 GH10J034279

10 106566893 106566894 ALU_8208 106565146 106570717 GH10J104805

12 56753252 56753253 ALU_9228 56752000 56755336 GH12J056358

12 120130849 120130850 ALU_9540 120128986 120132955 GH12J119691

16 75655176 75655177 ALU_11116 75653160 75658011 GH16J075619

17 46505002 46505003 ALU_11333 46503573 46508375 GH17J048426

9 33130564 33130565 SVA_401 33127963 33132882 GH09J033127
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4.4. Discussion 

 

4.4.1. RTEs overlap and enrichment in GWAS risk loci 

 

This study adopted an approach for identifying polymorphic RTEs that have the 

potential to implicate human health and influence individual predisposition to 

disease by screening for RTEs in risk regions previously identified by GWAS. 

Over one-third of the common L1s and Alus (36.64% and 39.82%, respectively) 

and more than half of the SVAs (57.27%) analysed in this study overlapped with 

TAS LD-blocks (Table 16). These RTEs were significantly enriched in risk loci 

compared with random genomic regions (Figure 20). The enrichment of structural 

variants (SVs) mediated by RTE insertions in risk loci is in line with previous 

reports in the literature. Sudmant et al. (2015) reported a 1.5-fold enrichment of 

TAS in the genomic region surrounding SVs, of which some were RTEs. 

However, the majority of the enrichment signal seemed to be attributed to large 

SV (>20 Kb) (Sudmant et al., 2015). A more recent study reported a significant 

enrichment of polymorphic Alu elements in GWAS risk regions (P-value = 0.013) 

using a set of 13,572 polymorphic Alus and 3,242 TAS LD-blocks (P < 10−9) 

(Payer et al., 2017). These results are in line with the enrichment of Alus in TAS 

LD-blocks observed in this study. The significant enrichment of L1 and SVA 

elements in the genomic regions of TAS reported in this study (Figure 20) adds 

to previous reports in the literature and suggests the RTEs in risk loci are 

candidate causative variants with the potential to impact functional genomic 

regions.  
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4.4.2. LD analysis in comparison to previous reports in the literature 

 

Polymorphic RTEs with a potential functional impact in risk regions are likely in 

LD with the TAS of that region. RTEs that are not in LD with the TAS are 

potentially not on the risk haplotype and are unlikely candidates of causation. The 

association analysis identified 429 RTE-TAS LD associations (r2 > 0.6) using 

GWS TAS that have been identified with a P-value ≤ 5x10-8, and RTE variants of 

low and common AF (MAF ≥ 0.01) that have been identified in European 

populations. Of these, 157 TAS are in strong LD (r2 ≥ 0.8) with 49 RTEs (Table 

17). Previous studies conducting similar analysis report a total of 164 RTE-TAS 

LD pairs (r2 > 0.6) of which 41 RTE-TAS associations were replicated by this 

study (Table 20; Appendix 3). Some previously reported RTE-TAS associations 

not replicated by this study were either identified in non-European cohorts, were 

not GWS, or were within the HLA region. Other RTE-TAS associations may have 

been missed because of different studies using genotype data of different 

samples, thus affecting the r2 of the LD calculation (Wray, 2005; Medina-Gomez 

et al., 2015). Another reason for missing some of the previously identified RTE-

TAS associations might be because some of the LD-blocks of this study were 

arbitrarily extended using the median of the LD-blocks defined by tagging SNPs. 

This may have under-estimated the size of the LD-block of some TASs which 

may have resulted in missing some RTEs from the association analysis, 

especially since the LD analysis in this study was mainly calculated for RTEs 

interrupting a TAS LD-block. Nevertheless, this study adds a list of 354 new RTE-

TAS associations to previous reports in the literature.   
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4.4.3. Distribution of RTEs in LD with TAS: 
 

Of the RTEs in LD with TAS, 84 are in or near gene regions, including 36 RTEs 

that are on the sense strand of the gene (Table 18). In addition, 21 of the RTEs 

in LD with TAS are in enhancer regions (Table 19). The distribution of L1 and 

SVA elements in LD with TAS in functional genomic regions is not significantly 

different relative to all polymorphic L1s and SVAs in the curated database (P-

value > 0.05). In contrast, polymorphic Alu elements in LD with TAS are 

significantly enriched in gene regions (P-value = 0.0143) in line with the results 

Table 20: Comparing the list of polymorphic RTEs in LD (r2 > 0.6) with GWAS 
TAS identified by previous similar studies with the list of RTE-TAS associations 
identified by the current study. Abbreviations: RTE: Retrotransposable element; 
TAS: Trait associated SNP; LD: Linkage disequilibrium. GWS: Genome-wide 
significant, defined as TAS with a P-value ≤ 5x10-8.  

Study reference                    

[PMID]

Total number of 

TAS in LD with 

at least one RTE 

identified by the 

referenced study

Number of 

TAS in LD 

with RTEs that 

overlap with 

the current 

study 

Number of discrepancies (reason)

Sudmant et al. 

(2015) [26432246]

6 5 1 (TAS not GWS)

43 13 16 (TAS not GWS)

10 (TAS not identified in European cohort)

2 (TAS in HLA region)

2 (other)

64 16 3 (TAS not GWS) 

5 (TAS not identified in European cohort)

40 (other)

51 7 23 (TAS not GWS)

8 (TAS not identified in European cohort)

13 (other)

Payer et al. (2017) 

[28465436]

Wang et al. (2017) 

[28824558]

Hehir-Kwa et al. 

(2016)                  

[27708267]
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of Payer et al. (2017). The relative enrichment of Alu elements in LD with TAS 

within genes relative to all polymorphic Alus is expected due to the enrichment of 

TAS in genes (Hindorff et al., 2009; Payer et al., 2017). The lack of enrichment 

of L1s and SVAs in LD with TAS within genes relative to all polymorphic L1 and 

SVA elements may have been missed due to their small sample size of L1s 

(n=16) and SVAs (n =7) in LD with TAS, which is likely to increase type II error 

(Banerjee et al., 2009). Nevertheless, given that RTE elements have been known 

to interfere with human gene expression through a variety of mechanisms 

(Chuong et al., 2017; Bourque et al., 2018), RTEs in LD with TAS that also 

interrupt gene regions are likely candidates of causation with the potential to 

interfere with gene function and expression.  

4.4.4. RTEs as causative variants affecting gene expression: 

 

A study by Wang et al. (2017) confirmed the potential of RTEs in LD with TAS as 

candidate causative variant. Wang et al. (2017) identified 437 RTEs identified in 

European samples and associated with disease. These RTEs were also located 

within tissue-specific enhancers. Expression quantitative trait loci (eQTL) 

analysis was then performed using human B-cells and the set of RTE-TAS 

associations within enhancers of blood and immune tissue. By using this method, 

the Wang et al. (2017) research group were able to identify seven RTEs in LD 

with TAS and associated with the expression of genes of importance to the trait 

phenotype. 

An example of an RTE from the list of RTE-TAS associations reported in this 

study with the potential to act as a causative variant is SVA_706, located on 

chromosome 17q21.31 on the opposite strand of the KANSL1 gene. This SVA is 

in LD with 90 TAS linked with a variety of traits including Parkinson's disease, 
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progressive supranuclear palsy (PSP), cognitive ability, depression, and anxiety 

(Table 17).  

A recent study by Spirito et al., (2019) reported the significant association 

between SVA_706 and the expression of a number of genes including KANSL1 

gene and its antisense transcript KANSL1-AS1, Corticotropin Releasing 

Hormone Receptor 1 (CRHR1) gene, and Leucine-Rich Repeat Containing 37A2 

(LRRC37A2) gene. These genes have been previously associated with a number 

of physiological processes including PSP, depression, and anxiety (Liu et al., 

2013; Allen et al., 2016; Ferrari et al., 2017). These findings confirm that RTE 

variants do have the potential to impact human health and can influence 

individual predisposition to disease.  

4.4.5. Study overview and concluding remarks 

 

This chapter discusses the candidacy of polymorphic RTE insertions as potential 

causative variants in GWAS risk loci. Polymorphic L1s, Alus, and SVAs with 

common allele frequencies in populations of European descents were found to 

be overrepresented at GWAS risk loci, more than expected by chance. In 

addition, hundreds of RTEs located within risk loci were found to be in LD with 

TASs. Thus the findings of the study at hand build on previous reports in the 

literature, supporting the potential contribution of RTEs as risk variants 

associated with complex diseases. It is noteworthy that association does not 

necessarily equate to causation, therefore the RTE-TAS associations identified 

in this study are merely candidate causative variants requiring future 

investigations to uncover whether their existence within risk haplotypes does 

have an observed effect on genome function that can be related to the trait 

phenotype. 
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5. General discussion and future directions 

 

Transposable elements (TEs) make up a huge percentage of the human genome 

(~45%) and have been a component of our DNA throughout the history of human 

evolution (Lander et al., 2001). TEs were first discovered in the genome of maize 

by Barbara McClintock in the 1950s (Ravindran, 2012). However, the effect of TE 

activity on genome function in humans was not realised until the late 1980s, 

following the first reported case of a genetic disease, namely Haemophilia, 

caused by an L1 insertion into exon 14 of the factor VIII gene in two unrelated 

individuals (Kazazian, 1988). Since then, over 124 monogenic diseases caused 

by recent TE activity have been reported in the literature (Hancks and Kazazian, 

2016). Despite this, the general effect of TE activity on genome function and its 

potential contribution towards multifactorial traits and disorders remains an open 

question. This thesis set out to investigate the effect of the ongoing transposition 

activity from the active L1, Alu, and SVA subfamilies on genome function, 

including investigating the candidacy of RTE-mediated genomic variants as 

potential causative variants that can influence individual predisposition to 

complex traits and diseases. To this end, a comprehensive database of known 

non-reference RTEs that are polymorphic in the human genome was curated 

from peer-reviewed journal articles scattered through the literature. The database 

was utilised to investigate the genomic distribution of non-reference RTEs in 

comparison to ancient RTE insertions that are fixed in the genome of all humans. 

The results of the distribution analysis show that polymorphic RTE variants are 

found in active genomic regions more frequently than ancient RTEs that are fixed 

in the human genome. These results suggest that the activity of RTE elements 

do harm genome function and thus are subjects of negative selection. As such, 
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RTE variants that are potentially deleterious and disease-causing were sought 

after in the next step of the analysis. 

Firstly, the enrichment of RTEs in close proximity to risk regions was investigated. 

It was found that L1s, Alus, and SVAs were significantly enriched in GWAS risk 

loci, compared with random genomic regions of similar properties. We next tried 

to identify RTE variants that have the potential to be the causative variant within 

the risk haplotype, by calculating LD between the RTE variant and the TAS. This 

analysis resulted in a list of 354 RTE-TAS associations, each of which has the 

potential to be the causative variant within the haplotype of the TAS. This thesis 

employed a constructed framework for identifying RTE variants of relevance to 

disease risk by utilising public data that is available in the literature. The next 

sections will discuss each component of this thesis in more detail, including study 

limitations and proposed future studies.  

 

5.1. Database curation 

 

Identifying RTE insertions from the recently evolved and active subfamilies of 

L1s, Alus, and SVAs has been a difficult task, due to their repetitive nature and 

high sequence homology with endogenous RTEs that have been fixed in the 

human genome throughout human evolution. The development of short-read 

NGS technology and numerous RTE detection tools have simplified and replaced 

early labour-intensive methods and drastically increased the scalability of RTE 

detection. Since then, more and more research groups have shown a great 

interest in RTE discovery as numerous studies characterising polymorphic RTE 

insertions have been published. These studies have collectively reported 

thousands of RTE variants, of which only a fraction have been systematically 
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organised into online databases, while the majority remain scattered in the 

literature. As such, there was a need for a comprehensive database of RTE 

variants, to serve as a resource that could be used to facilitate large-scale 

genomic studies, including population genetics and association studies. This 

study reports a comprehensive list of L1, Alu, and SVA variants that have been 

reported in the literature up to April 2019. The current version of the curated 

database includes the insertional profiles of 3,360 samples and 39,798 RTEs, 

obtained from a total of 45 studies. 

In contrast to previous online databases, namely dbRIP (http://dbrip.brocku.ca/; 

Wang et al., 2006) and the euL1db (http://eul1db.unice.fr; Mir et al., 2014), the 

curated database applied quality control measures to ensure the removal of 

potential false positives. In addition, the database of this study only includes 

germline variants that have been identified in healthy human samples, which is 

in contrast to the dbRIP and the euL1db databases (Wang et al., 2006; Mir et al., 

2014), that include somatic insertions or insertions identified in pathological 

human samples. Nevertheless, 52% of dbRIP records and 46% of the germline 

L1Hs reported in the euL1Hs database overlapped with or were within 200bp of 

the RTE data included in the curated database of this study. 

Overall, the curated database provides a comprehensive resource of known 

germline polymorphic RTE insertions that can be a vital resource in the study of 

the physical and pathological impact of recent RTE activity on the human 

genome.  

 

 

 

http://dbrip.brocku.ca/
http://eul1db.unice.fr/
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5.1.1. Reflections and limitations  

 

It was noted during the database curation process that different studies use 

various nomenclature to describe RTE insertions. Examples of terms (other than 

RTEs) that have been used by some studies to describe L1, Alu, and SVA 

insertions include: mobile element insertions, retrotransposons, and 

retroelements. Although the scientific community recognises that all these terms 

are synonyms for one another, PubMed searches for the different terms produce 

a different number of results. There are ways of getting around this, for example, 

by using MeSH terms or advanced information retrieval functions in PubMed to 

formulate a query. However, a recent study analysing PubMed user sessions has 

reported that over 94% of information queries were performed by inexperienced 

users, defined as users who do not utilise PubMed advanced information retrieval 

functions (Yoo and Mosa, 2015). As such, many scientists conducting a PubMed 

search of non-reference RTE insertions may misidentify several known non-

reference elements. This could result in future RTE detection studies 

misidentifying known non-reference insertions as novel insertions, and further 

illustrating the importance and the need for a comprehensive and accessible 

database of RTE elements. 

Variations within the RTE database of this study are bound to exist owing to 

differences within the methods applied by each study, including variations within 

the algorithmic design of the different RTE detection tools, and the applied quality 

control measures for RTE calling. Such variations have likely had different effects 

on the accuracy, precision, and false discovery rate of the included studies, thus 

limiting the consistency of the curated database. Nevertheless, every effort was 

made to minimise the potential effects of this shortfall, for example, by applying 
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a minimum supporting reads threshold to eliminate false positives, and by 

merging insertions located within 200bp of each other, to accommodate for 

variations within the precision of the different RTE detection tools.  

 

5.2. Genomic distribution of RTEs 

 

The genomic location of an RTE insertion can determine its potential impact on 

genome function and its ability to be expressed and mobilised. RTEs are capable 

of introducing insertional mutagens that can affect genome function in a variety 

of mechanisms, including interfering with gene expression, alternative splicing, 

and post-transcriptional regulation (Guffanti et al., 2014; Bourque et al., 2018; 

Savage et al., 2019). In addition, RTEs can impact genomic stability, by inducing 

DNA breakage during their retrotransposition or by causing post-transposition 

deletions and duplications via NAHR, which can occur due to the repetitive nature 

and high sequence homology between the different subfamilies of RTEs (Startek 

et al., 2015; Nazaryan-petersen et al., 2016; Bourque et al., 2018). RTEs can 

also induce epigenetic modifications by attracting chromatin modification 

complexes as part of the host defence mechanisms to suppress RTE activity 

(Jacobs et al., 2014; Garcia-Perez et al., 2016). Therefore, characterising the 

integration site of RTEs is essential for understanding the potential impact of their 

activity on genome function and integrity, including the extent of their contribution 

to human health and disease.  

Previous studies investigating the genomic distribution of endogenous RTEs 

have reported the accumulation of L1 elements in AT-rich, low activity genomic 

regions, while Alu and SVA elements accumulate in GC-rich, high-activity regions 

(Smit, 1999; Lander et al., 2001; Wang et al., 2005). Nevertheless, endogenous 
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RTEs are mostly fixed in the human genome and are thought to have a neutral 

effect on genome function. The differential distribution of Alu and SVA elements, 

in comparison to the distribution of L1s despite their transposition via the L1 

machinery, has been attributed to post-integrational processes that have 

differentially reshaped the genomic landscape of each element, mainly by 

purifying selection and ectopic recombination (Medstrand et al., 2002; Wang et 

al., 2005; Kvikstad and Makova, 2010; Costantini et al., 2012). Polymorphic RTE 

insertions that are not part of the human reference genome have not been 

subjects of selection pressures to the same extent as the fixed endogenous 

elements. Accordingly, analysing the genomic distribution of polymorphic 

insertions, in comparison with the landscape of fixed RTEs, is one of the methods 

that can be used to gain insight into the interplay between RTE activity and its 

potential impact on genome function and integrity. Previous studies conducting 

similar analysis have provided some insight into the potential effects of the 

continuous RTE activity on genome function, but provided limited information 

about integration site preference, due to the low number of polymorphic insertions 

recovered from an even lower number of samples (Ovchinnikov et al., 2001; 

Boissinot et al., 2004; Wang et al., 2005; Cordaux et al., 2006; Ewing and 

Kazazian, 2010). The small number of samples analysed by previous studies 

means that the majority of the recovered insertions were likely common, with an 

allele frequency >1%. In short, retrotransposition is induced in vitro using an 

engineered RTE construct, and the distribution of the recovered de novo 

insertions is then compared with that of endogenous elements (Flasch et al., 

2019; Sultana et al., 2019; Chen et al., 2020). At the moment, this method has 

only been applied for investigating the integration preference of L1 elements. 
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This study compared the genomic distribution of endogenous RTEs with the 

distribution of polymorphic non-reference insertions that were curated in-house. 

Near one-third of the in-house curated database (32%) is composed of singleton 

insertions, that are more likely to provide information about the integration site 

preference of active RTEs, due to their younger evolutionary age compared with 

common polymorphic insertions. As expected, the results for the genomic 

distribution of L1 elements from this study were intermediate between those 

reported by previous studies using non-reference insertions and the more recent 

studies using engineered L1 constructs. Thus, it was deduced that the distribution 

results of non-reference insertions from this study represent aspects of the 

integration site preference of L1, Alu, and SVA elements. 

The initial integration of non-reference RTEs is not completely random. Non-

reference L1 and Alu elements are similarly distributed in AT-rich low-activity 

regions, suggesting that both of these elements share similar integration site 

preferences. A recent study has reported that the most influential factors in 

determining the integration site preference of active L1s include the specificity of 

the L1 machinery and pre-existing biases within the human genome (Sultana et 

al., 2019). These influential factors are also likely to be true for determining the 

initial integration site of Alus, especially since the retrotransposition of mobile Alu 

elements is reliant on the L1 machinery. In contrast, SVA elements accumulate 

in GC-rich high-activity regions, suggesting the role of different influential factors 

in determining the integration site preference of SVAs, which are yet to be 

determined.   

Overall, the differential distribution of reference vs. non-reference RTEs displays 

aspects of the interplay between the integration site preference and the effect of 
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post-integrational processes in modulating the genomic landscape of RTE 

insertions. In addition, the more frequent occurrence of non-reference RTE 

insertions in functional genomic regions, in comparison with reference insertions, 

suggests the potential negative impact of RTE activity on genome function and 

integrity. This study provides the most recent analysis for the genomic distribution 

of Alu and SVA elements that have not been studied as extensively as L1 

elements. 

5.2.1. Study limitations  

 

The non-reference SVA elements analysed by this study may not be 

representative of the true integration site preference of SVA elements. A recent 

pedigree-based study investigating the rate of new RTE elements has estimated 

the occurrence of 1 new L1 and SVA element per 63 births (Feusier et al., 2019). 

However, the number of non-reference SVA insertions recovered so far is a 

fraction of the number of known non-reference L1 elements, suggesting shortfalls 

of SVA discovery within the human genome. In addition, recent germline SVA 

insertions that have been identified in the population may have already been 

exposed to strong and rapid post-insertional selection via compositional 

matching. The compositional matching hypothesis suggests the removal of DNA 

elements, particularly repetitive elements with a sequence composition that does 

not match the isochore in which they are found (Pavlíček et al., 2001; Hackenberg 

et al., 2005). These possibilities limit the reliability of conclusions drawn by this 

study for the integration site preference of SVA elements.  

Finally, the distribution analysis of this study provided some great insight into the 

potential impact of RTE activity on genome function. However, aspects of the 

integration site preference may have been masked by the grouping of 
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polymorphic RTEs of different allelic frequencies, thereby limiting the scope of 

the conclusions drawn. 

5.3. Correlation between RTEs and TASs 

 

RTEs that remain capable of transposing within the human genome are an 

important source of genomic diversity within human populations, yet their 

contribution to complex traits and diseases remains an open question. RTEs are 

often masked in genomic and association studies, despite their continuous 

contribution towards creating SV in humans, and their various effects on genome 

function and regulation. Previous studies may have neglected RTE insertions, 

due to their repetitive nature and high sequence homology, which makes them 

difficult to characterise and study. Many studies filter out repetitive regions 

including TEs from WGS data before conducting downstream analyses (Goerner-

potvin and Bourque, 2018). As such, previous association studies have mainly 

relied on SNPs, as they are ubiquitous in the human genome, occurring on 

average once every 300 base pairs (Nelson et al., 2004). However, the collective 

effect size of GWS SNPs could only explain a fraction of the trait heritability for 

many complex traits, thus the missing heritability issue was raised (Manolio et al., 

2009; Rowe and Tenesa, 2012). Soon after the missing heritability issue was 

raised, more and more studies started to incorporate other types of SVs, 

however, these studies were mainly focused on CNVs or mega base deletions 

and duplications (Stankiewicz and Lupski, 2010; Lacaria et al., 2013;  Waddell et 

al., 2015). Studies have only recently begun investigating the contribution of 

RTEs to complex traits and diseases, thus the impact of RTE variants as potential 

causative candidates that can influence individual predisposition to disease, 

remains largely uncharacterised.  
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A recent study investigating the potential implications of polymorphic RTE 

insertions on human health has reported a significant enrichment of polymorphic 

Alu elements in GWAS risk loci (Payer et al., 2017). Also, recent studies have 

reported that polymorphic RTE insertions can be in strong LD with TAS, 

suggesting their potential candidacy as causative variants within the risk 

haplotype (Sudmant et al., 2015; Hehir-Kwa et al., 2016; Payer et al., 2016; Wang 

et al., 2017). In addition, some RTE variants in LD with TAS were also shown to 

be associated with altered gene expression of nearby genes in a tissue-specific 

manner (Wang et al., 2017; Spirito et al., 2019). This study aimed to build upon 

previous findings by investigating the proximity and enrichment of polymorphic 

RTEs in GWAS risk loci, and by identifying additional RTEs in LD with TAS that 

could be potential candidates of causation within the risk haplotype. The analysis 

of this study is focussed on exploring the effect of common variants from the three 

active classes of non-LTR RTEs, namely L1s, Alus, and SVAs, and their 

potentially uncharacterised contribution as underlying causative variants of 

complex traits.   

L1 and SVA elements were found to be significantly enriched in GWAS risk loci, 

suggesting the detection of the potential functional impact of polymorphic RTE 

insertions at multiple GWAS risk regions. The significant enrichment of Alu 

elements in GWAS risk loci is in line with the results of Payer et al., 2016. RTE 

elements were readily identified in GWAS risk loci. This study also identified 354 

new RTE-TAS associations, of which 157 are in strong LD (r2 > 0.8; Table 17). 

Most significantly, a non-reference SVA element (SVA_706) was found to be in 

strong LD with multiple TAS over a large genomic region. Upon further 

investigation, it was found that this SVA is located within a large haplotype in 

European populations that have been extensively studied in neurological 
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diseases, yet its contribution to disease risk has not yet been fully elucidated upon 

(Boettger et al., 2012; Li et al., 2014; Koolen et al., 2016). Interestingly, Spirito et 

al. (2019) reported strong associations between this SVA element and the 

expression of several genes that have been implicated with neurological 

conditions such as depression and anxiety. Altogether, these results suggest that 

SVA_706 is likely the missing variant that could potentially explain the 

contribution of this large haplotype to the risk of developing various neurological 

diseases, thus its contribution should be validated with follow-up wet-lab studies.   

Overall, the results of our study and previous studies show RTEs can be 

causative variants in potentially all complex traits and disorders, and should be 

routinely incorporated in association studies to address aspects of the missing 

heritability issue.  

5.3.1. Study limitations 

 

Estimating the LD-block size for TAS that lacked tagging SNPs, may have 

introduced type II error during the LD-analysis, resulting in the misidentification 

of some RTE-TAS associations that were reported in previous studies. The LD-

analysis was limited to RTEs identified by the 1kGP (Sudmant et al., 2015) as it 

is the only study within the curated database that included accessible genotype 

information of SNPs and RTE elements. The LD-analysis was also limited to 

variants identified in individuals of European descent, as most GWAS have been 

conducted predominantly on European cohorts. Finally, some of the RTEs in LD 

with TAS reported in this study may not be associated with disease risk. 

Nevertheless, the list of RTE-TAS associations reported in this study identifies 

some RTEs that are potential candidates of causation. The contribution of the 
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RTE variant as a potential risk variant from the reported list can only be confirmed 

by wet-lab experiments.  

5.4. Summary of key findings 

 

This study investigated the genomic landscape of recent RTE insertions and the 

potential contribution of polymorphic RTEs as causative variants of disease in 

GWAS risk loci, in an effort to understand the impact of RTE insertions and their 

role in complex human disorders. To this end, a comprehensive database of 

polymorphic RTE insertions was curated using online databases and peer-

reviewed journal articles. The curated database is a handy resource for future 

studies in various fields, including population genetics and cancer genomics, 

made available at GitHub 

(https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis/RTE_files) 

Through investigating the genomic distribution of RTEs, we have found that 

transposable elements are readily located in active genomic regions, and thus 

have the potential to influence gene function and regulation in a variety of 

mechanisms. Of the three RTE types investigated in this study, SVA elements 

accumulated the most in active regions, suggesting that SVAs are likely to have 

the most negative impact on genome function. This finding is significant as it 

highlights the importance of conducting more research on SVA elements, since 

they are the least favoured RTEs to study due to their complex structure, which 

makes them difficult to detect in the human genome.  

Finally, we investigated the potential association of RTEV with disease 

susceptibility and found a significant enrichment of RTEs in GWAS risk loci, plus 

over 400 RTEs in LD (r2 > 0.6) with various TAS. This finding suggests that SV 

mediated by RTE insertions do have the potential to impact complex human traits 

https://github.com/RandaAli1/MyPhDproject/tree/master/MyAnalysis/RTE_files
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and are likely causative variants in some GWAS risk loci. Although the RTE-TAS 

associations identified in this study are purely candidate variants of causation 

requiring future validation studies, the result of this analysis highlights the 

importance of including RTEV in future association studies to better the 

understanding of complex human traits and disorders. 

5.5. Future directions 

 

RTEs provide a continuous source of genetic variation in humans, including some 

variants that can be involved with the aetiology of complex traits. Following the 

results of this study, it was concluded that SVA elements have the highest 

potential impact on the function of the human genome relative to other classes of 

active RTEs, namely L1 and Alu elements. This conclusion was based on the 

accumulation of non-reference SVA elements in highly active genomic regions, 

and the significantly higher proportion of their occurrence in risk loci, compared 

to both L1 and Alu variants. Nevertheless, the integration site preference analysis 

in this study was limited by the reliance on polymorphic germline insertions of 

various allele frequencies that may not be representative of the actual integration 

site preferences of SVAs. As such, future studies characterising the integration 

sites of experimentally induced de novo SVA elements in cultured cells are 

required to confirm the conclusions drawn by the current study, and better 

understand the contribution of various genomic features in favouring or restricting 

the mobilisation of SVA elements. In addition, this study identified a list of RTE 

variants that are potential candidates of causation at GWAS risk loci. These RTE-

TAS associations require future experimental validation studies, to confirm the 

causal relationship between RTE variants and numerous multifactorial traits in 

humans. An example of this would be investigating the association between 
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candidate RTE variants and the expression of nearby genes with functional 

effects that can be linked to the trait phenotype. Lastly, the inclusion of ethnic 

cohorts other than European in future GWAS could allow upcoming studies to 

expand the RTE-TAS associations, which could lead to a better understanding of 

disease etiology. 
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 Appendix 1: Additional information about the 45 studies included in the 

curated database of this study 

 

This supplementary table is an extension of table 4 (p. 36-37) and it includes a 

record of the following: 

1. RTE Detection tool applied by the study 

2. Information regarding the detection sensitivity/validation as 

reported by each respective study 

3. Source of insertions data 

Detection Sensitivity/Validation Key: 

¶  | PCR verification 

P  |  Precision 

R  |  Recall 

S  |  Sensitivity 

δ  |  Specificity 

‡  | 
 False discovery 
rate 

.avg |  Average 
 

 

 

1 David et al., (2013) 23921633 Alu-detect 97%
P
, 85% 

R
 60% 

¶ File S1

2 Sudmant et al., (2015)♦ 26432246 MELT 83-96%
S
,4%

‡ 1KGP ftp. 

web

3 Witherspoon et al., (2013)║ 23599355 ME-Scan 95%
S
,44%

¶
,4.6%

‡ Sup .txt file

4 Thung et al., (2014)♦ 25348035 Mobster 90-99%
S
, 91%

¶
,9%

‡ File 

S2,S3,S4

5 Brandler et al., (2016) 27018473 Mobster 70%
 
KNR (Fig. S7) Tbl. S2

6 Baillie et al., (2011)♦⁞ 22037309 RC-seq 100%
¶ 
(Tbl. S6)

Tbl. S4 and 

S5

7 Shukla et al., (2013)♦⁞ 23540693 RC-seq 98.5%
¶
 (Tbl. S5) Tbl. S3, S4

8 Solyom et al., (2012)♦⁞ 22968929 L1- & RC-seq 67.3%
¶ 
(Tbl. S3)

Tbl. S1a.b, 

S2

9 Wildschutte et al., (2015) 26503250 RetroSeq 5%
‡
, 100%

¶ 
(Tbl. S3) Tbl S1a, S6

10 Evrony et al., (2015)♦ 25569347 scTea 86-96%
S
, 96%

¶  Tbl. S3

11 Lee et al., (2012)♦⁞ 22745252 Tea 100%
¶
 (Tbl. S7) Tbl. S6, S8

12 Hormozdiari et al., (2011) 21131385 VariationHunter-2 98%
¶
 (Tbl. S4, S5) Tbl. S1

Data source# Study ID PMID Detection tool

Reported Detection 

sensitivity

Table 21: Studies included in the curated non-reference retrotransposable 
element (RTE) databases, including name of the detection tool used by each 
study, information about sensitivity/validation, and source file from which the 
insertions in the database got extracted from 
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13 Ha et al., (2016) 27478512 ME-Scan-SVA 89%
S
, 55%

¶
 (Tbl.S2) File S3

14 Stewart et al., (2011)♦⁞ 21876680 SPANNER 95%
¶
,
 
4.5±0.8

‡ Tbl. S1

15 Yu Q et al., (2017) 28938719 SID
86.7%

S.avg
,96.9%

¶
 (Tbl. 

S7,S8)
Tbl. S11

16 Xing et al., (2009)║ 19439515 Computational  100%
¶
 (Tbl. S1) Tbl. S3

17 Upton et al., (2015)♦ 25860606 RC-seq
97.5%

S
, 100%

¶
 (Tbl. 

S2)
Tbl. S2

18 Tubio et al., (2014)♦ 25082706 TraFiC
73-83.9%

S
, >99%

δ 

(Tbl. S4)
Tbl. S7

19 Shin et al., (2019) 30699287 Custom pipeline 92.5%
¶
 (Tbl.S4) Tbl. S3

20 Schauer et al., (2018) 29643204 RC-seq 100%
¶*

 (Tbl. S2) Tbl. S2

21 Rouchka et al., (2010) 21044359 Computational 100%
¶
 (Tbl. 1) Tbl. 1

22 Payer et al., (2017) 28465436 PCR of KNR (S3) 100%
¶ 
(Dataset S3) Dataset S3

23 Mir et al., (2014)♦⁞ 25352549 euL1db -- euL1db web

24 Kurnosov et al., (2015)♦ 25689626 Computational 53%
¶.avg* 

(Tbl. S1) Tbl. S1

25 Kuhn et al., (2014)♦ 24847061 L1-seq 78%
S
, 94%

δ 
(Fig. S2) Dataset S2

26 Konkel et al., (2015) 26319576 Tbl. S1,S2

27 Kloosterman et al., (2015) 25883321 Mobster 
77.6%

S
, 100%

¶
 (Tbl. 

S2)
Tbl. S2

28 Iskow et al., (2010)♦⁞ 20603005 L1-seq 89-97%
¶*

 (Tbl.1) 
Tbl. 

S1,S2,S3

29 Helman et al., (2014)♦⁞ 24823667 TranspoSeq 99%
S
, 83%

¶*
(Tbl. S1) Tbl.S2

30 Hehir-Kwa et al., (2016) 27708267  Mobster 96%
¶  

(Data S1)
Nlgenome 

web

31 Feusier et al., (2017) 28770012 ME-Scan 58%
¶
 (Tbl. S2,S3,S6) Tbl. S11

32 Ewing et al., (2015)♦ 26260970 L1-seq >93%
S
 (Tbl. S1) Tbl. S3a-d

33 Ewing et al., (2011)♦⁞ 20980553 Custom pipeline (Fig.3) 80.5% (Tbl. S1) Tbl. S2

34 Ewing et al., (2010)♦⁞ 20488934 Perl script
>80%

δ
, 93±4%

S
, ~7%

‡ 

(S.pdf)
Tbl. S1

35 Evrony et al., (2012)♦⁞ 23101622 Custom pipeline 81±6%
S
, 94%

¶ Tbl. S3

36 Erwin et al., (2016)♦ 27618310 Machine learning-based 80%
¶
 (Tbl. S3) Tbl. S3

37 Doyle et al., (2017) 28585566 L1-seq 50%
¶ 
(Tbl.S2) Tbl. S5

38 Cardelli et al., (2012) 22495107 2 AIP methods
67-90%

S
 (Tbl.1), 

100%
¶
 (Tbl.2) 

Tbl. 2

39 Beck et al., (2010)♦⁞ 20602998 Experimental Strategy
Confirmed 18/68

¶
 in 

ABC13
Tbl. S2

40 Arokium et al., (2014)♦ 25289675 Adapted L1-Seq 94%
¶
 (Tbl. S3) Tbl. S2

41 Nguyen et al., (2018) 29949758 RC-seq 93.5%
¶*

 (Tbl.S2) Tbl. S2

42 Carreira et al., (2016)♦ 27843499 RC-seq >82%
S
 (Tbl. S1) Tbl. S2

43 Achanta et al., (2016) 27843500 TIPseq 100%
¶
 (Tbl.2) Tbl. 2

44 Streva et al., (2015)♦ 25887476 SIMPLE 94%
S
, 100%

¶
 (Tbl. S4) Tbl. S2

45 Scott et al., (2016)♦ 27197217 Adapted L1-Seq and MELT 84.4%
¶
 (Tbl. S5) Data S2

Sanger sequencing of 343 Alu MEIs PCR validated 

by 1kGP (pilot phase) 
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Appendix 2: Full list of RTEs in LD with TAS 

 

 

 

 

 

Chr  Start
RTE           

(1kGP name)
TAS Trait P-val r

2 Trait_PMID

6 141414904 ALU_5647 rs113803678 Body mass index 4E-08 0.92 30595370

3 85576571 LINE1_629 rs62250759
Self-reported risk-taking 

behaviour
5E-12 0.92 29391395

12 24868717 LINE1_2249 rs61914312 Hair color 3E-10 0.91 30595370

1 174484646 ALU_604 rs140588606 Feeling miserable 6E-10 0.91 29500382

1 174484646 ALU_604 rs77417259 Feeling miserable 3E-10 0.91 29500382

9 11329329 ALU_7283 rs2152261 Menarche (age at onset) 2E-13 0.91 30595370

12 56753252 ALU_9228 rs2066819 Psoriasis 5E-17 0.88 23143594

1 174484646 ALU_604 rs140581634 Feeling miserable 2E-08 0.87 29500382

12 120130849 ALU_9540 rs17442937 Red cell distribution width 4E-08 0.85 30595370

17 44153977 SVA_706 rs12150229
Ease of getting up in the 

morning
4E-09 0.84 30804565

17 44153977 SVA_706 rs12150672 Red blood cell count 4E-09 0.84 28017375

17 44153977 SVA_706 rs12185268 Parkinson's disease 3E-14 0.84 21738487

17 44153977 SVA_706 rs12373124 Male-pattern baldness 5E-10 0.84 22693459

17 44153977 SVA_706 rs17563683 Hemoglobin concentration 2E-28 0.84 27863252

17 44153977 SVA_706 rs17563986 Cognitive ability 5E-12 0.84 29186694

17 44153977 SVA_706 rs17650842 Irritable mood 2E-12 0.84 29500382

17 44153977 SVA_706 rs1864325
Lumbar spine bone mineral 

density
5E-11 0.84 22504420

17 44153977 SVA_706 rs2214258 Neuroticism 2E-25 0.84 29255261

17 44153977 SVA_706 rs241036 Experiencing mood swings 8E-20 0.84 29500382

17 44153977 SVA_706 rs241036 Menarche (age at onset) 7E-13 0.84 30595370

17 44153977 SVA_706 rs2942168 Parkinson's disease 1E-28 0.84 21292315

17 44153977 SVA_706 rs4606752 Reticulocyte count 1E-17 0.84 27863252

17 44153977 SVA_706 rs55657917 Feeling hurt/Mood swings 7E-29 0.84 29500382

17 44153977 SVA_706 rs55657917

Accelerometer-based physical 

activity measurement (average 

acceleration)

5E-12 0.84 29899525

17 44153977 SVA_706 rs56303031 Heel bone mineral density 6E-24 0.84 30595370

17 44153977 SVA_706 rs56319902
Educational attainment (years of 

education)
6E-33 0.84 30038396

17 44153977 SVA_706 rs62055546
Alcohol consumption (drinks 

per week)
8E-25 0.84 30643258

17 44153977 SVA_706 rs62055701 Irritable mood 6E-13 0.84 29500382

17 44153977 SVA_706 rs62055935 Feeling nervous 2E-15 0.84 29500382

17 44153977 SVA_706 rs62057061 Depressed affect 2E-22 0.84 29942085

17 44153977 SVA_706 rs62057107 Educational attainment 5E-38 0.84 30038396

Table 22: Full list of RTEs in LD with TAS. This supplementary table is an 
expansion of table 17 (p.132-133) and it includes all RTEs in LD (r2 > 0.6) with 
GWS TAS identified in cohorts of European descents. Note: When there are 
RTEs in LD with a TAS that have been identified by multiple GWAS, the table 
includes the strongest GWAS signal. Table ordered by r2 value. 
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17 44153977 SVA_706 rs75022332
Worry too long after an 

embarrassing experience
2E-08 0.84 29500382

17 44153977 SVA_706 rs76761706 Neurociticism 7E-32 0.84 29500382

17 44153977 SVA_706 rs79412431 Lung function 3E-49 0.84 30804560

17 44153977 SVA_706 rs79857651 Experiencing mood swings 9E-20 0.84 29500382

17 44153977 SVA_706 rs8072451
Subcortical brain region 

volumes
1E-08 0.84 25607358

9 16682313 ALU_7311 rs12335424 Height 2E-21 0.84 30595370

15 76826019 ALU_10819 rs166906
Estimated glomerular filtration 

rate
5E-13 0.83 31152163

15 76826019 ALU_10819 rs506000
Estimated glomerular filtration 

rate
2E-15 0.83 31152163

17 44153977 SVA_706 rs112333322 Experiencing mood swings 4E-19 0.83 29500382

17 44153977 SVA_706 rs117124984 Daytime nap 3E-13 0.83 30804565

17 44153977 SVA_706 rs17577369 Feeling miserable 4E-12 0.83 29500382

17 44153977 SVA_706 rs17649553 Parkinson's disease 1E-68 0.83 28892059

17 44153977 SVA_706 rs17661015 Irritable mood 4E-12 0.83 29500382

17 44153977 SVA_706 rs17661015 Feeling hurt 3E-28 0.83 29500382

17 44153977 SVA_706 rs1981997 Interstitial lung disease 9E-14 0.83 23583980

17 44153977 SVA_706 rs35524223 Lung function (FEV1) 1E-13 0.83 28166213

17 44153977 SVA_706 rs56280951 Feeling miserable 8E-13 0.83 29500382

17 44153977 SVA_706 rs62055544 Feeling fed-up 5E-16 0.83 29500382

17 44153977 SVA_706 rs79301522 Neurociticism 1E-30 0.83 29500382

17 44153977 SVA_706 rs8070723
Progressive supranuclear 

palsy/Parkinson's disease
2E-118 0.83 21685912

17 44153977 SVA_706 rs919462 Male-pattern baldness 1E-26 0.83 29146897

17 44153977 SVA_706 rs111433752 Neuroticism 9E-12 0.83 27067015

17 44153977 SVA_706 rs17689882
Subcortical brain region 

volumes
8E-09 0.83 25607358

17 44153977 SVA_706 rs2106785 Irritable mood 3E-13 0.83 29500382

17 44153977 SVA_706 rs2106786 Red blood cell count 3E-36 0.83 27863252

17 44153977 SVA_706 rs365825 Parkinson's disease 4E-32 0.83 27182965

17 44153977 SVA_706 rs393152 Parkinson's disease 2E-16 0.83 19915575

17 44153977 SVA_706 rs62061733 Eosinophil counts 3E-29 0.83 30595370

17 44153977 SVA_706 rs62061733 Feeling hurt 2E-28 0.83 29500382

12 56753252 ALU_9228 rs59917308 Height 3E-32 0.83 30595370

17 44153977 SVA_706 rs112010353 Self-reported math ability 2E-08 0.83 30038396

2 210260754 ALU_1947 rs1080278 Lung function (FVC) 1E-19 0.83 30595370

17 44153977 SVA_706 rs1991556 Lung function (FVC) 1E-53 0.83 30595370

17 44153977 SVA_706 rs1991556 Sleep duration 3E-09 0.83 30531941

16 75655176 ALU_11116 rs61537885
Smoking initiation (ever regular 

vs never regular)
8E-09 0.82 30643251

17 44153977 SVA_706 rs80103986 Hand grip strength 1E-09 0.82 29313844

4 134596423 LINE1_967 rs12507927 Highest math class taken 3E-11 0.82 30038396

17 44153977 SVA_706 rs17652520 Medication use (anilides) 8E-13 0.82 31015401

17 44153977 SVA_706 rs17652520 Neuroticism 2E-27 0.82 30595370

1 174484646 ALU_604 rs75035127 Feeling miserable 7E-09 0.82 29500382

1 169524859 LINE1_164 rs6128 Blood protein levels 2E-26 0.82 29875488

12 56753252 ALU_9228 rs11575234 Inflammatory skin disease 2E-12 0.82 25574825

17 44153977 SVA_706 rs62063281 Number of sexual partners 4E-15 0.82 30643258

17 44153977 SVA_706 rs62063281 Osteoarthritis (hip) 5E-12 0.82 30664745

17 44153977 SVA_706 rs17665188 Experiencing mood swings 1E-18 0.82 29500382

17 44153977 SVA_706 rs62065453 Neuroticism 2E-24 0.82 29255261

17 44153977 SVA_706 rs62065453 Feeling nervous/Irritable mood 6E-15 0.82 29500382

1 163639693 ALU_559 rs12564153 Lung function (FEV1/FVC) 1E-09 0.82 30595370

12 56753252 ALU_9228 rs2066807 Psoriasis 5E-12 0.81 25903422

12 56753252 ALU_9228 rs2066807 Height 1E-13 0.81 20881960

5 109051004 ALU_4562 rs4388249 Schizophrenia 8E-09 0.81 28991256
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1 163639693 ALU_559 rs12564153 Lung function (FEV1/FVC) 1E-09 0.82 30595370

12 56753252 ALU_9228 rs2066807 Psoriasis 5E-12 0.81 25903422

12 56753252 ALU_9228 rs2066807 Height 1E-13 0.81 20881960

5 109051004 ALU_4562 rs4388249 Schizophrenia 8E-09 0.81 28991256

17 44153977 SVA_706 rs62064364 Macular thickness 4E-35 0.81 30535121

10 106566893 ALU_8208 rs61867293 Depression 7E-10 0.81 29700475

21 33050849 ALU_12379 rs17660708 LDL cholesterol 1E-10 0.81 30275531

17 44153977 SVA_706 rs2732631 Macular thickness 3E-35 0.81 30535121

17 44153977 SVA_706 rs4471723 Feeling guilty 5E-09 0.81 29500382

17 44153977 SVA_706 rs8080583 Cognitive ability 1E-08 0.81 29186694

17 44153977 SVA_706 rs9303525 Intracranial volume 8E-15 0.81 22504418

20 26190974 ALU_12132 rs6051320 Lung function (FEV1/FVC) 2E-08 0.81 30595370

11 54958589 ALU_8580 rs77584654
Heel bone mineral density/          

Height
5E-17 0.81 30595370

17 44153977 SVA_706 rs2732708 Feeling miserable 3E-11 0.80 29500382

17 44153977 SVA_706 rs2732708 Neuroticism 2E-23 0.80 29255261

17 44153977 SVA_706 rs62057151 Feeling worry 1E-09 0.80 29500382

7 18273084 ALU_5868 rs1528683 Lung function (FVC) 2E-17 0.80 30595370

12 77965056 ALU_9355 rs17788937 Myopia (pathological) 4E-15 0.80 23049088

17 44153977 SVA_706 rs2696532 Feeling guilty 4E-08 0.80 29500382

17 44153977 SVA_706 rs242559 General cognitive ability 1E-13 0.80 29844566

11 43877448 ALU_8559 rs1061810 Type 2 diabetes 4E-10 0.80 28566273

8 110101605 ALU_7037 rs28499085 Pulse pressure 3E-13 0.79 30224653

14 92619420 SVA_615 rs34016308 Myopia 4E-14 0.79 27182965

5 40041345 LINE1_1097 rs10053502 Myopia (pathological) 1E-16 0.79 23049088

17 44153977 SVA_706 rs58879558 Red blood cell count 3E-98 0.79 30595370

17 44153977 SVA_706 rs77804065 Feeling guilty 6E-10 0.79 29500382

17 44153977 SVA_706 rs77804065 Neuroticism 1E-31 0.79 29942085

1 174484646 ALU_604 rs75650221 Negative Feelings 3E-10 0.79 29500382

1 174484646 ALU_604 rs75650221
Ease of getting up in the 

morning
4E-18 0.79 30804565

5 25233926 ALU_4154 rs111257433 General risk tolerance 5E-10 0.79 30643258

17 44153977 SVA_706 rs62062288 Neurociticism 6E-32 0.79 29500382

17 44153977 SVA_706 rs62062288
Alcohol use disorder (total 

score)
5E-10 0.79 30336701

17 44153977 SVA_706 rs62062288 Negative Feelings 7E-10 0.79 29500382

17 44153977 SVA_706 rs62062288 Risk-taking tendency 1E-29 0.79 30643258

6 56387576 ALU_5205 rs4288197 Heel bone mineral density 5E-17 0.78 30595370

14 92619420 SVA_615 rs11160044
Spherical equivalent or myopia 

(age of diagnosis)
7E-11 0.78 29808027

11 49282683 ALU_8572 rs7103270
HDL cholesterol x physical 

activity interaction (2df test)
7E-12 0.78 30670697

4 76993824 ALU_3412 rs7693693 Blood protein levels 2E-17 0.78 29875488

1 219558910 ALU_810 rs75128958 Lung function (FEV1/FVC) 2E-23 0.78 30804560

1 219558910 ALU_810 rs75128958 Heel bone mineral density 1E-08 0.78 30595370

2 30669993 ALU_1087 rs28538173 Eosinophil counts 3E-09 0.78 30595370

6 96009421 ALU_5389 rs80268500 Blood protein levels 0E+00 0.78 29875488

16 80848077 ALU_11145 rs34018670 Monocyte count 5E-09 0.78 27863252

1 174484646 ALU_604 rs115073088 Chronotype 4E-12 0.78 30696823

1 119553366 LINE1_122 rs3790553 Male-pattern baldness 4E-19 0.78 30573740

12 56753252 ALU_9228 rs2066808 Psoriasis 6E-10 0.77 25574825

12 56753252 ALU_9228 rs36207871 Inflammatory skin disease 3E-12 0.77 25574825

3 193354185 LINE1_769 rs34023161 Highest math class taken 3E-08 0.77 30038396

17 44153977 SVA_706 rs76640332
Lymphocyte percentage of white 

cells
5E-13 0.77 27863252
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12 56753252 ALU_9228 rs59626664 General risk tolerance 2E-09 0.77 30643258

3 193354185 LINE1_769 rs11925699 Educational attainment 3E-08 0.77 30038396

1 180857564 ALU_629 rs1043069 Systolic blood pressure 5E-15 0.77 30224653

9 4237141 ALU_7235 rs2224492 Intraocular pressure 4E-16 0.77 29235454

17 44153977 SVA_706 rs1378358 Negative Feelings 2E-11 0.76 29500382

17 44153977 SVA_706 rs1378358 Neurociticism 2E-27 0.76 29500382

17 44153977 SVA_706 rs199456 Macular thickness 3E-28 0.76 30535121

17 44153977 SVA_706 rs538628 Feeling nervous 9E-13 0.76 29500382

15 47507342 LINE1_2640 rs12914084 Neuroticism 3E-08 0.76 30643256

15 47507342 LINE1_2640 rs6493265
Educational attainment (years of 

education)
2E-17 0.76 30038396

2 652672 ALU_958 rs10189761 Obesity 6E-24 0.76 23563607

2 652672 ALU_958 rs12714415 Heel bone mineral density 4E-09 0.76 28869591

2 652672 ALU_958 rs12995480 C-reactive protein levels 1E-10 0.76 30388399

2 652672 ALU_958 rs13021737 Body mass index 4E-69 0.76 30108127

2 652672 ALU_958 rs13396935
Smoking status (ever vs never 

smokers)
4E-13 0.76 30643258

2 652672 ALU_958 rs4854344

Body mass index (joint analysis 

main effects and physical activity 

interaction)

9E-23 0.76 28448500

2 652672 ALU_958 rs5017302 Menarche (age at onset) 5E-38 0.76 30595370

2 652672 ALU_958 rs6548238 Body mass index 1E-18 0.76 19079261

2 652672 ALU_958 rs6725549 Body mass index 1E-74 0.76 26426971

2 652672 ALU_958 rs6748821 Obese vs. thin 8E-21 0.76 30677029

2 652672 ALU_958 rs6752706 Lung function (FEV1/FVC) 2E-13 0.76 30595370

2 652672 ALU_958 rs6755502 Waist/Hip circumference 2E-30 0.76 25673412

17 44153977 SVA_706 rs199443 Feeling fed-up 4E-13 0.76 29500382

17 44153977 SVA_706 rs199447 Neuroticism 2E-26 0.76 29942085

17 44153977 SVA_706 rs199533 Parkinson's disease 1E-14 0.76 19915575

8 109135936 SVA_389 rs617117 Macular thickness 2E-09 0.76 30535121

12 28163331 ALU_9104 rs1838564 Breast size 1E-12 0.76 27182965

4 22043212 ALU_3139 rs62301574 Insomnia 1E-08 0.76 30804565

14 39875097 LINE1_2544 rs34983854 Systolic blood pressure 2E-11 0.76 30224653

6 140417842 ALU_5637 rs62429521 Insomnia 2E-09 0.76 30804565

11 49282683 ALU_8572 rs658118

HDL cholesterol levels x 

alcohol consumption (drinkers 

vs non-drinkers) interaction 

(2df)

1E-49 0.76 30698716

14 55795871 ALU_10325 rs10146637 White blood cell count 4E-11 0.76 30595370

6 97017683 ALU_5395 rs11153071 Systolic blood pressure 3E-15 0.76 30595370

2 652672 ALU_958 rs4854349 Childhood body mass index 5E-22 0.76 26604143

8 109135936 SVA_389 rs392783 Hair color 2E-23 0.76 30595370

6 97017683 ALU_5395 rs11153018 Systolic blood pressure 1E-11 0.76 30578418

15 49609604 ALU_10695 rs11632038 Lung adenocarcinoma 5E-10 0.76 28604730

6 56387576 ALU_5205 rs112462597 Heel bone mineral density 6E-16 0.76 30048462

2 652672 ALU_958 rs62105306 Body mass index (adult) 3E-28 0.75 28430825

11 49282683 ALU_8572 rs11040595 Systolic blood pressure 1E-11 0.75 30578418

11 49282683 ALU_8572 rs77828979 Intraocular pressure 6E-12 0.75 29617998

2 30669993 ALU_1087 rs829636 Eczema 6E-09 0.75 30595370

4 134596423 LINE1_967 rs1157684 Self-reported math ability 3E-14 0.75 30038396

4 134596423 LINE1_967 rs981033 Self-reported math ability 1E-14 0.75 30038396

10 34571038 ALU_7901 rs610493 Height 2E-10 0.75 30595370

8 71914591 ALU_6806 rs2639935 Lung function (FEV1/FVC) 3E-08 0.75 30595370

6 97017683 ALU_5395 rs35410524 Systolic blood pressure 5E-10 0.75 27841878

5 56109723 ALU_4294 rs16886364 Breast cancer (early onset) 5E-12 0.75 24493630
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2 652672 ALU_958 rs2867125 Body mass index 5E-75 0.72 26426971

2 652672 ALU_958 rs2867125 Type 2 diabetes 4E-10 0.72 30054458

2 652672 ALU_958 rs2903492 Body mass index 6E-15 0.72 23563607

15 47507342 LINE1_2640 rs11853760
Educational attainment (years of 

education)
5E-13 0.75 30038396

15 47507342 LINE1_2640 rs2860049 Educational attainment 2E-15 0.75 30038396

2 144010793 LINE1_410 rs62171698 Body mass index 1E-10 0.75 30595370

2 144010793 LINE1_410 rs6710871 Body mass index 3E-19 0.75 30108127

6 45260479 ALU_5132 rs10948222 Height 1E-20 0.75 25282103

1 174484646 ALU_604 rs41304550 Feeling miserable 4E-09 0.75 29500382

1 174484646 ALU_604 rs76785379 Feeling miserable 2E-09 0.75 29500382

2 652672 ALU_958 rs7561317 Weight 2E-18 0.75 19079260

2 652672 ALU_958 rs7561317 Body mass index 4E-17 0.75 19079260

12 28163331 ALU_9104 rs12371778 Breast size 1E-08 0.75 22747683

2 652672 ALU_958 rs62105303 Breast size 3E-08 0.74 27182965

3 42898420 ALU_2319 rs4683346
Granulocyte percentage of 

myeloid white cells
5E-19 0.74 27863252

17 44153977 SVA_706 rs9896243 Worry 2E-11 0.74 29942085

2 652672 ALU_958 rs12463617 Body mass index 3E-17 0.74 23669352

1 174484646 ALU_604 rs77560793 Body mass index 7E-13 0.74 30595370

6 46310306 LINE1_1293 rs10498767 Body mass index 2E-10 0.74 30595370

16 75655176 ALU_11116 rs4888444 Age of smoking initiation 9E-09 0.74 30643251

8 63344481 ALU_6774 rs16928927
Rapid automised naming of 

letters
2E-08 0.74 30741946

17 44153977 SVA_706 rs17688916 Sleep duration (long sleep) 1E-11 0.74 30846698

17 44153977 SVA_706 rs17688916 Feeling worry 3E-11 0.74 29500382

17 46505002 ALU_11333 rs7207826 Ovarian cancer 2E-17 0.74 28346442

2 198763462 ALU_1894 rs700655 Red blood cell count 3E-10 0.74 30595370

17 44153977 SVA_706 rs57222984 Snoring 3E-11 0.73 30804565

7 8019027 LINE1_1448 rs56195338 Eosinophil counts 7E-10 0.73 30595370

2 198763462 ALU_1894 rs700641 Morning vs. evening chronotype 5E-10 0.73 26835600

11 43877448 ALU_8559 rs11555762 Body mass index 5E-14 0.73 29273807

17 44153977 SVA_706 rs199441 Male-pattern baldness 1E-181 0.73 30573740

17 44153977 SVA_706 rs199441 Neuroticism 3E-20 0.73 29255261

17 44153977 SVA_706 rs199441 Feeling hurt/Mood swings 4E-24 0.73 29500382

2 198763462 ALU_1894 rs12472359 Morning person 1E-27 0.73 30696823

1 232587774 ALU_865 rs4649269 Hair color 2E-08 0.73 30595370

17 44153977 SVA_706 rs199525 Intracranial volume 2E-20 0.73 30818988

17 44153977 SVA_706 rs199525 Feeling guilty 4E-08 0.73 29500382

17 44153977 SVA_706 rs199525 Lung function (FEV1) 1E-09 0.73 30061609

3 152053972 ALU_2814 rs182314334 Prostate cancer 4E-11 0.73 29892016

3 182299013 ALU_2986 rs4484214 Chronotype 7E-10 0.73 30696823

3 182299013 ALU_2986 rs6443810 Morningness 2E-10 0.73 30804565

7 8019027 LINE1_1448 rs7804306 Blood Cell counts 2E-09 0.73 27863252

17 46505002 ALU_11333 rs9303542 Ovarian cancer 5E-15 0.73 25581431

5 43870854 ALU_4250 rs79904209 Lung function (FEV1/FVC) 3E-17 0.73 30595370

2 652672 ALU_958 rs6744646 Body mass index 4E-111 0.73 30595370

6 45260479 ALU_5132 rs2396502 Osteoarthritis (hip) 2E-12 0.73 30664745

9 118509752 ALU_7676 rs12344818 Height 5E-33 0.72 30595370

15 47507342 LINE1_2640 rs12903078 Neurociticism 4E-08 0.72 29500382

1 78607067 ALU_276 rs540742 Body mass index 7E-09 0.72 29273807

6 97017683 ALU_5395 rs9486719 Migraine 6E-21 0.72 27182965

5 87399827 ALU_4449 rs2217250 Feeling tense 1E-08 0.72 29500382

6 153429856 SVA_315 rs9479509 Diastolic blood pressure 1E-09 0.72 30224653

12 56753252 ALU_9228 rs808919 Blood protein levels 7E-16 0.72 30072576
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2 652672 ALU_958 rs6711012 Obesity 3E-40 0.72 23563607

2 652672 ALU_958 rs6711254 Age of smoking initiation 1E-16 0.72 30643251

2 652672 ALU_958 rs6731872
Smoking initiation (ever regular 

vs never regular) 
4E-31 0.72 30643251

2 652672 ALU_958 rs6731872
Alcohol consumption (drinks 

per week) 
4E-09 0.72 30643251

2 652672 ALU_958 rs7567570 Smoking status 7E-12 0.72 30595370

2 652672 ALU_958 rs939584 Body mass index 6E-23 0.72 28892062

7 50473286 ALU_6027 rs80271829 Monocyte count 4E-15 0.72 27863252

6 97017683 ALU_5395 rs3798293 Pulse pressure 6E-09 0.72 30578418

17 44153977 SVA_706 rs199505 Depressed affect 1E-18 0.71 29942085

17 44153977 SVA_706 rs199515 Parkinson's disease 3E-17 0.71 22451204

17 44153977 SVA_706 rs70600 Irritable mood 3E-11 0.71 29500382

5 56109723 ALU_4294 rs1017226 Breast cancer (early onset) 6E-11 0.71 24493630

5 56109723 ALU_4294 rs16886397 Breast cancer (early onset) 4E-12 0.71 24493630

5 56109723 ALU_4294 rs16886448 Breast cancer (early onset) 2E-12 0.71 24493630

9 17062597 ALU_7312 rs112488223 Heel bone mineral density 5E-16 0.71 30595370

9 17062597 ALU_7312 rs79439080 Height 7E-24 0.71 30595370

11 65984338 ALU_8622 rs10896090 Bipolar disorder 2E-08 0.71 31043756

15 47507342 LINE1_2640 rs1563245 Neuroticism 5E-11 0.71 29255261

15 47507342 LINE1_2640 rs1563245
Well-being spectrum 

(multivariate analysis)
1E-08 0.71 30643256

8 76080146 ALU_6846 rs72656192 Height 5E-10 0.71 30595370

2 652672 ALU_958 rs66906321 Obesity (extreme) 1E-34 0.71 30677029

2 652672 ALU_958 rs2947411 Smoking initiation 5E-10 0.70 30617275

2 652672 ALU_958 rs2947411 Menarche (age at onset) 2E-19 0.70 25231870

17 44153977 SVA_706 rs17690703 Idiopathic pulmonary fibrosis 6E-09 0.70 24429156

5 56109723 ALU_4294 rs3822625 Breast cancer (early onset) 5E-12 0.70 24493630

10 65356114 ALU_8023 rs41274072 Reticulocyte count 4E-16 0.70 27863252

9 34703699 SVA_402 rs11574914 Rheumatoid arthritis 2E-15 0.70 24390342

12 28163331 ALU_9104 rs10771399 Breast cancer 5E-34 0.70 25751625

3 103419436 ALU_2577 rs57714592 Highest math class taken 1E-08 0.70 30038396

3 175673943 ALU_2951 rs57939424
Educational attainment (years of 

education)
2E-13 0.70 30038396

1 227502452 ALU_841 rs112779011 Hair color 7E-11 0.70 30595370

9 34703699 SVA_402 rs2812378

Chronic inflammatory diseases 

(ankylosing spondylitis, Crohn's 

disease, psoriasis, primary 

sclerosing cholangitis, ulcerative 

colitis) (pleiotropy)

6E-09 0.70 26974007

9 34703699 SVA_402 rs2812378
Rheumatoid arthritis (ACPA-

positive)
5E-11 0.70 24532676

3 182299013 ALU_2986 rs7652216 Body mass index 3E-08 0.69 30595370

17 44153977 SVA_706 rs417968
Educational attainment (years of 

education)
6E-16 0.69 30595370

4 145395308 ALU_3782 rs13142879 Post bronchodilator FEV1 1E-11 0.69 26634245

4 145395308 ALU_3782 rs35440220 Post bronchodilator FEV1 2E-11 0.69 26634245

4 145395308 ALU_3782 rs7656246 Post bronchodilator FEV1 1E-11 0.69 26634245

4 145395308 ALU_3782 rs1813337 Post bronchodilator FEV1 2E-11 0.69 26634245

4 145395308 ALU_3782 rs1961266 Post bronchodilator FEV1 2E-11 0.69 26634245

4 145395308 ALU_3782 rs56304346 Post bronchodilator FEV1 6E-11 0.69 26634245

4 145395308 ALU_3782 rs7666298 Post bronchodilator FEV1 2E-11 0.69 26634245

7 91751552 ALU_6200 rs10644111 Breast cancer 3E-11 0.69 29059683

7 91751552 ALU_6200 rs6964587 Breast cancer 9E-11 0.69 29059683

17 44153977 SVA_706 rs4630591 Feeling fed-up 1E-17 0.69 29500382
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13 46647748 ALU_9748 rs9526137 Blood protein levels 2E-15 0.69 29875488

13 46647748 ALU_9748 rs9526138 Blood protein levels 1E-109 0.69 29875488

6 70327733 ALU_5250 rs7761673 Body mass index 5E-11 0.69 30595370

13 46647748 ALU_9748 rs3742264 Blood protein levels 3E-83 0.69 28240269

12 28417298 ALU_9107 rs10843151

Waist circumference adjusted 

for BMI (joint analysis main 

effects and physical activity 

interaction)

1E-09 0.69 28448500

13 46647748 ALU_9748 rs9567617 Blood protein levels 5E-109 0.69 29875488

21 28221359 ALU_12341 rs162531 Lung function (FEV1/FVC) 8E-11 0.69 30595370

4 145395308 ALU_3782 rs1505770 Post bronchodilator FEV1 2E-11 0.68 26634245

4 145395308 ALU_3782 rs2130499 Post bronchodilator FEV1 2E-11 0.68 26634245

4 145395308 ALU_3782 rs55694701 Post bronchodilator FEV1 1E-11 0.68 26634245

4 145395308 ALU_3782 rs56268708 Post bronchodilator FEV1 2E-11 0.68 26634245

4 145395308 ALU_3782 rs62334742 Post bronchodilator FEV1 2E-11 0.68 26634245

13 46647748 ALU_9748 rs4942471 Blood protein levels 3E-115 0.68 30072576

7 91751552 ALU_6200 rs35417517 Breast cancer 8E-11 0.68 29059683

7 91751552 ALU_6200 rs35522438 Breast cancer 1E-09 0.68 29059683

7 91751552 ALU_6200 rs6465353
Educational attainment (years of 

education)
3E-08 0.68 30038396

3 114915094 ALU_2641 rs7643617 Menarche (age at onset) 3E-11 0.68 30595370

11 49282683 ALU_8572 rs11040204 Intraocular pressure 4E-14 0.68 29617998

11 49282683 ALU_8572 rs2202454 Medication use (diuretics) 8E-11 0.68 31015401

16 75655176 ALU_11116 rs117657830
Smoking initiation (ever regular 

vs never regular)
3E-09 0.68 30643251

8 8920127 ALU_6560 rs2953805 Neuroticism 2E-29 0.68 29255261

6 97017683 ALU_5395 rs11759769 Migraine 2E-12 0.68 23793025

17 44153977 SVA_706 rs4327090 Highest math class taken 1E-10 0.68 30038396

2 11353711 ALU_1002 rs56211149 Height 2E-13 0.68 30595370

7 120538086 ALU_6336 rs201852005 Heel bone mineral density 4E-14 0.68 30048462

7 120538086 ALU_6336 rs73427834 Heel bone mineral density 1E-47 0.68 30595370

8 8920127 ALU_6560 rs2921378 Neuroticism 1E-27 0.68 30643256

3 110271029 ALU_2610 rs1398346 Chronotype 4E-08 0.68 30696823

17 44153977 SVA_706 rs199529 Intraocular pressure 4E-08 0.68 30054594

18 53146075 ALU_11714 rs4801157 Depressed affect 2E-10 0.68 29942085

3 175673943 ALU_2951 rs72622559 Educational attainment 6E-13 0.68 30038396

6 66163982 ALU_5227 rs7449561 Educational attainment 1E-11 0.67 30038396

12 28417298 ALU_9107 rs11049611 Height 3E-32 0.67 25282103

7 38209213 ALU_5970 rs9801416 Height 2E-09 0.67 30595370

1 191477465 ALU_689 rs677325 Subjective well-being 1E-08 0.67 29292387

17 32629274 ALU_11283 rs9906695
Monocyte percentage of white 

cells
3E-11 0.67 27863252

17 32629274 ALU_11283 rs9909465
Granulocyte percentage of 

myeloid white cells
1E-09 0.67 27863252

11 49282683 ALU_8572 rs10839204
Medication use (agents acting on 

the renin-angiotensin system)
2E-09 0.67 31015401

9 4237141 ALU_7235 rs6476827 Intraocular pressure 5E-33 0.67 29617998

8 71914591 ALU_6806 rs7007887 Snoring 1E-13 0.67 30804565

14 60741400 ALU_10351 rs1887103 Hair color 3E-16 0.67 30595370

9 94058487 LINE1_1863 rs7048945 Male-pattern baldness 7E-10 0.67 30573740

10 46074893 ALU_7934 rs17157836 Lymphocyte counts 2E-09 0.67 27863252

10 46074893 ALU_7934 rs34731408
Neutrophil percentage of white 

cells
7E-10 0.67 27863252

10 46074893 ALU_7934 rs34897497 Mean corpuscular volume 1E-52 0.67 27863252

10 46074893 ALU_7934 rs35993099 Red blood cell count 2E-44 0.67 27863252
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10 46074893 ALU_7934 rs76493570
Immature fraction of 

reticulocytes
4E-52 0.67 27863252

10 46074893 ALU_7934 rs901683 Red blood cell traits 2E-16 0.67 23222517

3 36839159 ALU_2289 rs75968099 Schizophrenia 1E-13 0.66 25056061

12 28417298 ALU_9107 rs10843164 Height 6E-12 0.66 23563607

2 198763462 ALU_1894 rs57862683 Morning person 1E-27 0.66 30696823

2 174952231 SVA_134 rs77345174 Blood protein levels 9E-15 0.66 30072576

17 44153977 SVA_706 rs7207400 Height 2E-30 0.66 30595370

17 44153977 SVA_706 rs7207400 Worry 2E-15 0.66 29942085

15 49609604 ALU_10695 rs10519227 Thyroid hormone levels 1E-11 0.66 23408906

3 157962934 ALU_2845 rs73030851 Blood protein levels 1E-300 0.66 30072576

15 49609604 ALU_10695 rs7167852 Lung function (FEV1/FVC) 4E-13 0.66 30595370

2 181880746 ALU_1805 rs4563182 Mean corpuscular hemoglobin 5E-11 0.66 30595370

2 181880746 ALU_1805 rs79719017
Risk-taking tendency (4-domain 

principal component model)
4E-08 0.66 30643258

6 53167475 ALU_5181 rs209489
Survival in colorectal cancer 

(distant metastatic)
8E-10 0.66 26586795

1 219558910 ALU_810 rs17525033 Lung function (FEV1/FVC) 2E-27 0.65 30595370

9 4237141 ALU_7235 rs736893
Glaucoma (primary angle 

closure)
1E-14 0.65 27064256

17 44153977 SVA_706 rs56214516
Medication use (antithrombotic 

agents)
1E-08 0.65 31015401

17 44153977 SVA_706 rs56214516 Feeling fed-up 1E-16 0.65 29500382

2 198763462 ALU_1894 rs1025549 Eczema 3E-19 0.65 30595370

2 198763462 ALU_1894 rs6738825 Crohn's disease 4E-09 0.65 21102463

9 117928281 ALU_7672 rs3833490 Blood protein levels 6E-224 0.65 29875488

10 46074893 ALU_7934 rs34285816 Red blood cell count 6E-49 0.65 30595370

10 46074893 ALU_7934 rs71494799 Mean corpuscular hemoglobin 9E-138 0.65 30595370

3 85576571 LINE1_629 rs1375561 Cognitive performance 2E-15 0.65 30038396

3 85576571 LINE1_629 rs73141547 Highest math class taken 1E-16 0.65 30038396

3 55788580 LINE1_590 rs6801405 Lung function (FEV1/FVC) 6E-12 0.65 30595370

1 194595960 ALU_707 rs13376197
Cerebrospinal fluid t-tau:AB1-

42 ratio
3E-10 0.65 28641921

12 28438612 ALU_9108 rs1581630 Heel bone mineral density 7E-30 0.65 30048462

6 74504855 ALU_5280 rs10943130 Heel bone mineral density 1E-40 0.65 30048462

15 49609604 ALU_10695 rs17400427 Lung adenocarcinoma 6E-10 0.65 28604730

11 49282683 ALU_8572 rs113221947 Heel bone mineral density 2E-09 0.64 30595370

2 181880746 ALU_1805 rs10184839 Diastolic blood pressure 2E-13 0.64 30224653

10 106566893 ALU_8208 rs2864034 Self-reported math ability 2E-16 0.64 30038396

10 54466942 ALU_7961 rs12218358
Heel bone mineral 

density/Height
7E-58 0.64 30595370

7 33195329 ALU_5942 rs10232036 Height 5E-11 0.64 30595370

12 20473893 ALU_9052 rs11045171 HDL cholesterol 2E-18 0.64 30275531

10 11984965 ALU_7788 rs11819344 Mean corpuscular hemoglobin 4E-09 0.64 30595370

20 1546228 ALU_12014 rs3848788 Blood protein levels 1E-213 0.64 29875488

6 74504855 ALU_5280 rs6903575 Blood protein levels 7E-69 0.64 29875488

5 148096780 ALU_4747 rs58862611 Systolic blood pressure 4E-08 0.64 30595370

6 74504855 ALU_5280 rs10455097 Blood protein levels 3E-46 0.64 28240269

7 78146522 ALU_6127 rs62468583 Menarche (age at onset) 3E-08 0.64 30595370

8 13975433 ALU_6584 rs12675921 Intelligence 2E-08 0.64 29942086

8 100782579 ALU_6981 rs921313 Mean corpuscular hemoglobin 3E-12 0.64 30595370

6 163013855 ALU_5742 rs36007635 Body mass index 7E-14 0.64 30595370

2 98582157 ALU_1385 rs4851462 Diastolic blood pressure 6E-13 0.64 30224653

2 181880746 ALU_1805 rs10191559 Heel bone mineral density 9E-32 0.64 30595370

2 181880746 ALU_1805 rs10191559 Red blood cell count 4E-10 0.64 27863252

11 49282683 ALU_8572 rs61448762 Systolic blood pressure 4E-09 0.64 27841878
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3 103419436 ALU_2577 rs6776198 Highest math class taken 1E-12 0.64 30038396

2 174952231 SVA_134 rs77998199 Reaction time 2E-10 0.64 29844566

6 74504855 ALU_5280 rs6909201 Blood protein levels 1E-115 0.63 30072576

10 3569025 ALU_7750 rs10795055 Waist-hip ratio 6E-10 0.63 30595370

9 4237141 ALU_7235 rs1570204 Intraocular pressure 7E-31 0.63 29617998

13 62588972 ALU_9847 rs17208030
Educational attainment (years of 

education)
4E-10 0.63 30595370

7 119259819 ALU_6325 rs73719951 Heel bone mineral density 7E-09 0.63 30595370

2 198763462 ALU_1894 rs10497813 Self-reported allergy 6E-10 0.63 23817569

11 55408899 ALU_8584 rs7104561
Medication use (agents acting on 

the renin-angiotensin system)
5E-08 0.63 31015401

4 145395308 ALU_3782 rs13142776 Post bronchodilator FEV1 2E-12 0.63 26634245

4 145395308 ALU_3782 rs1512283 Post bronchodilator FEV1 1E-10 0.63 26634245

4 145395308 ALU_3782 rs1960493 Post bronchodilator FEV1 1E-10 0.63 26634245

4 145395308 ALU_3782 rs34265962 Post bronchodilator FEV1 1E-12 0.63 26634245

4 145395308 ALU_3782 rs35937742 Post bronchodilator FEV1 1E-10 0.63 26634245

4 145395308 ALU_3782 rs7678427 Post bronchodilator FEV1 1E-12 0.63 26634245

4 145395308 ALU_3782 rs973796 Post bronchodilator FEV1 3E-12 0.63 26634245

1 198243300 ALU_726 rs1938376 Height 2E-08 0.63 30595370

4 145395308 ALU_3782 rs1512282 Post bronchodilator FEV1 4E-11 0.63 26634245

17 44153977 SVA_706 rs113322852 Neuroticism 3E-19 0.63 30643256

11 49282683 ALU_8572 rs7929717 Intraocular pressure 1E-15 0.63 29617998

17 44153977 SVA_706 rs183211 Ovarian cancer 2E-13 0.63 25581431

15 47507342 LINE1_2640 rs12442330 Neuroticism 2E-10 0.63 29942085

3 168885760 ALU_2909 rs9290361 Plateletcrit 1E-22 0.63 27863252

3 158089835 ALU_2846 rs1714510 Neuroticism 2E-08 0.62 29942085

9 33130564 SVA_401 rs10971420 IgG glycosylation patterns 2E-12 0.62 29535710

13 46647748 ALU_9748 rs1087
Thrombin-activatable 

fibrinolysis inhibitor levels
3E-29 0.62 29378355

10 54466942 ALU_7961 rs7088220 Heel bone mineral density 2E-54 0.62 30048462

11 49366217 ALU_8573 rs7929543 Type 2 diabetes 2E-09 0.62 30054458

10 106566893 ALU_8208 rs10400054 Highest math class taken 2E-11 0.62 30038396

10 106566893 ALU_8208 rs17118088 Highest math class taken 5E-18 0.62 30038396

11 65503489 ALU_8620 rs478304
Spherical equivalent or myopia 

(age of diagnosis)
1E-09 0.62 29808027

11 65503489 ALU_8620 rs478304 Acne (severe) 3E-11 0.62 24927181

17 44153977 SVA_706 rs56192752
Educational attainment (years of 

education)
9E-31 0.62 30038396

9 117928281 ALU_7672 rs35157100 Blood protein levels 3E-96 0.62 29875488

4 112628973 LINE1_928 rs9991259 Body mass index 1E-10 0.62 30595370

15 73983319 ALU_10812 rs8038465
Liver enzyme levels (gamma-

glutamyl transferase)
1E-09 0.62 22001757

3 85576571 LINE1_629 rs55686445 Educational attainment 5E-12 0.62 27046643

3 85576571 LINE1_629 rs66568921 Educational attainment 6E-39 0.62 30038396

12 41847723 ALU_9169 rs1458156 Body mass index 3E-15 0.62 30595370

17 44153977 SVA_706 rs1879586 Serous invasive ovarian cancer 3E-12 0.62 28346442

17 44153977 SVA_706 rs1879586 Ovarian cancer 2E-19 0.62 28346442

17 44153977 SVA_706 rs916888 Lung function (FEV1) 4E-09 0.62 30061609

9 94058487 LINE1_1863 rs112679102 Balding type 1 1E-10 0.62 30595370

6 74504855 ALU_5280 rs9447004 Blood protein levels 2E-44 0.62 28240269

12 71525479 ALU_9320 rs7138300 Type 2 diabetes 6E-10 0.62 30054458

5 87399827 ALU_4449 rs55940342 Systolic blood pressure 1E-12 0.61 30595370

8 8920127 ALU_6560 rs4537305 Medication use (diuretics) 1E-14 0.61 31015401

12 28417298 ALU_9107 rs1511550 Height 3E-114 0.61 30595370

12 71525479 ALU_9320 rs11178649 Respiratory diseases 3E-09 0.61 30595370

12 71525479 ALU_9320 rs7955901 Type 2 diabetes 7E-09 0.61 22885922

6 139294734 ALU_5628 rs62441842 Height 3E-13 0.61 30595370
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12 71525479 ALU_9320 rs11178649 Respiratory diseases 3E-09 0.61 30595370

12 71525479 ALU_9320 rs7955901 Type 2 diabetes 7E-09 0.61 22885922

6 139294734 ALU_5628 rs62441842 Height 3E-13 0.61 30595370

3 175673943 ALU_2951 rs66481714
Smoking initiation (ever regular 

vs never regular) 
3E-10 0.61 30643251

9 17062597 ALU_7312 rs78817479 Heel bone mineral density 1E-12 0.61 30048462

12 26697612 ALU_9091 rs11613431
Educational attainment (years of 

education)
7E-09 0.61 30038396

5 87399827 ALU_4449 rs17286052 Blood pressure 7E-11 0.61 27841878

10 27929928 ALU_7862 rs1494204 Waist-hip ratio 4E-12 0.61 30595370

13 61734497 LINE1_2424 rs9563886 Insomnia 2E-08 0.61 30804565

3 36839159 ALU_2289 rs6550435 Bipolar disorder 2E-08 0.61 24618891

3 16796099 ALU_2173 rs7625399 Smoking cessation 9E-10 0.60 30643251

3 175673943 ALU_2951 rs9841807
Smoking initiation (ever regular 

vs never regular)
1E-08 0.60 30643251

3 36839159 ALU_2289 rs3732386 Schizophrenia 3E-11 0.60 28991256

2 141534074 ALU_1585 rs17515225 Motion sickness 3E-09 0.60 25628336
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Appendix 3: RTE-TAS associations in the literature compared to the results of 

this study.  

 

Table 23: List of RTEs in LD (r2 > 0.6) with TAS identified by previous studies in 

the literature and how it compares to RTE-TAS associations identified by this 

study. Y = Yes. N = No 

TAS RTE type r2 Study PMID Data source Replicated? 

rs2679073 ALU 0.80 Sudmant 26432246 Supplementary Table 10 N

rs2942168 SVA 0.84 Sudmant 26432246 Supplementary Table 10 Y

rs12185268 SVA 0.84 Sudmant 26432246 Supplementary Table 10 Y

rs1864325 SVA 0.84 Sudmant 26432246 Supplementary Table 10 Y

rs12373124 SVA 0.84 Sudmant 26432246 Supplementary Table 10 Y

rs1981997 SVA 0.83 Sudmant 26432246 Supplementary Table 10 Y

rs7534016 ALU 0.75 Wang 28824558 Supplementary Table S1 N

rs28588043 ALU 0.74 Wang 28824558 Supplementary Table S1 N

rs2820037 ALU 0.84 Wang 28824558 Supplementary Table S1 N

rs10189761 ALU 0.77 Wang 28824558 Supplementary Table S1 N

rs2681019 L1 0.75 Wang 28824558 Supplementary Table S1 N

rs10496262 ALU 0.72 Wang 28824558 Supplementary Table S1 N

rs2163349 ALU 0.77 Wang 28824558 Supplementary Table S1 N

rs7594648 L1 0.70 Wang 28824558 Supplementary Table S1 N

rs10865924 ALU 0.78 Wang 28824558 Supplementary Table S1 N

rs9841504 ALU 0.75 Wang 28824558 Supplementary Table S1 N

rs13077101 ALU 0.71 Wang 28824558 Supplementary Table S1 N

rs345013 ALU 0.82 Wang 28824558 Supplementary Table S1 N

rs7442317 ALU 0.75 Wang 28824558 Supplementary Table S1 N

rs10034228 L1 0.87 Wang 28824558 Supplementary Table S1 N

rs16886364 ALU 0.76 Wang 28824558 Supplementary Table S1 Y

rs4388249 ALU 0.80 Wang 28824558 Supplementary Table S1 Y

rs2523822 ALU 0.77 Wang 28824558 Supplementary Table S1 N

rs4530903 ALU 0.78 Wang 28824558 Supplementary Table S1 N

rs3077 SVA 0.81 Wang 28824558 Supplementary Table S1 N

rs10948222 ALU 0.75 Wang 28824558 Supplementary Table S1 Y

rs9357506 L1 0.76 Wang 28824558 Supplementary Table S1 N

rs11757063 ALU 0.72 Wang 28824558 Supplementary Table S1 N

rs12666612 ALU 0.79 Wang 28824558 Supplementary Table S1 N

rs1404697 ALU 0.82 Wang 28824558 Supplementary Table S1 N

rs16939046 ALU 0.72 Wang 28824558 Supplementary Table S1 N

rs11574914 SVA 0.70 Wang 28824558 Supplementary Table S1 Y

rs7028939 ALU 0.78 Wang 28824558 Supplementary Table S1 N

rs10768747 L1 0.88 Wang 28824558 Supplementary Table S1 N

rs11246602 ALU 0.70 Wang 28824558 Supplementary Table S1 N

rs12371778 ALU 0.81 Wang 28824558 Supplementary Table S1 N

rs11049611 ALU 0.71 Wang 28824558 Supplementary Table S1 Y

rs1979679 ALU 0.74 Wang 28824558 Supplementary Table S1 N

rs11575234 ALU 0.84 Wang 28824558 Supplementary Table S1 N

rs17788937 ALU 0.79 Wang 28824558 Supplementary Table S1 Y

rs8023445 ALU 0.78 Wang 28824558 Supplementary Table S1 N

rs1436958 ALU 0.71 Wang 28824558 Supplementary Table S1 N

rs12373124 SVA 0.85 Wang 28824558 Supplementary Table S1 Y

rs9303542 ALU 0.73 Wang 28824558 Supplementary Table S1 N

rs816535 ALU 0.81 Wang 28824558 Supplementary Table S1 N

rs12530 ALU 0.75 Wang 28824558 Supplementary Table S1 N

rs426736 ALU 0.77 Wang 28824558 Supplementary Table S1 N

rs426736 ALU 0.79 Wang 28824558 Supplementary Table S1 N

rs1585471 L1 0.79 Wang 28824558 Supplementary Table S1 N

rs2523822 ALU 0.84 Wang 28824558 Supplementary Table S1 N

rs225675 L1 0.71 Wang 28824558 Supplementary Table S1 N

rs12554999 L1 0.76 Wang 28824558 Supplementary Table S1 N
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rs12373124 SVA 0.85 Wang 28824558 Supplementary Table S1 Y

rs9303542 ALU 0.73 Wang 28824558 Supplementary Table S1 N

rs816535 ALU 0.81 Wang 28824558 Supplementary Table S1 N

rs12530 ALU 0.75 Wang 28824558 Supplementary Table S1 N

rs426736 ALU 0.77 Wang 28824558 Supplementary Table S1 N

rs426736 ALU 0.79 Wang 28824558 Supplementary Table S1 N

rs1585471 L1 0.79 Wang 28824558 Supplementary Table S1 N

rs2523822 ALU 0.84 Wang 28824558 Supplementary Table S1 N

rs225675 L1 0.71 Wang 28824558 Supplementary Table S1 N

rs12554999 L1 0.76 Wang 28824558 Supplementary Table S1 N

rs7947821 ALU 0.78 Wang 28824558 Supplementary Table S1 N

rs2250417 L1 0.72 Wang 28824558 Supplementary Table S1 N

rs1340490 ALU 0.70 Wang 28824558 Supplementary Table S1 N

rs6117615 ALU 0.80 Wang 28824558 Supplementary Table S1 N

rs816535 ALU 0.75 Wang 28824558 Supplementary Table S1 N

rs7534016 ALU 0.90 Hehir-Kwa 27708267 Supplementary Data 7 N

rs4085613 L1 0.93 Hehir-Kwa 27708267 Supplementary Data 7 N

rs4112788 L1 0.92 Hehir-Kwa 27708267 Supplementary Data 7 N

rs12185268 SVA 0.92 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs12027542 ALU 0.96 Hehir-Kwa 27708267 Supplementary Data 7 N

rs2820037 ALU 0.91 Hehir-Kwa 27708267 Supplementary Data 7 N

rs2681019 L1 0.92 Hehir-Kwa 27708267 Supplementary Data 7 N

rs10496262 ALU 0.92 Hehir-Kwa 27708267 Supplementary Data 7 N

rs6741172 ALU 0.94 Hehir-Kwa 27708267 Supplementary Data 7 N

rs2163349 ALU 0.93 Hehir-Kwa 27708267 Supplementary Data 7 N

rs10865924 ALU 0.92 Hehir-Kwa 27708267 Supplementary Data 7 N

rs7442317 ALU 0.93 Hehir-Kwa 27708267 Supplementary Data 7 N

rs10034228 L1 0.95 Hehir-Kwa 27708267 Supplementary Data 7 N

rs1585471 L1 0.95 Hehir-Kwa 27708267 Supplementary Data 7 N

rs10053502 L1 0.95 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs4388249 ALU 0.92 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs2523822 ALU 0.93 Hehir-Kwa 27708267 Supplementary Data 7 N

rs1061235 ALU 0.93 Hehir-Kwa 27708267 Supplementary Data 7 N

rs12185268 SVA 0.94 Hehir-Kwa 27708267 Supplementary Data 7 N

rs10948222 ALU 0.92 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs11757063 ALU 0.92 Hehir-Kwa 27708267 Supplementary Data 7 N

rs848353 ALU 0.94 Hehir-Kwa 27708267 Supplementary Data 7 N

rs1404697 ALU 0.96 Hehir-Kwa 27708267 Supplementary Data 7 N

rs12344488 ALU 0.90 Hehir-Kwa 27708267 Supplementary Data 7 N

rs12554999 L1 0.95 Hehir-Kwa 27708267 Supplementary Data 7 N

rs10771399 ALU 0.91 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs1979679 ALU 0.92 Hehir-Kwa 27708267 Supplementary Data 7 N

rs1612141 L1 0.95 Hehir-Kwa 27708267 Supplementary Data 7 N

rs1436958 ALU 0.90 Hehir-Kwa 27708267 Supplementary Data 7 N

rs2679073 ALU 0.96 Hehir-Kwa 27708267 Supplementary Data 7 N

rs225212 ALU 0.92 Hehir-Kwa 27708267 Supplementary Data 7 N

rs12373124 SVA 0.93 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs17577094 SVA 0.95 Hehir-Kwa 27708267 Supplementary Data 7 N

rs17649553 SVA 0.94 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs1864325 SVA 0.94 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs1981997 SVA 0.95 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs2942168 SVA 0.94 Hehir-Kwa 27708267 Supplementary Data 7 Y
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rs1981997 SVA 0.95 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs2942168 SVA 0.94 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs3077 SVA 0.94 Hehir-Kwa 27708267 Supplementary Data 7 N

rs3790672 SVA 0.91 Hehir-Kwa 27708267 Supplementary Data 7 N

rs393152 SVA 0.94 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs8070723 SVA 0.95 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs9303525 SVA 0.94 Hehir-Kwa 27708267 Supplementary Data 7 Y

rs12530 ALU 0.91 Hehir-Kwa 27708267 Supplementary Data 7 N

rs2300747 ALU 0.92 Payer 28465436 Dataset S3 N

rs1335532 ALU 1.00 Payer 28465436 Dataset S3 N

rs2779116 ALU 0.81 Payer 28465436 Dataset S3 N

rs857721 ALU 0.81 Payer 28465436 Dataset S3 N

rs857684 ALU 0.81 Payer 28465436 Dataset S3 N

rs426736 ALU 1.00 Payer 28465436 Dataset S3 N

rs1367228 ALU 0.77 Payer 28465436 Dataset S3 N

rs12463617 ALU 0.91 Payer 28465436 Dataset S3 Y

rs7561317 ALU 1.00 Payer 28465436 Dataset S3 Y

rs6548238 ALU 1.00 Payer 28465436 Dataset S3 Y

rs2867125 ALU 1.00 Payer 28465436 Dataset S3 Y

rs6711012 ALU 1.00 Payer 28465436 Dataset S3 Y

rs10189761 ALU 1.00 Payer 28465436 Dataset S3 Y

rs2903492 ALU 1.00 Payer 28465436 Dataset S3 Y

rs2667011 ALU 0.80 Payer 28465436 Dataset S3 N

rs6738825 ALU 0.92 Payer 28465436 Dataset S3 Y

rs16857609 ALU 0.95 Payer 28465436 Dataset S3 N

rs11177 ALU 0.91 Payer 28465436 Dataset S3 N

rs2251219 ALU 0.96 Payer 28465436 Dataset S3 N

rs4256159 ALU 0.93 Payer 28465436 Dataset S3 N

rs2712381 ALU 0.88 Payer 28465436 Dataset S3 N

rs2362965 ALU 1.00 Payer 28465436 Dataset S3 N

rs9877502 ALU 1.00 Payer 28465436 Dataset S3 N

rs2087160 ALU 0.72 Payer 28465436 Dataset S3 N

rs6825911 ALU 0.84 Payer 28465436 Dataset S3 N

rs10034228 ALU 0.96 Payer 28465436 Dataset S3 N

rs11748327 ALU 0.82 Payer 28465436 Dataset S3 N

rs9472155 ALU 0.95 Payer 28465436 Dataset S3 N

rs441460 ALU 0.96 Payer 28465436 Dataset S3 N

rs204247 ALU 1.00 Payer 28465436 Dataset S3 N

rs11759769 ALU 0.89 Payer 28465436 Dataset S3 Y

rs7809799 ALU 1.00 Payer 28465436 Dataset S3 N

rs4609139 ALU 0.85 Payer 28465436 Dataset S3 N

rs2293889 ALU 0.80 Payer 28465436 Dataset S3 N

rs13281615 ALU 0.77 Payer 28465436 Dataset S3 N

rs16901979 ALU 1.00 Payer 28465436 Dataset S3 N

rs10505483 ALU 1.00 Payer 28465436 Dataset S3 N

rs6983561 ALU 1.00 Payer 28465436 Dataset S3 N

rs10512248 ALU 0.96 Payer 28465436 Dataset S3 N
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rs399593 ALU 1.00 Payer 28465436 Dataset S3 N

rs7089424 ALU 0.83 Payer 28465436 Dataset S3 N

rs10821936 ALU 0.83 Payer 28465436 Dataset S3 N

rs2638953 ALU 0.89 Payer 28465436 Dataset S3 N

rs10771399 ALU 0.92 Payer 28465436 Dataset S3 Y

rs10843164 ALU 0.96 Payer 28465436 Dataset S3 Y

rs2066808 ALU 1.00 Payer 28465436 Dataset S3 Y

rs2066807 ALU 1.00 Payer 28465436 Dataset S3 Y

rs17788937 ALU 0.83 Payer 28465436 Dataset S3 Y

rs975739 ALU 0.87 Payer 28465436 Dataset S3 N

rs4900384 ALU 0.78 Payer 28465436 Dataset S3 N

rs1456988 ALU 0.82 Payer 28465436 Dataset S3 N

rs10519227 ALU 0.76 Payer 28465436 Dataset S3 Y

rs7178424 ALU 0.78 Payer 28465436 Dataset S3 N

rs8038465 ALU 0.83 Payer 28465436 Dataset S3 Y

rs10852344 ALU 0.75 Payer 28465436 Dataset S3 N

rs3729639 ALU 1.00 Payer 28465436 Dataset S3 N

rs4351 ALU 0.89 Payer 28465436 Dataset S3 N

rs2665838 ALU 0.92 Payer 28465436 Dataset S3 N

rs2941551 ALU 0.92 Payer 28465436 Dataset S3 N

rs11658329 ALU 0.96 Payer 28465436 Dataset S3 N

rs4343 ALU 1.00 Payer 28465436 Dataset S3 N

rs4329 ALU 1.00 Payer 28465436 Dataset S3 N

rs9894429 ALU 0.81 Payer 28465436 Dataset S3 N

rs6015450 ALU 1.00 Payer 28465436 Dataset S3 N


