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Abstract: The population of developed nations spends a significant amount of time indoors, and
the implications of poor indoor air quality (IAQ) on human health are substantial. Many premature
deaths attributed to exposure to indoor air pollutants result from diseases exacerbated by poor indoor
air. CO2, one of these pollutants, is the most prevalent and often serves as an indicator of IAQ. Indoor
CO2 concentrations can be significantly higher than outdoor levels due to human respiration and
activity. The primary objective of this research was to numerically investigate the indoor relative
humidity and CO2 in cob buildings through the CobBauge prototype, particularly during the first
months following the building delivery. Both in situ experimental studies and numerical predictions
using an artificial neural network were conducted for this purpose. The study presented the use
of a piecewise autoregressive exogenous model (PWARX) for indoor relative humidity (RH) and
CO2 content in a building constructed with a double walling system consisting of cob and light
earth. The model was validated using experimental data collected over a 27-day period, during
which indoor RH and CO2 levels were measured alongside external conditions. The results indicate
that the PWARX model accurately predicted RH levels and categorized them into distinct states
based on moisture content within materials and external conditions. However, while the model
accurately predicted indoor CO2 levels, it faced challenges in finely classifying them due to the
complex interplay of factors influencing CO2 levels in indoor environments.

Keywords: indoor air quality; indoor relative humidity; cob; prediction; artificial neural network;
PWARX model

1. Introduction

Indoor air quality (IAQ) is crucial for the well-being of individuals in enclosed spaces
like homes, workplaces, schools, and hospitals [1,2]. Contaminants such as microbial agents,
gaseous pollutants (e.g., carbon monoxide, carbon dioxide, or organic compounds), and
behaviors like smoking can adversely affect IAQ, potentially leading to health issues. To
mitigate these risks, implementing an air quality monitoring system is essential. Monitoring
systems, like the developed sensor solution representing environmental parameters through
the air quality index, play a vital role in ensuring an indoor environment suitable for
habitation [3]. Machine learning models have been employed to analyze data from various
sensors and model occupancy patterns [4,5].
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Machine learning models, including artificial neural networks (ANNs), support vector
machines (SVMs), decision trees (DTs), and random forests (RFs), have been used to study
hygroscopic behavior and IAQ in buildings [6]. ANNs, for instance, have been applied to
model indoor air quality and predict moisture migration in building materials [7,8]. SVMs
classify data to identify indoor air pollution sources and predict material performance in
different climates [9,10]. DTs and RFs have been employed to make decisions based on
input conditions and improve prediction accuracy, respectively [6,11].

While research on hygrothermal behavior using neural network modeling has been
conducted on various building materials, studies specifically focusing on bio-based ma-
terials at a wall scale are limited [10]. Previous studies have demonstrated the potential
of data-driven models to predict building material behavior, contributing to more sustain-
able and energy-efficient designs [12,13]. However, no study has been conducted on the
hygrothermal behavior of a real cob building.

Traditionally, studies on building performance have separately examined hygroscopic
behavior and IAQ, leaving a significant knowledge gap in understanding their interplay.
Recent advancements in numerical tools, including machine learning, deep learning, and
computational fluid dynamics (CFD), have facilitated the development of methods for
evaluating IAQ. CFD simulations provide insights into airflow patterns and pollutant
dispersion, while machine learning models predict IAQ parameters [14]. For instance,
a fully convolutional network (FCN)-based deep learning regression model has been
proposed for IAQ monitoring, outperforming traditional models in terms of prediction
accuracy [15]. Additionally, a technique combining wavelet neural networks and rough
sets has been utilized for assessing indoor air quality in large malls [14].

A hybrid deep learning framework, hybrid CNN-LSTM-DNN, has been suggested for
predicting IAQ and controlling ventilation systems predictively [16]. This framework com-
bines multiple deep learning models to extract temporal patterns from indoor and outdoor
air quality measurements, showcasing its effectiveness in forecasting pollutant levels.

Despite these advancements, there is a lack of research on data-driven modeling
for both hygroscopic behavior and IAQ for earthen materials at the building scale. The
piecewise ARX model (PWARX), a statistical model not previously used for simulating the
hygroscopic behavior and IAQ of earthen buildings, is introduced in this paper. PWARX
utilizes time-series analysis and probabilistic modeling to predict moisture movement
through earthen materials, offering advantages over traditional artificial neural network
models, especially in data classification [10,17].

This study focuses on applying the PWARX model to a prototype cob building, ex-
tensively instrumented to measure hygroscopic behavior and indoor air quality. The
objective is to demonstrate the effectiveness of PWARX in predicting the behavior of
earthen buildings at a building scale, paving the way for more sustainable, healthy, and
energy-efficient designs.

2. Methodology

The study approach is structured into several steps, as illustrated in Figure 1, following
a comprehensive review of recent research. Each step is elaborated upon in the subsequent
sections. The conceptual study plan can be summarized as follows:

1. Building Construction and Instrumentation: Initiating the study with the construction
of the building and the installation of instrumentation.

2. Data Gathering: Employing sensors placed on the building walls and in indoor/outdoor
environments to collect information on air quality and hygroscopic behavior.

3. Data Preprocessing: Engaging in data cleaning, anomaly elimination, and data aggre-
gation to hourly intervals as part of the preprocessing step.

4. Model Estimation: Defining all parameters essential for the algorithm’s execution,
including the initial number of operating modes, system orders, and convergence rate.

5. Classification of Operating Modes: Training a classification algorithm to discern the
relationship between input variables and operating modes.
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6. Model Validation: Comparing the indoor humidity and indoor air quality (CO2)
predicted by the PWARX model with the measured data. This step validates the
model’s accuracy in predicting hygroscopic behavior and indoor air quality.
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Figure 1. Conceptual study plan.

These steps collectively form the conceptual framework for the study, providing a
systematic and organized approach to investigating indoor air quality and hygroscopic
behavior in cob buildings.

2.1. Numerical Models
Switching Linear Model

The algorithm proposed in this section for identifying piecewise affine systems com-
prises two distinct phases. In the initial stage, the algorithm classifies the data into groups,
estimates the global vector of parameters, and associates each data point with the best-
fitting sub-model. The second stage utilizes the support vector machine (SVM) technique
to predict the areas of the polyhedral partition.

The clusters of linear/affine models are interconnected by switches, which are them-
selves indexed by an additional discrete variable referred to as the discrete state. This
characteristic gives rise to the term “switched affine model.” In piecewise affine models,
the discrete state is defined by a polyhedral partition of the state-input domain.

Consider the data shown in Algorithm 1 as the input for our system. We apply the
support vector machine (SVM) method to classify these data. The SVM method is capable
of finding an optimal separation hyperplane when the data are linearly separable. In cases
where the data are not linearly separable, the optimal separating hyperplane is utilized to
classify the data into multiple groups.

In an identification procedure, it is essential to plot the data in a state-space domain to
identify different clusters that automatically define the connection between the input and
the output. The support vector machine (SVM) technique is employed for this purpose.
Depending on the nature of the data, this method can recognize two or more classifications,
enhancing the system’s understanding and allowing for a more nuanced analysis.

The identification method facilitates the association of each sub-model with an operat-
ing mode, as depicted in Figure 2. The algorithm gathers all the data that characterize each
operational mode and utilizes the least squares method to determine the configurations
of each sub-model. This approach helps in precisely defining the characteristics of each
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operating mode, enhancing the accuracy and reliability of the identified sub-models within
the system.
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We consider a piecewise affine discrete SISO system described by a PWARX model in
input-output form as follows:

y(t) = f(φ(t)) + e(t) (1)

where f is expressed as follows:

f(φ(t))


θT

1φ(t) if σ(t) = 1
:

θT
qφ(t) if σ(t) = q

(2)

1. {θ1;. . .θq} are the parameter vectors of the sub-models to be identified.
2. yk ∈ IR is the output of the system.
3. ek ∈ IR is the noise term.
4. ϕk is the regression vector of dimension: n = na +nb +1, assumed to belong to some

bounded polyhedron X ∈ IRd, given by:

Φk =
[
−yk−1 . . .− yk−na

ukuk−1uk−nb
]T (3)

• uk ∈ IR is the input of the system.
• na and nb are the orders of the system.

• {Ri}
q
i=1 is the extended regression vector given by φ = [φT1

]T
.

• The regions {Ri}
q
i=1 define a polyhedral partition of the closed and bounded domain.

• R ⊂ Rn with n = nena + (nb + 1). Regions are represented by a convex polyhedron:

Ri = {φ ∈ Rn : Hiφ ≼ 0} (4)

• Hi is the matrix that defines regions.

As represented on Algorithm 1 [17], the approach reported in present study includes
three major steps: a step of initialization, a step of data reallocation, and finally a test
of convergence.

Thus, the data regarding input-results and number c describing the nearest neighbors’
number are introduced to the PWARX model’s identification process. Consequently, the
outputs are s, Ci, and θi with i = {1,. . .,s}, representing, respectively, the autoregressive-
exogenous (ARX) sub-models number, clusters, and finally the vector’s parameter.



Energies 2024, 17, 243 5 of 12

During initialization, the data are employed in constructing N clusters. The data
reassignment method continues until the stop criterion is satisfied through successive
iterations. To achieve this, multiple iterations are performed, and the minimization of the
obtained iteration prediction errors is utilized as a metric to test algorithm convergence.

Performance indices such as FIT (fit index test), RMSE (root mean square error), R2

(R-squared), and MAPE (mean absolute percentage error) are utilized to validate each
model. It is important to note that if the listed operating modes are inappropriate for
the system under consideration, incorrect parameters will be systematically obtained for
each sub-model. Consequently, an iteration is conducted for each sub-model to select the
optimal settings based on the most appropriate data. This iterative process ensures that the
model is refined and tuned to accurately represent the underlying system dynamics.

Algorithm 1 PWARX model identification [17]

Input: Initialization
na and nb: the system orders; α: control weighting; β: optimal convergence rate; N: the
convergence horizon; y: the output target and φ: the regression vector. k Class samples number.

1: for i← 1:N do

Step 1: Data re-affectation

2: for (k←max(na, nb) : N − na) do

3: for ψi
j ← exp

(
−ασ(j)∥x(i)− y(j)∥2 − βσ(j)

(
y(i)− θ̂T

σ(j)φ(i)
))

²

4: dj
i ← argmin∥x(i)− x(j)∥

5: Step 2: Model Estimation

6: y(i,j) ← gi

(
φk + e(i,k)

7: Step 3: Convergence test

8: V(θi)← argmin 1
N ∑Ni

t=1

(
y(t)− θ̂T

i φ(t)
)

²

9:
∥∥∥θ(r+1) − θr

∥∥∥≪ V

Step 4: Model validation

10: Compute the output prediction, class number and the parameter vector
11: s←

{
∁i
}s

i=1
12: s←

{
θ̂i
}s

i=1

The division of the data into training and testing sets followed a standard practice
in machine learning model evaluation. We assigned 80% of the dataset to the training set,
which was used to train and optimize the PWARX model. The remaining 20% of the data
constituted the testing set, serving as an independent dataset that the model had not seen
during training (Figure 3). This approach allowed us to assess the model’s performance on
unseen data, providing a robust evaluation of its generalization capabilities. By incorpo-
rating this data splitting strategy, we aimed to ensure the reliability and credibility of the
model’s predictive performance.

2.2. Description of the Prototype Building

A prototype building was constructed on the property of the Cotentin and Bessin
Marshes Regional Natural Park. The internal surface area of this prototype is 13 m2, and
the total area is approximately 20 m2 (see Figure 4). The construction of this cob building
involves a double-walling method, where cob and light earth are naturally adhered to
create each wall. In this constructive mode, typical wall thicknesses range from 50 to
70 cm. For this specific prototype, the walls are 50 cm thick on the south and west sides and
70 cm thick on the east and north sides. The walls were constructed using multiple lifts,
with each lift approximately 70 cm in height.
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Various sensors have been installed in this building, including the following:

• A WS-GP1 weather sensor that collects outside temperature and relative humidity
data every 15 min.

• A Campbell Scientific CR1000X data-logger used to gather data recorded by CS655
sensors, monitoring the moisture content in the cob and light earth layers.

• Two NEMo XT air quality stations (from Ethera-labs), with one installed indoors and
the second one outdoors. These stations enable the collection of indoor variables,
including temperature, CO2 levels, and relative humidity, with data recorded every
10 min. For the detection of carbon dioxide, the approach involved utilizes a non-
dispersive infrared absorption spectroscopy across a measurement span from 0 to
5000 ppm. This method provides a resolution of 1 ppm and introduces an uncertainty
factor of ±30 ppm or ±3% of the recorded value. Relative humidity can be effectively
gauged within the 5 to 95% range, demonstrating a precision level of ±3% between 11
and 89% of RH and ±7% beyond this interval. The monitoring system accommodates
a temperature spectrum ranging from −55 to 125 ◦C, with a precision rate of ±2 ◦C.
Data were recovered during 27 days from 16 September to 13 October 2022. The period
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of interest of the present study was the one following the building delivery in which
the building walls were not completely dry [18].

3. Results and Discussion
3.1. Experimental Results

This section presents the results of a 27-day measurement campaign conducted from
16 September to 13 October 2022, to assess the hygroscopic behavior and indoor air quality
of the cob building. The experimental results, including the walls’ hygroscopic behavior,
outdoor conditions, and indoor CO2 and relative humidity, were utilized as input for the
PWARX model, as shown in Figures 5 and 6. Figure 5 illustrates the hygroscopic behavior
of the building along with external conditions, including outdoor temperature ranging
between 1 ◦C and 22 ◦C and solar radiation varying between 0 and 350 W/m2. Indoor
relative humidity levels evolved from approximately 60% to 80%, while outdoor levels
oscillated from about 60% to 100%. Notably, the hygroscopic behavior of the light earth
differed from that of the cob layer. The water content in the light earth layer (in contact with
outdoor air) oscillated quasi-periodically around an average value, as shown in Figure 7.
In contrast, the evolution of the cob layer’s water content (in contact with indoor air) is
less evident. The water content in cob oscillated and continued to decrease slowly from
0.062 m3/m3 to 0.060 m3/m3. This suggests that the cob layer has not yet reached its
practical water content since its implementation. Inversely, the light earth has completely
dried and reached its practical water content. Thus, the evolution of the latter is influenced
by outdoor environmental conditions such as rainfall, relative humidity, solar radiation,
and temperature fluctuations. Essentially, light earth exhibits a strong hygroscopic behavior.
Additionally, with its larger vegetal fiber content, the used soil is composed of kaolinite and
illite with a high interfoliar space. These compounds can contain water molecules between
their layers, resulting in high inter-crystalline swelling when submerged in water [19].
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Figure 6 depicts the concentration of carbon dioxide (CO2) inside and outside the
prototype building, along with external conditions. The outdoor CO2 levels exhibited a
wide range, varying between 400 and 5000 ppm. This broad variation could be attributed
to various factors such as photosynthesis, traffic, or industrial activity. It is crucial to
approach these reported absolute values with caution due to the potential impact of high
relative humidities on the measuring instrumentation. The external pressure also fluctuated
between 1017 and 1027 mbar, influenced by weather conditions.

Within the building, the CO2 levels consistently remained lower than those outside,
fluctuating between 400 and 700 ppm throughout the testing period. This range aligns
with the recommendations of ASHRAE [20], except for one spike primarily attributed to
human presence in the building. This temporary spike occurred when four individuals
were present in the prototype building for approximately four hours. The CO2 level rapidly
decreased as soon as the occupation ceased. Such events highlight the need for a ventilation
system tailored to these occupancy patterns to prevent such peaks [21]. Elevated indoor
CO2 levels can have adverse effects on occupants, including fatigue, headaches, and other
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health problems. Addressing ventilation strategies becomes essential to maintaining indoor
air quality within acceptable limits.

3.2. Numerical Results

In this study, the PWARX model was validated for indoor relative humidity using
inputs such as light-earth moisture content, cob moisture content, and external conditions
(Figure 7). The results demonstrated that the model accurately predicted humidity levels,
as indicated by the good agreement between the predicted and measured curves.

Moreover, the PWARX model successfully classified indoor humidity into three dis-
tinct states (Figure 8): state 1, state 2, and state 3. State 2 coincided with the peak of
solar radiation during the day, while states 1 and 3 corresponded to nighttime conditions.
Notably, the model could differentiate between these two nighttime states based on the
light-earth moisture content, with state 1 occurring when the moisture content was at its
minimum level (0.012 m3/m3) and state 3 occurring at a slightly higher moisture content
level (0.014 m3/m3).
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These findings underscore the utility of the PWARX model in classifying different
hygroscopic behaviors, particularly in indoor environments. The model’s ability to accu-
rately predict and classify indoor humidity holds practical implications for building design,
maintenance, and optimizing energy efficiency. Overall, the results emphasize the potential
of the PWARX model as a valuable tool for comprehending and managing indoor humidity.

In the second part of our study, we validated the PWARX model for indoor air quality,
specifically CO2 concentration (see Figure 9). The results demonstrated good agreement
between the predicted and measured curves, indicating the model’s ability to accurately
forecast interior CO2 levels. However, unlike indoor humidity, the PWARX model faced
challenges in finely classifying CO2 behavior.

Various factors, including occupancy, ventilation, outdoor air quality, and uncontrolled
human movement within the building, contribute to the complexity of CO2 concentration
in indoor environments. The difference in classification between indoor humidity and CO2
behavior can be attributed to the distinct underlying mechanisms governing each parameter.
While humidity levels are primarily influenced by the moisture content of indoor materials
and external conditions, CO2 levels are subject to a more intricate interplay of factors.

The cyclic nature of humidity behavior, linked to external conditions, contrasts with the
non-cyclic nature of CO2 concentration. Consequently, accurately classifying the behavior
of CO2 in indoor environments poses a more challenging task.
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Despite this limitation, the PWARX model remains valuable in providing insights into
indoor CO2 behavior, particularly in identifying trends. Understanding the influencing
factors behind indoor CO2 levels allows building managers and engineers to implement
measures for optimizing ventilation and air exchange rates, thereby ensuring a healthy
and comfortable indoor environment. For instance, it is notable that the number of states
increases with the rise in CO2 concentration (Figure 8-bottom).

4. Conclusions

The present research fills a gap in the literature regarding the prediction of indoor
CO2 concentration and relative humidity (RH) in cob buildings. The relationship between
relative humidity (RH) and carbon dioxide (CO2) concentration is complex and multi-
faceted. Both RH and CO2 are key indicators of indoor environmental conditions, and
their interaction can have significant implications for occupant comfort, health, and overall
indoor air quality. Here are some key aspects of their relationship:

• The relationship between RH and CO2 is often influenced by ventilation rates and
occupant activities. Inadequate ventilation can lead to elevated CO2 levels due to the
accumulation of exhaled breath, while high RH can result from poor ventilation and
insufficient moisture removal.

• High RH levels can create conditions favorable for mold growth, impacting IAQ.

The results show that cob buildings can provide good CO2 concentrations and high
relative humidity. The high RH is assumed to be due to the humidity released by the cob
which was not completely dry even months after its implementation. Thus, an appropriate
ventilation system is required to avoid possible threats to health. The PWARX model
presented in this study has demonstrated its potential as a valuable tool for understanding
and managing indoor relative humidity (RH) and CO2 levels in natural buildings. Accu-
rately predicting and classifying indoor RH levels holds practical implications for building
design, maintenance, and optimizing energy efficiency. While the model faced challenges
in finely classifying indoor CO2 behavior compared to RH, it still offers valuable insights
into the factors influencing CO2 levels. This information can assist building managers and
engineers in optimizing ventilation and air exchange rates.

Future work in this area could focus on expanding the model to incorporate more
complex factors influencing indoor air quality. Exploring the applicability of the model in
different building types and climates would further enhance its versatility and effectiveness.
The continuous refinement and adaptation of the model based on real-world data and
diverse environmental conditions would contribute to its robustness and practical utility in
various natural building scenarios.
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The decision to employ the PWARX model was driven by the specific characteristics
of the data and the objectives of the present study. The PWARX model, a form of weighted
autoregressive exogenous model, was chosen for its ability to capture both autoregressive
dynamics and the influence of external factors on the indoor air parameters, such as rel-
ative humidity (RH) and carbon dioxide (CO2) concentration. In addition to examining
the temporal dynamics of indoor air parameters, our objective with the PWARX model
was to showcase its capability in performing classification tasks. We aimed to demon-
strate how the model could effectively distinguish and classify different states of indoor
conditions based on humidity and CO2 levels. This classification aspect is particularly
relevant for understanding the diverse and discrete states that indoor environments can
exhibit. This classification aspect may allow us to characterize different regimes within the
indoor environment, providing insights into varied states and transitions that may not be
readily apparent with traditional models like MLR. In perspective, we intend to enhance
this study by conducting additional investigations encompassing diverse occupancy and
ventilation scenarios.
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