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ABSTRACT Microbial species capable of co-existing with healthy individuals, such 
as the commensal fungus Candida albicans, exploit multifarious strategies to evade 
our immune defenses. These strategies include the masking of immunoinflammatory 
pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported 
previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, 
β-1,3-glucan, at its cell surface in response to host-related signals such as lactate and 
hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variabil­
ity with respect to their lactate- and hypoxia-induced β-1,3-glucan masking. We have 
exploited this variability to identify responsive and non-responsive clinical isolates. We 
then performed RNA sequencing on these isolates to reveal genes whose expression 
patterns suggested potential association with lactate- or hypoxia-induced β-1,3-glucan 
masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We 
examined NCE103-related signaling further because NCE103 has been shown previously 
to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) 
signaling at low CO2 levels. We show that while CO2 does not trigger β-1,3-glucan 
masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences 
β-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a 
new regulatory module that controls PAMP exposure in C. albicans, our data imply that 
this module is important for PKA signaling in response to environmental inputs other 
than CO2.

IMPORTANCE Our innate immune defenses have evolved to protect us against microbial 
infection in part via receptor-mediated detection of “pathogen-associated molecular 
patterns” (PAMPs) expressed by invading microbes, which then triggers their immune 
clearance. Despite this surveillance, many microbial species are able to colonize healthy, 
immune-competent individuals, without causing infection. To do so, these microbes 
must evade immunity. The commensal fungus Candida albicans exploits a variety 
of strategies to evade immunity, one of which involves reducing the exposure of a 
proinflammatory PAMP (β-1,3-glucan) at its cell surface. Most of the β-1,3-glucan is 
located in the inner layer of the C. albicans cell wall, hidden by an outer layer of 
mannan fibrils. Nevertheless, some β-1,3-glucan can become exposed at the fungal cell 
surface. However, in response to certain specific host signals, such as lactate or hypoxia, 
C. albicans activates an anticipatory protective response that decreases β-1,3-glucan 
exposure, thereby reducing the susceptibility of the fungus to impending innate immune 
attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates 
to identify strains that do not display the response to β-1,3-glucan masking signals 
observed for the reference isolate, SC5314. Then, using genome-wide transcriptional 
profiling, we compared these non-responsive isolates with responsive controls to identify 
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genes potentially involved in β-1,3-glucan masking. Mutational analysis of these genes 
revealed that a sensing module that was previously associated with CO2 sensing also 
modulates β-1,3-glucan exposure in response to hypoxia and lactate in this major fungal 
pathogen of humans.

KEYWORDS Candida albicans, pathogen-associated molecular patterns, β-glucan 
masking, carbonic anhydrase, NCE103, immune evasion

R elatively few of the millions of fungal species that inhabit our planet enjoy symbiotic 
relationships with humans (1, 2). However, those species that can colonize humans 

display great phenotypic diversity, having emerged in different phylogenetic branches 
of the fungal kingdom and having been exposed to different evolutionary pressures 
(3, 4). Nevertheless, those fungi that are able to co-exist with healthy individuals, 
via parasitic, commensal, or mutualistic relationships, must have evolved strategies to 
evade or overcome the local immune defenses of their host (5–8). In principle, such 
strategies could include constitutive bet hedging through the generation of phenotypi­
cally heterogeneous populations that include subsets of cells with a higher probability 
of surviving an impending challenge (9, 10). They might also involve the induction of 
anticipatory responses, whereby the fungus has evolved to exploit one type of environ­
mental input to activate a response to a second, impending challenge (7, 11–13). This 
type of anticipatory response, which involves temporally related environmental inputs, is 
thought to have led to the development of core environmental responses in fungi (7, 12, 
14) and has been termed “adaptive prediction” (11).

Constitutive bet hedging and inducible anticipatory responses play important roles 
in fungal immune evasion. For example, the human commensal fungus Candida albicans 
exploits both strategies to avoid the recognition, by innate immune cells, of the essential 
but immunoinflammatory pathogen-associated molecular pattern (PAMP) β-1,3-glucan. 
β-1,3-Glucan is an essential component of the C. albicans cell wall, comprising about 
75% of cell wall biomass (15, 16). Most of the β-1,3-glucan lies in the inner layer of the 
cell wall, buried below the outer layer of mannan fibrils (16), but some β-1,3-glucan 
can become exposed at the C. albicans cell surface at septal junctions, bud scars, and 
at punctate foci on the lateral cell wall (17). This exposed β-1,3-glucan becomes visible 
to host pattern recognition receptors (PRRs) such as the C-type lectin receptor dectin-1 
(CLEC7A), the nucleotide-oligomerization domain-like receptor NLRP3, and complement 
receptor 3 (18–22). The recognition of β-1,3-glucan by these PRRs, and by dectin-1 
in particular, plays a major role in antifungal immunity (23–29), triggering a range 
of responses that promote fungal killing and clearance from the infection site. These 
responses include phagocytosis, the formation of neutrophil extracellular traps, and 
cytokine release with the ensuing recruitment of innate immune cells and induction of 
adaptive immune responses (21, 22, 30, 31). However, C. albicans has evolved a variety 
of mechanisms to counter β-1,3-glucan-mediated immune recognition. First, even under 
steady-state conditions, C. albicans cell populations display a high degree of phenotypic 
variability with respect to their levels of β-1,3-glucan exposure, with subsets of cells 
revealing minimal β-1,3-glucan (32–34). Second, daughter cells are less visible to innate 
immune cells, displaying relatively low levels of β-1,3-glucan exposure compared to 
their mothers (17), probably through asymmetric expression of the Eng1 endoglucanase 
during cytokinesis (35–37). Third, C. albicans cells actively shave exposed β-1,3-glucan 
from their cell surface (32–34, 38, 39) by secreting the Xog1 exoglucanase in response 
to specific host signals that are indicative of impending attack by innate immune cells 
(40). These signals include exposure to lactate or hypoxia (32, 33), and this β-1,3-glucan 
shaving attenuates fungal recognition by innate immune cells and subsequent cytokine 
responses (17, 32–34, 38, 39). Therefore, C. albicans combines constitutive bet hedg­
ing with anticipatory responses to reduce β-1,3-glucan exposure and evade antifungal 
immunity.
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Some progress has been made in elaborating the molecular mechanisms that drive 
this anticipatory β-1,3-glucan shaving. For example, lactate-, hypoxia-, iron-limitation- 
and pH-induced changes in β-1,3-glucan exposure are each activated via evolutionarily 
conserved signaling pathways that respond to the input signal in question (17, 32–34, 
38, 39). For example, lactate-induced β-1,3-glucan masking appears to be dependent on 
Gpr1, the closest C. albicans homolog to the mammalian lactate receptor (32), whereas 
the generation of mitochondrial reactive oxygen species is required for hypoxia-induced 
β-1,3-glucan masking (33). These input-specific upstream signaling pathways converge 
on the cyclic AMP (cAMP)-protein kinase A (PKA) pathway (17, 34), which leads to the 
induction of Xog1 secretion and β-1,3-glucan shaving (17, 40).

Nevertheless, gaps remain in our understanding of the mechanisms that underlie 
β-1,3-glucan masking and its regulation. Therefore, in this study, we exploited the 
genetic and phenotypic variability of C. albicans clinical isolates to identify new factors 
involved in these processes. We screened 146 sequenced isolates for their ability to 
display lactate- and hypoxia-induced β-1,3-glucan masking and then performed RNA 
sequencing on responsive and non-responsive isolates to identify loci whose (lack of ) 
regulation correlated with a (lack of ) β-1,3-glucan masking. Our downstream analysis 
of nine target loci led to the identification of a new regulatory module that controls 
β-1,3-glucan masking in C. albicans.

RESULTS

Clinical isolates of C. albicans display variability in their β-glucan masking

To explore the extent to which clinical isolates display lactate- and hypoxia-induced 
β-1,3-glucan masking, we took advantage of a collection of sequenced clinical isolates 
of C. albicans that spans all the major genetic clusters (often referred to as clades) 
(41). We selected 146 isolates representing the various clusters, including isolates from 
different types of infection (Table S1). We also included the reference strain SC5314 
as a control (Table S2) because this strain provided the platform for previous β-1,3-
glucan masking studies (32–34). These isolates were arrayed in 96-well format, and 
using established approaches (32–34), they were grown in a control glucose-based 
minimal medium (GYNB) under normoxic conditions and then exposed to lactate or 
hypoxia for 5 hours before quantifying their β-1,3-glucan exposure levels. To achieve this, 
cells were harvested during exponential growth under each of these conditions, fixed, 
stained with Fc-dectin-1, and subjected to flow cytometry. Three independent measure­
ments were taken for each isolate/condition. The median fluorescence indices (MFIs) 
of these cells were compared to those for control cells that were incubated in GYNB 
without lactate under normoxic conditions to reveal the degree of lactate- and hypoxia-
induced β-1,3-glucan masking for each isolate. This screen revealed that C. albicans 
isolates display a high degree of variability in their β-1,3-glucan masking capacity under 
these experimental conditions (Fig. 1). Some isolates, like SC5314, displayed efficient 
lactate- and/or hypoxia-induced β-1,3-glucan masking, whereas others displayed modest 
β-1,3-glucan masking, and others even showed elevated β-1,3-glucan exposure at this 
5-hour timepoint. The β-1,3-glucan masking phenotype is complex as it is influenced by 
new cell wall synthesis, cell division, and the shaving of exposed β-1,3-glucan (17, 40). 
The correlation between the growth of these strains and their β-1,3-glucan exposure 
was modest (Fig. S1), suggesting that the observed variability in masking partially 
reflected strain differences in masking dynamics as well as in masking capacity. Hence, 
the observed strain variability was probably influenced by changes in the signaling 
pathways that drive cell wall remodeling or β-1,3-glucan masking (33), via alterations in 
cell wall architecture and the outer mannan layer in particular (42–46), and/or through 
defects in β-1,3-glucan shaving mechanisms themselves (35, 40). Given this complexity, 
the lack of an obvious correlation between phylogeny and phenotype for lactate- or 
hypoxia-induced masking (Fig. 1A) was not unexpected. Furthermore, no correlation was 
observed between a strain’s β-1,3-glucan masking phenotype and the location from 
where it was isolated (bloodstream, mucosal surface, or feces) (Fig. 1B and C).
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Transcriptomic changes associated with lactate- or hypoxia-induced β-glucan 
masking in C. albicans

C. albicans clinical isolates display a high degree of genetic variation. Indeed, the 
collection of sequenced isolates from the Institut Pasteur displays, on average, one 
heterozygous single-nucleotide polymorphism (SNP) every 204 bp and an insertion 
or deletion (indel) every 944 bp (41). This high degree of genetic variation, together 
with the complexity of the β-1,3-glucan masking phenotype, precluded the association 
of specific SNPs or indels with the loss of this phenotype. Therefore, we used RNA 
sequencing to target loci potentially involved in lactate- or hypoxia-induced β-1,3-glucan 
masking.

FIG 1 C. albicans clinical isolates display variability with respect to their β-1,3-glucan masking phenotypes. The β-1,3-glucan 

exposure levels for 146 C. albicans clinical isolates were quantified by Fc-dectin-1 staining and flow cytometry under control 

conditions (glucose, GYNB) and following exposure to lactate or hypoxia. Row Z-scores were calculated based on the mean 

fluorescence intensities of three biological replicates per condition and visualized in heatmaps: blue, strong β-1,3-glucan 

masking; white, no significant masking; red, β-1,3-glucan exposure. The cluster to which each clinical isolate belongs is 

indicated by the color code: NC, no cluster assigned. Also, the nature of the infection from which each isolate was obtained is 

color coded (see key). The reference C. albicans isolate (SC5314, black arrow), the five responsive isolates (CEC3560, CEC3605, 

CEC3609, CEC4108, CEC4259; red arrows), and five non-responsive isolates selected for further analysis (CEC3534, CEC3544, 

CEC3621, CEC3636, CEC4035; blue arrows) are highlighted. (A) The clinical isolates are clustered with respect to their sequence 

relatedness. All responsive and non-responsive isolates are from cluster 1. (B) The isolates are re-ordered with respect to the 

strength of their hypoxia-induced β-1,3-glucan masking (MFI hypoxia/MFI glucose control = normoxia). (C) The isolates are 

re-ordered with respect to the strength of their lactate-induced β-1,3-glucan masking (MFI glucose plus with lactate/MFI 

glucose control).
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To achieve this, we first selected five clinical isolates that displayed masking in 
response to lactate and hypoxia (responders: CEC3560, CEC3605, CEC3609, CEC4108, and 
CEC4259) and five clinical isolates that were defective in lactate- and hypoxia-induced 
masking (non-responders: CEC3534, CEC3544, CEC3621, CEC3636, and CEC4035). These 
isolates, like the control strain SC5314, were all selected from cluster 1 to limit inter-
strain variability. We performed RNA sequencing on each of these isolates after 1 
hour of exposure to lactate or hypoxia and then compared these transcriptomes with 
those from control normoxic cultures lacking lactate, using data from three independ­
ent replicates for each condition (Table S3; https://www.ebi.ac.uk/biostudies/arrayex­
press, accession number E-MTAB-10986; data files at www.ebi.ac.uk/ena/browser/home, 
project PRJEB47705).

The transcriptomic data for each of the five responder isolates were generated, and 
then these data were used to identify genes that were upregulated in each of these 
strains in response to the different β-1,3-glucan masking conditions. We identified 268 
genes that were significantly upregulated more than twofold in response to hypoxia and 
25 genes that were upregulated following lactate exposure (Fig. 2A). The set of hypoxia-
induced genes displayed significant enrichment in gene ontology (GO) terms relating 
to ribosome biogenesis, DNA replication, and metabolism, whereas the lactate-induced 
genes were enriched in hexose transporters and the negative regulation of immune 
responses (Fig. 2B; Tables S3 and S4). Seven genes were upregulated under both 
conditions in the five responder isolates (Fig. 2). These genes encode proteins involved 
in a variety of processes, including metabolism (HGT17, OSM2), ribosome biogenesis 
(RDN5), transcription (PRN1, TRY4), cell wall biogenesis (PGA26), and stress resistance 
(ENA2).

We then examined the transcriptomic data for the five non-responder isolates. 
Overall, the non-responders displayed similar transcriptomic changes to the responders 
(Tables S3 and S4). This was not surprising because, given the genetic diversity of these 
isolates (41), each of the non-responders is likely to carry different β-1,3-glucan masking 

FIG 2 Impact of lactate and hypoxia on the transcriptomes of responsive and non-responsive C. albicans 

clinical isolates. RNA sequencing was performed on five responsive (CEC3560, CEC3605, CEC3609, 

CEC4108, and CEC4259) and five non-responsive clinical isolates (CEC3534, CEC3544, CEC3621, CEC3636, 

and CEC4035) following exposure to lactate or hypoxia for 1 hour and compared to the control condition 

(fresh GYNB for 1 hour). (A) Venn diagram showing the numbers of genes that were upregulated 

(>twofold) in the responsive isolates in response to lactate and hypoxia. Seven genes that were 

significantly upregulated under both β-1,3-glucan masking conditions are shown. (B) Gene ontology 

terms that were significantly enriched in the gene sets that were upregulated in the responsive isolates in 

response to lactate and hypoxia. The degree of statistical significance of this enrichment is indicated by 

the color coding.
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defects. Therefore, to select loci that might be involved in β-1,3-glucan masking, we 
first rank ordered genes based on the strength of their upregulation in response to 
lactate or hypoxia. We focused on genes that were upregulated at least twofold in 
all five responder strains. Using this rank-ordered list of upregulated genes, we then 
selected genes whose upregulation was lost or dramatically reduced in at least one of 
the non-responding strains. XOG1, which encodes the major secreted exoglucanase that 
promotes β-1,3-glucan shaving (40, 47), was upregulated in response to hypoxia in all 
five responding isolates, and this upregulation was lost in three of the five non-respond­
ing isolates (Fig. 3). Although Xog1 levels appear to be post-transcriptionally modulated 
(17), these differences in XOG1 regulation between isolates did support the rationale 
underpinning our approach.

On this basis, nine C. albicans genes were targeted for analysis (Fig. 3). Three of these 
were selected based on their responses to lactate (CYB2, ECM3, OSM2) and the other six 
based on their responses to hypoxia (CTN1, HCM1, NCE103, PHO84, TRY4, TRY6) (Fig. 3). 
Some of these genes are predicted to encode transporters or metabolic functions (CTN1, 
CYB2, ECM3, NCE103, OSM2, PHO84), some are associated with mitochondrial function­
ality (CTN1, CYB2, HCM1, OSM2), which has been associated with hypoxia-induced 
β-1,3-glucan masking (33), and others encode putative transcriptional regulators (HCM1, 
TRY4, TRY6).

Impact of CTN1, CYB2, ECM3, HCM1, NCE103, OSM2, PHO84, TRY4, and TRY6 
upon lactate- and hypoxia-induced β-glucan masking in C. albicans

To test whether any of the nine selected target genes play a role in β-1,3-glucan 
masking, we generated two independent homozygous null mutants for each target gene 
in C. albicans strain SC5314 using CRISPR-Cas9 technology, and their genotypes were 
confirmed by diagnostic PCR (Fig. S2). First, the sensitivities of these null mutants to cell 
wall and environmental stresses were compared to those of the control parental strain. 
In all cases, each pair of independent null mutants behaved in a similar manner. The 
hcm1 mutants grew slowly compared to the parental wild-type strain SC5314, thereby 
recapitulating this reported phenotype for hcm1 cells (48). The hcm1 mutants were 
also sensitive to amino acid starvation (10 mM 3-aminotriazole) and thermosensitive at 
temperatures above 42°C (Fig. S3). The ctn1 mutants were unable to grow on non-fer­
mentable carbon sources, and the nce103 mutants were auxotrophic for CO2, as reported 
previously (49, 50). Therefore, stress sensitivities of the ctn1 mutants were assayed during 
growth on glucose, and nce103 stress phenotypes were examined under high CO2. 
None of the mutants displayed sensitivity to antifungal drugs (0.65 µg/mL fluconazole; 
0.032 µg/mL caspofungin; 5 µg/mL Ambisome), cell wall stresses (1 mg/mL caffeine; 
60 µg/mL calcofluor white; 0.3 mg/mL Congo red), osmotic stress (1 M NaCl; 0.6 M KCl), 
oxidative stress (5 mM H2O2; 0.3 mM menadione), reductive stress (25 mM dithiothreitol), 

FIG 3 C. albicans genes targeted for further analysis based on RNA sequencing. Nine C. albicans genes were targeted for analysis based on their transcriptional 

responses in the responsive and non-responsive clinical isolates to either lactate or hypoxia: lactate, pale gray; hypoxia, pale yellow. The regulation of their 

transcripts in response to lactate or hypoxia in each of the responsive and non-responsive isolates is shown, along with their (putative) functions.
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weak acid stress (20 mM acetic acid, pH 3), copper (5 mM CuSO4), iron (100 µM FeCl3), or 
amino acid starvation (10 mM 3-aminotriazole) in our hands (Table S5).

We then quantified the ability of each C. albicans mutant to activate β-1,3-glucan 
masking in response to lactate or hypoxia. Cells were fixed, stained with Fc-dectin-1 and 
AF488-linked secondary antibody, and their fluorescence quantified by flow cytometry. 
The parental SC5314 cells displayed significant population heterogeneity with respect 
to their β-1,3-glucan exposure, and robust β-1,3-glucan masking following exposure to 
lactate or hypoxia (Fig. 4A), as described previously (32, 33). Interestingly both nce103 
and pho84 mutants displayed significantly attenuated masking in response to lactate, 
partly due to their low levels of β-1,3-glucan exposure under the control condition (Fig. 
4B; Table S6). The pair of nce103 mutants also displayed a significant defect in response 
to hypoxia (Fig. 4B). None of the other mutants displayed aberrant β-1,3-glucan masking, 
suggesting that the correlations in gene regulation that we had observed for these 
genes (Fig. 3) did not reflect causative effects on β-1,3-glucan masking.

PHO84 (C1_11,480W_A) encodes a high-affinity phosphate transporter, the inactiva­
tion of which increases the sensitivity to neutrophil killing and attenuates the virulence 
of C. albicans, through increased sensitivity to oxidative stress (40 mM H2O2) (51). We 
did not pursue PHO84 further as pho84 cells only displayed a defect in lactate-induced 

FIG 4 Impact of the target loci upon lactate- and hypoxia-induced β-1,3-glucan masking in C. albicans. Each target locus was deleted in C. albicans SC5134 

(WT), and the degree of β-1,3-glucan masking quantified each mutant in response to lactate and hypoxia via Fc-dectin-1 staining and flow cytometry. 

(A) Representative cytometry plots from three independent experiments showing the β-1,3-glucan exposure for nce103 cells and their wild type control 

(SC5134). The left-hand panels show responses to lactate, and the right-hand panels show the responses to hypoxia: blue, control, no masking stimulus; pink, 

plus masking stimulus. The corresponding MFIs are shown at the top of each panel. (B) Two independent homozygous null mutants (A, B) were analyzed for each 

target gene. Fold changes in β-1,3-glucan exposure were calculated by dividing the MFI for lactate- or hypoxia-exposed cells by the MFI for the corresponding 

normoxic GYNB control (Materials and Methods). Means and standard deviations from three independent replicate experiments are shown, and the data were 

analyzed using ANOVA with Tukey’s multiple comparison test: *, P < 0.05; **, P < 0.01.
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masking. Instead, we chose to examine NCE103 because nce103 cells were defective 
in both lactate- and hypoxia-induced masking and because of its links to cAMP-PKA 
signaling (below), a pathway that has been implicated in β-1,3-glucan masking (33, 34).

NCE103 (C3_01,300C_A) encodes carbonic anhydrase, which accelerates the 
conversion of dissolved CO2 to bicarbonate (50). NCE103 enhances the growth of C. 
albicans in air (which contains about 0.04% CO2) and is required for the virulence 
of this fungus in host niches with limited CO2 (50). Nce103 cells grow under high 
CO2 (5%) through the chemical formation of bicarbonate from CO2 (Fig. S3A) (50). 
Bicarbonate directly stimulates the activity of adenylyl cyclase, thereby enhancing 
cAMP-PKA signaling in C. albicans (50). PKA signaling is required for both lactate- and 
hypoxia-induced β-1,3-glucan masking (33), and high CO2 levels are often associated 
with hypoxic microenvironments in vivo (52). Consequently, our finding that Nce103 is 
required for both lactate- and hypoxia-induced changes in β-1,3-glucan exposure was 
intriguing. Therefore, we explored the roles of CO2 and Nce103 signaling in β-1,3-glucan 
masking in C. albicans.

Impact of CO2 upon β-1,3-glucan masking in C. albicans

To test the impact of CO2 upon β-1,3-glucan masking, C. albicans SC5314 cells were 
grown in glucose minimal medium and exposed to 5% CO2, hypoxia, or hypoxia plus 
5% CO2. The levels of β-1,3-glucan exposure were then compared to untreated control 
cells by high-resolution fluorescence microscopy of Fc-dectin-1-stained cells (Fig. 5A) 
and β-1,3-glucan exposure quantified by flow cytometry (Fig. 5B). Once again, hypoxia 
was shown to induce robust β-1,3-glucan masking in wild-type cells. However, exposure 
to 5% CO2 did not (Fig. 5). Meanwhile, the combination of hypoxia and 5% CO2 led 
to β-1,3-glucan masking (Fig. 5), indicating that, in C. albicans, the hypoxic signal is 
dominant over the 5% CO2 signal, at least with respect to the β-1,3-glucan masking 
phenotype.

FIG 5 Effect of CO2 upon β-1,3-glucan exposure in C. albicans. C. albicans SC5134 cells were exposed 

for 5 hours to 5% CO2, hypoxia, or a combination of the two, and compared with control cells grown 

in normoxic GYNB without CO2. (A) These cell populations were then stained with Fc-dectin-1 and 

subjected to flow cytometry to quantify their levels of β-1,3-glucan exposure. The plots shown are 

representative of three independent experiments, with the corresponding MFIs presented at the top of 

each panel: blue, control, no input; pink, plus input. (B) In parallel, these cell populations were double 

stained with Fc-dectin-1 (exposed β-1,3-glucan, AF488, green) and ConA (mannan, AF647, red) and then 

examined by high-resolution fluorescence confocal microscopy. The images are representative of three 

independent experiments; scale bar = 2 µm.
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Sch9-Rca1-Nce103 signaling regulates the effects of hypoxia and CO2 upon 
β-1,3-glucan masking in C. albicans

Carbonic anhydrase (Nce103) plays a critical role in CO2 signaling in C. albicans through 
homeostatic control of the intracellular levels of bicarbonate, which interacts with 
and activates adenylyl cyclase (50). The expression of Nce103 is regulated by the 
bZIP transcription factor Rca1, which binds directly at the NCE103 locus to induce its 
transcription at low CO2 levels (53). In addition, Nce103 levels are downregulated at 
high CO2 levels. This downregulation is mediated by the protein kinase Sch9, which 
phosphorylates and inhibits Rca1 in response to high CO2, leading to reduced NCE103 

FIG 6 Impact of Nce103, Rca1, and Sch9 upon the changes in β-1,3-glucan exposure mediated by hypoxia and CO2. C. 

albicans cells were grown in GYNB at 30°C and exposed to hypoxia, 5% CO2, or a combination of these two inputs. (A) For each 

strain, the fold changes in β-1,3-glucan exposure were quantified by Fc-dectin-1 staining and flow cytometry, relative to the 

same strain grown in normoxic GYNB without CO2. C. albicans Ca372 (CAI4 + CIp10) is the wild-type control for sch9 (CAS4), 

and SN152 is the wild-type control for rca1 (rca1ΔY) (Table S2). Means and standard deviations from three independent 

replicate experiments are shown, and the data were analyzed using ANOVA with Tukey’s multiple comparison test: *, P < 

0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. (B) Corresponding high-resolution fluorescence confocal images of these 

cells, double stained with Fc-dectin-1 (exposed β-1,3-glucan, AF488, green) and ConA (mannan, AF647, red). The images are 

representative of three independent experiments; scale bar = 2 µm. (C) Using an analogous approach, the influence of NCE1 

on lactate-induced β-1,3-glucan masking was compared in the presence and absence of 5% CO2 using wild-type (SC5314) and 

nce103 cells (Table S2). Fold changes in β-1,3-glucan exposure were calculated by dividing the MFI for lactate-exposed cells by 

the MFI for the corresponding GYNB control (Materials and Methods). Means and standard deviations from three independent 

replicate experiments are shown, and the data were analyzed using ANOVA with Tukey’s multiple comparison test: **, P < 0.01.
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transcription, a mechanism that is conserved in Saccharomyces cerevisiae and Candida 
glabrata (54). Therefore, we tested whether this Sch9-Rca1-Nce103 module controls 
β-1,3-glucan exposure in C. albicans.

We quantified β-1,3-glucan exposure on C. albicans sch9, rca1, and nce103 cells in 
response to 5% CO2, hypoxia, or hypoxia plus 5% CO2 in comparison to congenic 
wild-type controls. As expected (Fig. 4), the inactivation of NCE103 blocked β-1,3-glucan 
masking in response to hypoxia and hypoxia plus 5% CO2 (Fig. 6). Loss of the transcrip­
tional activator Rca1 yielded a similar phenotype, consistent with the idea that NCE103 
expression is required for hypoxia-related β-1,3-glucan masking. Meanwhile, inactivation 
of the inhibitory kinase, Sch9, did not affect hypoxia-induced β-1,3-glucan masking, 
but intriguingly, sch9 cells displayed a partial attenuation of masking in response to 
hypoxia plus 5% CO2 (Fig. 6). Also, sch9, rca1, and nce103 cells displayed significant 
β-1,3-glucan masking in response to 5% CO2 alone in contrast to their wild-type parents 
which showed no masking under these conditions (Fig. 6). The basis of this is not clear 
but might relate to the perturbation of Nce103 protein levels or intracellular bicarbon­
ate concentrations in these strains or, alternatively, the possible regulation of NCE103 
expression by factors other than Sch9 and Rca1 in response to hypoxia.

We also tested whether high CO2 levels influence lactate-induced β-1,3-glucan 
masking. Wild-type cells displayed less lactate-induced masking in the presence of 
high CO2 levels, and the inactivation of NCE103 attenuated masking in the presence 
or absence of high CO2 levels (Fig. 6C).

Our analyses revealed no sequence variation between the responder and non-res­
ponder isolates at SCH9, RCA1, or NCE103, suggesting that mutations at other loci might 
influence NCE103 expression levels. Nevertheless, taken together, our data indicate that 
the Sch9-Rca1-Nce103 signaling module modulates β-1,3-glucan exposure in response 
to hypoxia and lactate in C. albicans. To our knowledge, this is the first time that Nce103 
has been implicated in cell wall remodeling, although Sch9 and Rca1 have previously 
been implicated in the regulation of cell wall genes (53, 55).

DISCUSSION

β-1,3-Glucan exposure is a complex phenotype that is influenced by cell wall synthesis, 
the generation of maternal bud scars during cell division (17), β-1,3-glucan masking by 
the mannan outer layer of the cell wall (56), and the shaving of exposed β-1,3-glucan by 
secreted exoglucanases (17, 40). Mutations or drugs that perturb cell wall architecture 
(42, 43, 57, 58) and, in particular, mutations that compromise the outer mannan layer 
(56) can lead to β-1,3-glucan exposure at the cell surface. However, β-1,3-glucan masking 
does not correlate directly with changes in cell wall architecture, as masking has been 
observed on cell walls with significantly reduced outer mannan layers as well as those 
with significantly increased mannan layers (REFS). Furthermore, β-1,3-glucan exposure 
does not correlate with bulk levels of β-1,3-glucan (33, 34, 42).

Our exploration of β-1,3-glucan masking phenotypes across a well-defined set of 
C. albicans clinical isolates and the comparison of expression profiles in masking-compe­
tent and masking-defective isolates led to the identification of genes whose induction 
correlated with lactate-induced or hypoxia-induced masking. In C. albicans, β-1,3-glu­
can exposure is known to decrease during stationary phase (59), and therefore, our 
screen was performed on exponentially growing cells. The analysis of nine target genes 
highlighted by the screen identified two new loci that influence β-1,3-glucan masking in 
C. albicans.

The first locus, PHO84, encodes a high-affinity phosphate transporter and was 
necessary for lactate-induced masking. The basis for this apparent link between 
phosphate uptake and lactate-induced β-1,3-glucan masking is not yet clear. However, 
by analogy with iron limitation-induced β-1,3-glucan masking, which requires the iron 
transceptor, Ftr1 (34), the involvement of the Pho84 transporter might provide a clue that 
masking could potentially be induced by phosphate limitation. Alternatively, phosphate 
acquisition has been linked with metal bioavailability in C. albicans and with the 
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expression of genes associated with iron assimilation (60). Therefore, PHO84 inactivation 
could conceivably affect β-1,3-glucan exposure indirectly by perturbing iron acquisition 
and/or, potentially, by influencing cell morphology and growth (17, 61).

The second locus, NCE103, encodes carbonic anhydrase and was required for both 
lactate- and hypoxia-induced masking. Subsequent dissection revealed the involvement 
of the evolutionarily conserved Sch9-Rca1-Nce103 module (54) in β-1,3-glucan masking. 
On one hand, this made sense because cAMP-PKA signaling has been shown to play 
a key role in the regulation of β-1,3-glucan masking (33, 34). On the other hand, this 
was intriguing because the Nce103 has been reported to regulate responses to CO2 
(50, 53, 54), and yet CO2 did not induce β-1,3-glucan masking in wild-type C. albicans 
cells (Fig. 6). Instead, Nce103 was required for β-1,3-glucan masking in response to both 
lactate and hypoxia. Interestingly, Sch9 has been shown to respond to additional inputs, 
including hypoxia (53, 55). Hence, the activity of the Sch9-Rca1-Nce103 module is likely 
to be modulated by multiple inputs.

If Nce103 is not required at high CO2 levels (50), why do not rca1 and nce103 cells 
display wild-type β-1,3-glucan masking phenotypes in the presence of high CO2 levels 
(Fig. 6A)? There is a straightforward explanation for this. The requirement for Nce103 at 
high CO2 levels was based on growth assays, not cell wall phenotypes (50). Therefore, 
Nce103 could conceivably be required for normal cell wall maintenance even at high 
CO2 levels. For example, aberrant bicarbonate homeostasis in rca1 and nce103 cells 
might influence adenylyl cyclase-cAMP-PKA signaling, thereby affecting β-1,3-glucan 
exposure under these conditions. In mammalian cells, bicarbonate binds directly to 
soluble adenylyl cyclase to induce a conformational change that promotes catalysis to 
form cAMP (62, 63). Homologs of these bicarbonate-responsive adenylyl cyclases are 
present in bacteria and fungi (50, 62), and it has been confirmed that purified adenylyl 
cyclase from C. albicans can be stimulated by bicarbonate in vitro (50). Klengel and 
colleagues have demonstrated that the reduced growth of nce103 cells at low CO2 
concentrations is not due to an insufficiency of substrates to support C1 metabolism 
(50). Instead, they suggest that this is due to a decrease in intracellular bicarbonate 
levels below the threshold required to activate adenylyl cyclase (50) and, consequently, 
those required for cAMP-PKA signaling. The fact that Nce103 is required for lactate- and 
hypoxia-induced β-1,3-glucan masking suggests that basal concentrations of intracel­
lular bicarbonate may be required to permit activation of PKA-signaling-dependent 
processes in C. albicans such as β-1,3-glucan masking (Fig. 7) (33, 34). Equally, eleva­
ted bicarbonate levels might enhance β-1,3-glucan masking. Therefore, the Sch9-Rca1-
Nce103 signaling module appears to drive homeostatic maintenance of the intracellular 
bicarbonate concentration by reducing carbonic anhydrase levels when ambient CO2 
concentrations are high and by increasing them when ambient CO2 concentrations are 
low, thereby regulating PKA signaling (Fig. 7).

These findings are significant for the pathobiology of C. albicans and relevant to other 
fungal pathogens. The Sch9-Rca1-Nce103 CO2 sensing module promotes the growth and 
development of C. albicans and Cryptococcus neoformans (50, 64) and the virulence of C. 
albicans in niches containing low ambient CO2 concentrations (50). As an upstream 
regulator of PKA signaling, the Sch9-Rca1-Nce103 module influences yeast-hypha 
morphogenesis and resistance to cell wall stressors and antifungal drugs (50, 65) as well 
as β-1,3-glucan masking in C. albicans (Fig. 6). By promoting β-1,3-glucan masking, the 
Sch9-Rca1-Nce103 module contributes to an anticipatory protective response that, 
together with the inherent phenotypic variability in β-1,3-glucan exposure displayed by 
C. albicans (bet hedging), allows this fungus to evade immune recognition and the 
resultant antifungal immune responses (32–34, 38, 39, 66).

Is this specific PAMP masking strategy likely to be displayed by other pathogenic 
Candida species? The Sch9-Rca1-Nce103 signaling module is conserved in evolutionarily 
divergent yeasts (50, 53, 64, 67), and hypoxia-induced β-1,3-glucan masking has been 
observed in some other Candida pathogens: Candida krusei and Candida tropicalis, but 
not in Candida glabrata, Candida parapsilosis, or Candida auris (33). Therefore, even 
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though anticipatory responses appear to be gained and lost relatively quickly in 
evolutionary terms (14, 68), it is conceivable that hypoxia-induced β-1,3-glucan masking 
might be regulated by the Sch9-Rca1-Nce103 module in a subset of Candida pathogens.

This PAMP masking strategy is one of several anticipatory responses that this human 
commensal has evolved. For example, C. albicans induces the expression of the pore-
forming toxin candidalysin during hyphal development (69, 70), which is thought to 
anticipate nutrient limitation within the invasion pocket during tissue invasion (8, 13, 
71). However, excessive candidalysin production induces tissue damage and triggers 
antifungal responses (69, 72). Likewise, elevated β-1,3-glucan exposure, particularly 
under acidic conditions (38, 39), might contribute to inflammation and tissue pathology 
during vaginitis (73) and modulate the levels of C. albicans colonization in the gastroin­
testinal tract (74, 75). Therefore, the complex interplay between these fungal anticipatory 
responses and the antifungal defenses of the host appears to permit the commensal 
lifestyle of C. albicans while constraining fungal outgrowth and infection (8, 69, 71, 72, 74, 
76, 77).

FIG 7 Model relating intracellular bicarbonate homeostasis and CO2 sensing via Nce103 to hypoxia- 

and lactate-induced β-1,3-glucan masking in C. albicans. Nce103 is a carbonic anhydrase that plays a 

critical role in the maintenance of intracellular bicarbonate homeostasis (HCO3
−) and CO2 sensing. At low 

CO2 concentrations, Nce103 catalyzes the conversion of dissolved CO2 into bicarbonate (HCO3
−) (50). At 

high CO2 concentrations, bicarbonate can be formed chemically from CO2 (dotted and dashed gray line), 

and consequently, Nce103 levels are downregulated by Sch9-mediated phosphorylation and inhibition 

of Rca1, a transcriptional activator of NCE103 (53, 54). In addition to being used for C1 metabolism, 

bicarbonate interacts directly with adenylyl cyclase to stimulate the production of cAMP and thereby 

PKA signaling. Hence, normal growth at low CO2 levels is dependent upon Nce103, and the data indicate 

that the regulation of bicarbonate homeostasis by Nce103 appears to be essential for PKA-mediated 

regulation of lactate- or hypoxia-induced β-1,3-glucan masking in C. albicans.

Research Article mBio

February 2024  Volume 15  Issue 2 10.1128/mbio.01898-2312

https://doi.org/10.1128/mbio.01898-23


MATERIALS AND METHODS

Strains and growth conditions

The laboratory strains of C. albicans are listed in Table S2 and the clinical isolates in 
Table S3. For analyses of β-1,3-glucan exposure, strains were grown overnight at 30°C 
at 200 rpm in minimal medium [GYNB: 2% glucose, 0.65% yeast nitrogen base without 
amino acids (78)] prepared with bottled water (Highland Spring, Blackford, UK). These 
cultures were then diluted in fresh, prewarmed GYNB to an OD600 of 0.2 and grown 
for 5 hours at 30°C at 200 rpm in normoxic GYNB (control), with 1% lactate (32), under 
hypoxia (33), under 5% CO2, or under a combination of hypoxia plus 5% CO2.

For analyses of stress and drug resistance, strains were plated on YPD [2% glucose, 
2% mycological peptone, 1% yeast extract, and 2% agar (78)] containing the specified 
concentration of stressor, incubated at 30°C or at an alternative specified temperature, 
and imaged after 48 hours (79, 80).

Strain construction

Homozygous null mutants were generated in C. albicans SC5314 using established 
CRISPR-Cas9 methodologies (81).

Briefly, the CaCAS9 cassette was amplified from the plasmid pV1093 (82) using 
primers CaCas9/for and CaCas9/rev. The sgRNA cassette was constructed by PCR with 
the nested primers SNR52/N and sgRNA/N to fuse the DNA fragments comprising 
the SNR52 promoter (amplified with primers SNR52/F and SNR52-sg-target-Rv) and 
the sgRNA scaffold (amplified with primers target-sg-scaf-Fw and sgRNA/R). Repair 
templates, which contained the SAT1 marker and harbored 80-bp homology to the 5′ and 
3′ ends of the target gene, were amplified from pV1093. PCR reactions were carried out 
using CloneAmp high-fidelity DNA polymerase in accordance with the manufacturer’s 
instructions (Clontech). Each unpurified PCR product (10 µL of CaCAS9 cassette, sgRNA 
cassette, and the relevant repair template) was transformed into C. albicans SC5314 using 
the lithium acetate transformation method (83). Transformants were selected on YPD 
containing 200 µg/mL nourseothricin (Jena Bioscience).

The disruption of both alleles of the target locus was confirmed by PCR (Fig. S2). The 
primers used for the construction and PCR diagnosis of these mutants are described in 
Table S7.

Flow cytometry

Flow cytometry was used to quantify levels of β-1,3-glucan exposure on C. albicans 
cell populations (32–34). Cells were grown in GYNB at 30°C for 5 hours (above), fixed 
overnight with 50 mM thimerosal (Sigma-Aldrich, Dorset, UK), washed, and stained with 
Fc-Dectin-1 and anti-human IgG linked to Alexafluor 488 (Invitrogen). A BD Fortessa flow 
cytometer was used to record the fluorescence for 10,000 events per sample. A fixed 
gating strategy and axis scales were used throughout (Fig. S4). FlowJo v.10 software was 
used to quantify median fluorescence indices. Each cytometry plot is representative of 
at least three independent biological replicates. Fold changes in β-1,3-glucan exposure 
were calculated by dividing the MFI for the strain in question under the experimental 
condition (e.g., hypoxic GYNB) by the corresponding MFI for the control condition (e.g., 
normoxic GYNB). Mutants were always compared to their congenic “wild-type” parent in 
at least three independent experiments.

To quantify hypoxia- and lactate-induced β-1,3-glucan masking in the C. albicans 
clinical isolates, each isolate was grown in GYNB at 30°C overnight, subcultured into 
fresh medium (OD600 = 0.2), and grown for 5 hours, as described above: normoxic GYNB 
(control), hypoxic GYNB, or GYNB containing 1% lactate. These cells were then fixed with 
thimerosal, counted using a Neubauer hemocytometer, and 2.5 × 106 cells added per 
well of a 96-well plate. The cells were then washed and stained with Fc-dectin-1 and the 
anti-human IgG-AF488 secondary antibody in 96-well format, and their fluorescence was 
quantified by flow cytometry using a MACSQuant analyzer (Miltenyi Biotec). MFIs and 
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fold changes in β-1,3-glucan exposure were determined for three independent biological 
replicates, as described above.

Microscopy

C. albicans cells were cultured in GYNB under the specified conditions (above), fixed 
with 50 mM thimerosal, and stained with Fc-dectin-1 and IgG-AF488 (β-1,3-glucan) 
and ConA-AF647 (mannan). High-resolution confocal microscopy was performed using 
a Zeiss LSM 880 microscope fitted with an alpha Plan-Apochromat 100×/1.46 Oil DIC 
objective. Images were taken in Airyscan fast mode to avoid sample bleaching. Post-
image capture processing was performed using Zen Blue 2.3.

RNA sequencing

C. albicans clinical isolates were selected for analysis based on their β-1,3-glucan masking 
phenotypes. The responsive isolates displayed masking in response to lactate and 
hypoxia (CEC3560, CEC3605, CEC3609, CEC4108, CEC4259), whereas the non-respon­
sive isolates were defective in both lactate- and hypoxia-induced masking (CEC3534, 
CEC3544, CEC3621, CEC3636, CEC4035). Each strain was cultured in GYNB overnight, 
subcultured into fresh normoxic GYNB (control), hypoxic GYNB, or GYNB containing 
1% lactate, as described above, grown for 1 hour at 30°C, then harvested for analysis, 
and frozen at −80°C. RNA was extracted from frozen cell pellets via Qiazol/chloroform 
extraction (Qiagen, UK) according to the manufacturer’s instructions, treated with TURBO 
DNAse (Ambion, Banchory, UK), and assessed using an Agilent 2100 Bioanalyzer.

RNA was prepared for sequencing using the Illumina TruSeq Stranded mRNA 
Kit following the manufacturer’s instructions. Sequencing was performed on three 
independent biological replicates for each condition using the High Output 1 × 75 Kit 
on the Illumina NextSeq500 platform. Raw fastq files were processed through FastQC (v. 
0.11.8) and Trimgalore (v. 0.4.0), removing all reads with a phred score <20. Reads were 
aligned to the C. albicans SC5314 reference genome [www.candidagenome.org (84, 85)] 
using HISAT2 (v. 2.1.0), and alignments were processed with SAMtools (v.1.9). Aligned 
reads were quantified at gene regions using featureCounts (subread v. 5.0.1), utilizing 
the parameter to split multi-mapped reads as a fraction across all genes that they align 
to. Differential expression analysis was carried out using edgeR (version 3.16.5) on all 
genes with a count per million >1 in three or more samples, with a significance cutoff of 
adjusted P < 0.05. GO enrichment analysis was performed through the Candida Genome 
Database GO Term Finder.

Statistical analyses

GraphPad Prism 9 was used for statistical analyses. Data were generated from at least 
three independent biological replicates and then expressed as means ± standard 
deviation. To test the statistical difference between two sets of data with a non-para­
metric distribution, we used one-way ANOVA (Tukey’s multiple comparison test). The 
following P-values were considered: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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