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1  |  INTRODUC TION

The idea that a proto-Atlantic Ocean (later named the Iapetus Ocean; 
Harland & Gayer, 1972) opened sometime in the past, in essentially 
the same manner and location as the Atlantic Ocean (Wilson, 1966), 
proved pivotal to interpretations of the evolution of the present 
North Atlantic region. This interpretation had major ramifications 
for Precambrian palaeogeography in general, and reconstructions 
of the Rodinia supercontinent in the early Neoproterozoic in 
particular (Hartz & Torsvik, 2002; Hoffmann, 1991), and indeed the 
inferred behaviour of North Atlantic oceanic crust and plate margins 
throughout the Neoproterozoic (Cawood et al., 2010; McCausland 
et al., 2007). However, while both faunal and other geologic evidence 
(e.g. ophiolites and thrust sheets with high-pressure metamorphic 
assemblages) support the closure of this northern segment of the 
Iapetus Ocean at ca. 450 Ma during the Caledonian Orogeny (e.g. 
Bruton & Bockelie,  1980), evidence for contiguity of Laurentia 

and Baltica prior to 600 Ma is sparse (Robert et al.,  2020). Here, 
we review the widely cited evidence of proximity for Baltica and 
Laurentia prior to late Neoproterozoic Iapetus opening and provide 
new data implying separation of Baltica and Laurentia from ca. 1.1–
1.2 Ga until Caledonian collision.

2  |  WHAT IS THE E VIDENCE FOR 
BALTIC A–L AURENTIA PROXIMIT Y DURING 
THE NEOPROTEROZOIC?

The most cited geological argument for Baltica–Laurentia proximity 
during the Neoproterozoic is based on the correlation of the late 
Mesoproterozoic Grenvillian and Sveconorwegian orogens, with 
Baltica located at the nexus of Amazonia and Laurentia, sutured along 
the Sveconorwegian–Sunsás–Grenville orogens (Li et al.,  2008). A 
Geological Association of Canada Special Publication edited by 
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Abstract
Late Ediacaran opening of the Iapetus Ocean is typically considered to reflect 
separation of Baltica and Laurentia during final breakup of the Rodinia supercontinent, 
with subsequent closure during the Caledonian Orogeny. However, evidence of the 
pre-opening juxtaposition of Baltica and Laurentia is limited to purportedly similar 
apparent polar wander paths and correlation of Rodinia-forming orogenic events. We 
show that a range of existing data do not unequivocally support correlation of these 
orogens, and that geologic and palaeomagnetic data instead favour separation of 
Baltica and Laurentia as early as 1.1–1.2 Ga. Furthermore, new detrital zircon U–Pb age 
and Ar–Ar thermochronological data from Norway point towards an active western 
Baltican margin throughout most of the Neoproterozoic and early Palaeozoic. These 
findings are inconsistent with the majority of palaeogeographic reconstructions that 
place Baltica near the core of the Rodinia supercontinent.
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2  |    SLAGSTAD et al.

Gower et al.  (1990), presented a series of papers documenting a 
similar Palaeo- and Mesoproterozoic evolution of the SW Baltican 
and SE Laurentian margins, culminating in late Mesoproterozoic 
orogeny interpreted to reflect collision with Amazonia. More recent 
work on the Sveconorwegian Orogen has, however, shown that 
this orogeny was characterized by a lack of crustal thickening and 
near-continuous heating by mantle-derived magma, refertilizing 
the crust on time scales of 150–250  Myr (Bingen et al.,  2021; 
Slagstad et al.,  2018). These tectonic features are very different 
from the Grenvillian Orogeny, characterized by crustal thickening 
and radiogenic self-heating (Jamieson et al.,  2007; Rivers,  2015), 
and inconsistent with late Mesoproterozoic continent-continent 
collision at the SW Baltican margin (Slagstad et al.,  2020). The 
Neoproterozoic evolution of western Baltica is poorly constrained 
but was dominated by widespread deposition of clastic sediments 
and intermittent, rift-related magmatism (Siedlecka et al.,  2004; 
Nystuen et al., 2008; see also Figure 1).

Palaeomagnetic reconstructions of Rodinia are inherently 
poorly constrained given later metamorphic overprinting (Meert & 
Torsvik, 2003; Torsvik, 2003). Historically, the late Mesoproterozoic–
early Neoproterozoic proximity of Baltica and Laurentia was ac-
cepted based on a rather vague similarity of the Grenvillian and 
Sveconorwegian segments of the respective apparent polar wan-
der paths (APWPs) (e.g. McWilliams & Dunlop, 1978; Piper, 1980; 
Piper,  2009). More recent analyses of available palaeomagnetic 
data, however, indicate that direct comparison of the APWPs for 
Baltica and Laurentia is problematic at best because the relevant 
polar tracks are only partly coeval and, with the exception of a ca. 
30 Myr period, represented by the Laurentian Keweenawan track, 
are characterized by relatively poor data resolution with gaps in the 
palaeomagnetic record that in some cases exceed 100 Myr (Evans 
et al., 2021; Kulakov et al., 2022). Whilst detailed analysis of the rel-
evant APWPs is beyond the scope of this paper a detailed review of 
APWPs for Baltica and Laurentia are given by Kulakov et al. (2022). 
Palaeomagnetic data imply that Baltica and Laurentia were rather 
distant at the peak of the Grenville–Sveconorwegian orogeny at 
ca. 1100–1050 Ma (Figure 2a; Li et al., 2008; Kulakov et al., 2022). 
Thus, an ocean must have existed at that time, separating Baltica 
and Laurentia.

Given sparse and highly equivocal palaeomagnetic constraints 
on the Baltica–Laurentia relationship through the Neoproterozoic, 
widely different orientations of the two continents have been pro-
posed, even with Baltica inverted in some reconstructions (Hartz 
& Torsvik,  2002; McCausland et al.,  2007). Figure  2b shows that 
Laurentia appears to have resided at low southern latitudes for a 
significant time interval, at least between ca. 830 and 720 Ma (Eyster 
et al., 2020; Maloof et al., 2006). In contrast, Baltica occupied polar 
latitudes at 848 ± 27 Ma (Walderhaug et al., 1999). The precise lat-
itudinal position of Baltica between ca. 850 and 615 Ma is difficult 
to assess due to a lack of well-dated, high-quality palaeomagnetic 
data, however, the palaeomagnetic pole from the Katav formation 
(Pavlov & Gallet, 2009) reconstructs Baltica at low latitudes at ca. 
800 Ma. However, the age of the Katav formation as well as the 

age of magnetic remanence is ill-defined and can fall anywhere be-
tween ca. 860 and 700 Ma (Ovchinnikova et al., 1998; Ovchinnikova 
et al., 2000; Pavlov & Gallet, 2009).

Thus, although an orientation like modern-day Baltica is by 
far the most favoured reconstruction, this interpretation stems 
largely from the poorly established correlation of the Grenville and 
Sveconorwegian orogens and equally poorly constrained APWPs. 
Thus, there is no unique geologic or palaeomagnetic support for 
such an interpretation. Here, we present new geochronologic data 
that do not require the assumption of Baltica–Laurentia proximity 
and, instead, appear incompatible with such a configuration.

3  |  THE WESTERN BALTIC AN MARGIN IN 
THE NEOPROTEROZOIC

3.1  |  Detrital zircon geochronology

New detrital zircon data presented here (see Data Supplements S1–
S3), along with earlier work in SW Norway (Sláma & Pedersen, 2015), 
show that late Cambrian through Middle Ordovician (par)autoch-
thonous metasedimentary units deposited on Baltica (Figure  2) 
are dominated by Palaeo- through Mesoproterozoic detrital zir-
con grains (Figure 3a). Detrital zircon of this age is ubiquitous in 
metasedimentary sequences around the North Atlantic region 
and typically interpreted to reflect erosion from the Grenville–
Sveconorwegian orogen (e.g. Kirkland et al.,  2007; Krabbendam 
et al., 2022). In addition, Cambrian to Middle Ordovician sedimen-
tary successions in SW Norway contain sparse 850 to 700 Ma and 
abundant 700 to 500 Ma zircon grains (Sláma & Pedersen, 2015; 
this study). εHft values for the Neoproterozoic grains range widely, 
from −27 to +13 (Sláma & Pedersen, 2015), indicating both juve-
nile and evolved crustal sources. Sedimentary sequences of similar 

Significance Statement

The manuscript presents arguments against the widely 
held hypothesis that Baltica formed part of the core of 
the Rodinia supercontinent, and that the Iapetus Ocean 
opened at ca. 600 Ma during separation of Baltica and 
Laurentia. The manuscript points out obvious weaknesses 
in the sparse data used to argue for such a configuration 
and opening history, and reviews recently published 
and presents new data that support the presence of 
an active Baltican margin where Laurentia is located in 
most Neoproterozoic reconstructions. The alternative 
views presented are innovative and will almost certainly 
be provocative. We do, however, believe they are well 
founded and of broad interest to anyone working with 
supercontinent reconstructions and the Mesoproterozoic 
through Palaeozoic evolution of the North Atlantic region.
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age in N Norway (Figure 1) yield generally fewer Neoproterozoic 
zircon grains with a narrower peak, ranging from 680 to 540 Ma 
(Figure 3b; Andresen et al., 2014; Zhang et al., 2015), with largely 
superchondritic εHft values.

Abundant 700 to 500 Ma detrital zircon grains with sub-
chondritic to superchondritic Hf isotopic compositions in late 
Cambrian/Ordovician (par)autochthonous units in SW Norway 
suggest derivation from an active continental margin with both 
new mantle input and recycling of pre-existing ancient conti-
nental crust. Such an isotopic evolution pathway is consistent 
with the relatively short duration from zircon crystallization to 
deposition (Cawood et al.,  2012). Earlier work discussing these 
Neoproterozoic detrital zircon data have argued for their deriva-
tion from the Ediacaran Timanian Orogen at the E and NE margin 

of Baltica (Andresen et al., 2014; Sláma & Pedersen, 2015; Zhang 
et al., 2015). While the Timanides record calc-alkaline magmatism 
as old as ca. 700 Ma, it appears that the orogenic evolution took 
place outboard of Baltica, with oceanic subduction away from 
the Baltican passive margin, driving arc magmatism at the active 
margin of a hypothesized Arctida microcontinent (Kuznetsov 
et al., 2007). According to these authors, accretion of the active 
margin of Arctida onto Baltica was marked by intrusion of a suite 
of 560 Ma syn-collisional granites. Whilst the Timanian Orogen 
is purported to have continued north of the Varanger Peninsula 
into N Norway (Figure  2), evidence of such a westward arm is 
lacking. We also note that the type area of Timanian Orogeny 
and the Varanger Peninsula are located ca. 2,200 and 1,500 km, 
respectively, from the study area in SW Norway. Hence, we 
stress that comparatively few ‘Timanian’-age grains are found in 
N Norway parautochthonous sedimentary rocks, close to their 
assumed source, whereas such grains abound in sedimentary 
rocks in SW Norway, likely indicating a different, non-‘Timanian’ 
source for the latter. Finally, the presence of late Cryogenian–
early Ediacaran grains (Figure  3a) in the Rendalen Formation 
underlying the pre-Squantum–Gaskiers (ca. 580 Ma; Bingen 
et al., 2005; Adamson, 2016) Moelv tillite (Figure 1), suggests that 

F I G U R E  1  Map of Scandinavia showing Caledonian nappes 
in grey, overlying Precambrian basement. The coloured underlay 
shows depth to the lithosphere–asthenosphere boundary (LAB), 
based on data from Gradmann et al. (2013) and Plomerová and 
Babuška (2010). The locations discussed in the text are indicated. 
Detrital zircon locations include Varanger peninsula (Z2015, Zhang 
et al., 2015), Divial group (A2014, Andresen et al., 2014), SW 
Norway (SP2015, Sláma & Pedersen, 2015), Rendalen formation 
(B2005, Bingen et al., 2005) and data presented in this study. 
Extension-related magmatism includes the 850 Ma Hunnedalen 
mafic dikes (Walderhaug et al., 1999), the 686 Ma Vinoren ailikite 
dike, the 616 Ma Egersund dikes (Bingen et al., 1998) and the 
583 Ma Fen carbonatite (Meert et al., 1998).
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F I G U R E  2  Palaeomagnetic reconstructions of Baltica and 
Laurentia. (a) At ca. 1090 Ma with the Sveconorwegian and 
Grenvillian orogenies indicated. Data from Kulakov et al. (2013) 
and (2022). See Kulakov et al. (2022) for details. (b) At ca. 850–
830 Ma, and ca. 780 Ma based on data from Maloof et al. (2006), 
Walderhaug et al. (1999) and Eyster et al. (2020). Note that the 
830 Ma palaeomagnetic pole of Maloof et al. (2006) was rotated 
to North American coordinates using rotation parameters from 
Torsvik et al. (2012). In addition, this pole may reflect an episode 
of true polar wander and needs to be treated with caution.
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4  |    SLAGSTAD et al.

an alternative source of detritus must have existed, since accre-
tion of Timanian rocks took place 20 Myr later.

A southerly, Avalonian source has also been proposed for 
these Neoproterozoic detrital zircon grains (Andresen, 2021); how-
ever, considering that Avalonia and Baltica collided in the latest 
Ordovician to earliest Silurian (Domeier, 2016) and the general lack 
of grains younger than early Middle Ordovician, we consider this in-
terpretation unlikely.

Hence, a more likely derivation of these Neoproterozoic detrital 
zircon grains is from a source region west of the present western 

Baltican margin. Available detrital zircon data from (par)autoch-
tonous sedimentary rocks in Norway are, therefore, indicative of 
a long-lived, active margin west of present-day Baltica (Figure  4), 
which rules out most pre-Iapetus reconstructions of Baltica and 
Laurentia in which the western Baltican margin is placed adjacent to 
the eastern Laurentian margin.

3.2  |  Ar–Ar ages of Neoproterozoic thermal events

New Ar–Ar biotite data from autochthonous basement in the West 
Troms Basement Complex (WTBC) and the Narvik area (Figure  3, 
Data Supplements  S4 and S5) yield a range of ages from 950 to 
400 Ma, with most between 620 and 580 Ma. While ages younger 
than 440 Ma can be ascribed to Caledonian continent-continent 
collision, older ages cannot and are interpreted to correspond to 
Neoproterozoic through Ordovician thermal events. Although the 
tectonic significance of these thermal events is unconstrained, a 
clear overlap in Neoproterozoic ages with detrital zircon ages in 
northern and southwestern Norway and extension-related mag-
matism in south Norway is evident (Figure 3c), implying magmatism 
and tectonometamorphism at this time. Hence, the Ar–Ar data from 
the WTBC are consistent with an active margin west of the present 
western margin of Baltica, rather than to its north or south (Figure 4).

A 700 to 450 Ma active margin corresponds to extension-related 
magmatic events in Baltican basement in S Norway starting at ca. 
850 Ma and lasting until at least 580 Ma (Figure 4c). Evidence of long-
lived extension is restricted to S Norway, which is characterized by 
comparatively thin and weak lithosphere (Figure 1). Divergent set-
tings generally produce little magma that crystallizes zircon (Cawood 
et al., 2012), and it is, therefore, unlikely that these rift events reflect 
continental rifting, as generally assumed, but rather extensional ba-
sins formed behind, and filled by erosion of, an active continental 
margin. The geographic distribution of Neoproterozoic detrital zir-
con and thermal events constrained by the Ar–Ar data suggest the 
presence of an active margin outboard of the present western mar-
gin of Baltica.

4  |  WHEN DID BALTIC A AND L AURENTIA 
SEPAR ATE?

The timing of Baltica–Laurentia separation and Iapetus opening re-
mains unknown, but we speculate that widespread rifting around 
1.2  Ga, recorded on both continents (Bingen et al.,  2002 and ref-
erences therein), marks this event, consistent with a very similar 
tectonic evolution up until this point and a rather more dissimilar 
evolution thereafter (Karlstrom et al.,  2001; Slagstad et al.,  2019; 
Spencer et al., 2019). Available palaeomagnetic data indicate latitu-
dinal separation of at least 20° between the two continents as early 
as ca. 1090 Ma (Figure 4a, adopting the classic right-way-up position 
of Baltica; Kulakov et al., 2022), consistent with contrasting styles 
of Grenvillian–Sveconorwegian orogeny (Slagstad et al., 2019). We 

F I G U R E  3  (a) Detrital zircon probability density plot from (par)
autochthonous metasedimentary units in SW Norway (Sláma 
& Pedersen, 2015; this study). Data for the Rendalen formation 
from Bingen et al. (2005). (b) Detrital zircon age data from lower 
allochthonous and parautochthonous rocks in N Norway (Andresen 
et al., 2014; Zhang et al., 2015). (c) Ar–Ar biotite ages from this 
study, plotted with detrital zircon probability density plots from 
SW and N Norway and ages of extension-related magmatism in SW 
Norway (see Figure 1 for references).
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posit that these continents remained separated until Caledonian 
continent–continent collision commenced at ca. 440 Ma (e.g. 
Slagstad & Kirkland, 2018), following a period of accretionary tecton-
ics along both margins (Barnes et al., 2019; Gasser et al., 2021; Majka 
et al., 2014; Zagorevski et al., 2006), and argue that the commonly 
held interpretation of Baltica being located adjacent to Laurentia in 
the supercontinent Rodinia and during most of the Neoproterozoic 
is founded on incomplete information and is inconsistent with pres-
ently available geologic and palaeomagnetic data.

5  |  CONCLUSIONS

The available geologic and palaeomagnetic data are best explained by 
separation of Baltica and Laurentia well before assembly of Rodinia. 
In contrast, the available age and thermal history information sug-
gest that the western Baltican margin was active throughout much 
of the Neoproterozoic and located some unconstrained distance 
from Laurentia, as suggested by palaeomagnetic data. This margin 
remained active until the onset of Caledonian continent-continent 
collision. It is unlikely that Baltica formed an integral component of 
the Rodinia supercontinent, and the ocean separating Baltica from 

Laurentia must have existed well before the generally accepted sep-
aration at 600 Ma, perhaps as early as ca. 1,200 Ma.
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