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We report the findings of our extensive study of the spectra of flavoured mesons in lattice gauge
theories with symplectic gauge group and fermion matter content treated in the quenched approxi-
mation. For the Sp(4), Sp(6), and Sp(8) gauge groups, the (Dirac) fermions transform in either the
fundamental, or the 2-index, antisymmetric or symmetric, representations. This study sets the stage
for future precision calculations with dynamical fermions in the low mass region of lattice parame-
ter space. Our results have potential phenomenological applications ranging from composite Higgs
models, to top (partial) compositeness, to dark matter models with composite, strong-coupling dy-
namical origin. Having adopted the Wilson flow as a scale-setting procedure, we apply Wilson chiral
perturbation theory to extract the continuum and massless limits for the observables of interest.
The resulting measurements are used to perform a simplified extrapolation to the large-N limit,
hence drawing a preliminary connection with gauge theories with unitary groups. We conclude with
a brief discussion of the Weinberg sum rules.
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I. INTRODUCTION

Strongly coupled gauge theories that live in four space-
time dimensions, have gauge group Sp(2N) (for N ∈
Z+), and are coupled to fermion matter fields, have a
plethora of applications in proposals of new physics that
extend the Standard Model (SM) of particle physics.
They can provide the microscopic origin of Compos-
ite Higgs Models (CHMs) [1–3],1 and have been ex-
ploited to explain the origin of the large mass of the
top quark, via the implementation of top partial com-
positeness (TPC) [72],2 and can be used to explain for

1 An overview of the field can be found in the review papers in
Refs. [4–6], the tables in Refs. [7–9], the incomplete selection of
useful papers in Refs. [10–55] and in Refs. [56–71].

2 The reader may find it useful to refer to the more recent, critical
discussions in Refs. [73–75].
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the origin of dark matter, through the Strongly Inter-
acting Massive Particle (SIMP) paradigm [76–78],3 and
they might even affect the detectable gravitational wave
(GW) stochastic background [86–91], if responsible for a
phase transition in the early universe [92–97].4

In all these applications, the strong-coupling regime
of the theory plays a central role, and hence one must
develop and apply non-perturbative instruments in order
to extract quantitative information about the dynamics
of the theories of interest. The natural framework for
such endeavour is lattice gauge theory. Until recently,
the literature on Sp(2N) lattice gauge theories was rather
limited [116]. The discovery of the Higgs boson [117, 118]
has triggered a new wave of interest in extensions of the
SM with strongly coupled origin, which has motivated the
start of an extensive programme of exploration of Sp(2N)
gauge theories on the lattice [119–139], as candidates for
the dynamical origin of CHMs.5

This paper reports on new results obtained by consid-
ering Sp(2N) lattice gauge theories, with N = 2, 3, 4,
coupled to fermion matter fields treated in the quenched
approximation. The effects due to fermions are not in-
cluded in the Monte Carlo algorithm generating the avail-
able ensembles of configurations, but only in the formula-
tion of the operators used to probe the underlying Yang-
Mills dynamics.

There are three main, compelling motivations to per-
form an extended study of these theories with such ap-
proximation. Firstly, at least in the CHM and SIMP
contexts, the regions of parameter space of interest for
phenomenological applications are often characterised by
moderately heavy fermions and sizable amounts of ex-
plicit symmetry breaking. This is needed, among other
reasons, by model building consideration. In a realis-
tic, complete model, one must ensure that the masses of
towers of new composite states be large enough to have
escaped direct detection so far. Furthermore, some of the
new composite states must decay only via weak interac-
tions, introduced by couplings to the SM fields. This
can be achieved by making the particles heavy enough to
forbid kinematically some direct decay within the strong-
coupling sector. If these conditions are met, the quenched
approximation may already be precise enough to pro-
duce useful estimates of the relevant spectroscopy param-
eters (masses and decay constants), with comparatively
low investment of computing time and resources. In
addition, the quenched approximation captures at once
large classes of models, that differ only by the number

3 An incomplete list of relevant papers includes also Refs. [79–85].
4 A number of present and future experiments might detect such

effects, see for example Refs. [98–115].
5 In parallel, extensive work on lattice gauge theories with
SU(2) [140–148] and SU(4) [149–155] gauge groups relevant to
CHMs has been performed. Lattice results on the SU(3) theory
with Nf = 8 fundamental fermions transforming in the funda-
mental representation [156–164] have also been used in the CHM
context [47, 55]—see also related earlier work in Refs. [22, 23, 42].

of fermions, while the study of dynamical fermions re-
quires dedicated Monte Carlo calculations for each choice
of matter field content.

The second motivation is of a technical nature, and is
closely related to the final comment we made in the pre-
vious paragraph, that already highlights both flexibility
and applicability of quenched calculations. Whatever the
model of interest, a systematic and rigorous dynamical
study demands to benchmark it against a simpler, well
understood reference example. Doing so allows to con-
trol possible systematic effects and to prevent unwanted
misinterpretation of the results. It also provides a way to
gauge the size of the dynamical effects due to fermions.
This is particularly important, somewhat paradoxically,
when studying theories for which one expects large ef-
fects to arise due to the fermion dynamics. For example,
this is the case when one is looking for quasi-conformal
behaviour (and large anomalous dimensions) in the long
distance physics of theories that are expected to be close
to the boundary of the conformal window.

The third motivation for this study is that the
quenched approximation, for fermions in the fundamental
representation, provides a natural connection to other ap-
proaches to non-perturbative physics, in particular those
relying on the large-N limit and holography [165–168].
We will not further discuss this point in the paper, but
it is remarkable, for example, that the recent explosion
of interest in gauge-gravity dualities has provided in-
struments that are particularly well suited to study the
quenched, large-N limit of non-Abelian gauge theories.
It is worthy of notice that the large-N limit of Sp(2N)
theories is expected to yield the same results, in a com-
mon sector of the physical spectrum, as the large-Nc

limit for SU(Nc) theories, for which the literature on
lattice numerical studies is more developed—see for in-
stance Refs. [169–172].

We study Sp(2N) gauge theories with N ≥ 2 that are
asymptotically free. For the quenched fermion matter
fields, we restrict attention to the three smallest possible
representations: the fundamental (f), and the 2-index
antisymmetric (as), and symmetric—adjoint—(s) repre-
sentations. For example, the symmetry-breaking pattern
of the Sp(2N) theory with N(f) = 2 fundamental (Dirac)
fermions is described by the SU(4)/Sp(4) coset relevant
to minimal CHMs. With the addition of N(as) = 3
(Dirac) fermions in the antisymmetric representation this
theory also provides a potential microscopic realisation
of top partial compositeness [16]. But it is worth noting
that the N(f) = 0 and N(as) = 3 theory is also a potential
completion for a CHM [46].

The paper is organised as follows. In Sect. II, we de-
fine the theory of interest and explain the lattice tech-
nology we deploy for this study. We present our main
results for the spectra of mesons in Sect. III, organis-
ing the material by gauge group and by representation.
We briefly discuss the Weinberg sum rules, in Sect. III B.
In Sect. IV, we summarise the main lessons we learned,
and outline future research opportunities. The paper is
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TABLE I. Lattice ensembles analysed in the Yang-Mills
Sp(2N) gauge theories of interest. We report the value
of N , of the lattice coupling, β, of the spatial, Ns, and
temporal, Nt, extension of the lattice, as well as the gradi-
ent flow scale, w0, expressed in units of the lattice spacing, a.

N β N3
s ×Nt w0/a

2

7.62 243 × 48 1.31801(96)
7.7 483 × 60 1.45284(41)
7.85 483 × 60 1.76363(63)
8.0 483 × 60 2.1074(10)
8.2 483 × 60 2.6188(23)

3

15.6 243 × 48 1.29830(67)
16.1 243 × 48 1.8000(17)
16.5 483 × 96 2.24079(99)
16.7 483 × 96 2.5040(11)

4

26.5 243 × 48 1.34723(48)
26.7 483 × 96 1.44654(17)
26.8 483 × 96 1.50491(17)
27.0 483 × 96 1.62325(25)
27.3 603 × 120 1.80187(25)

supplemented by an extensive Appendix, that shows the
technical details characterising the intermediate numeri-
cal results that we analysed to arrive at our main results.

II. LATTICE THEORY AND OBSERVABLES

In this section, we define the lattice theories of inter-
est and the ensembles we generated, as well as the ob-
servables we computed and analysed. We present our
strategy for handling finite volume and finite spacing ef-
fects, and our scale-setting procedure. In doing so, we
reorganise and consistently integrate material presented
elsewhere, in particular in Refs. [119, 122, 124, 129], but
we also expand this material, and specialise it to the case
of interest, as appropriate. We then describe the contin-
uum and massless limit extrapolations, that rely on Wil-
son chiral perturbation theory (WχPT) [173, 174] (we
found it useful also to read Ref. [175], as well as some of
the literature on improvement [176, 177]).

A. Action and ensembles

The calculation of the mass spectrum of mesons in
the quenched approximation is carried out on configura-
tions sampled using the standard Wilson action for gauge
group Sp(2N):

SW ≡ β
∑
x

∑
µ<ν

(
1− 1

2N
ℜ trPµν(x)

)
, (1)

where β ≡ 4N/g2, g is the coupling strength, ℜ denotes
the real part and tr denotes the trace of the gauge matrix.
The plaquette, Pµν(x), is defined on the smallest closed

TABLE II. Interpolating operators, OM , appearing in the
correlation functions computed for this publication. For
each operator, we indicate their name, label, Dirac algebra
structure, spin, J , and parity, P , of the associated mesons.
We find it convenient to also associate each operator with
the meson sourced by the analogous QCD operator.

Channel Label OM JP QCD meson
Pseudoscalar PS ψγ5ψ 0− π

Scalar S ψψ 0+ a0
Vector V ψγµψ 1− ρ

Axial-vector AV ψγ5γµψ 1+ a1
Tensor T ψγ0γµψ 1− ρ

Axial-tensor AT ψγ5γ0γµψ 1+ b1

path in the (µ, ν) plane with origin at lattice site x. A
gauge link in the µ direction, originating at x, is denoted
by the group element Uµ(x), hence the plaquette is

Pµν(x) = Uµ(x)Uν(x+ aµ̂)U†
µ(x+ aν̂)U†

ν (x) , (2)

with µ̂, ν̂ denoting the unit vectors in the µ, ν directions,
respectively, and a the lattice spacing. We study observ-
ables for Sp(2N) with N = 2, 3, and 4. (Later on we will
present a simplified extrapolation towards asymptotically
large values of N .)

The properties charaterising our ensembles are detailed
in Table I, in which for each ensemble we specify N , the
coupling β, the extents of the spatial, Ns, and temporal,
Nt, directions of the lattice, and the gradient flow scale
w0/a—described in more detail in Section II C. Each me-
son measurement is performed from 200 lattice config-
urations. We use the same lattice inputs for Sp(4) as
in Ref. [122], to allow for direct comparison, while the
choices of β are a representative subgroup of those em-
ployed in Ref. [124]—see also Ref. [129]—but we are using
much larger volumes, in order to reduce finite volume ef-
fects, as discussed in Appendix A. A single update in the
Markov chain consists of one application of the heatbath
algorithm to each lattice link [178] and four applications
of the overrelaxation algorithm [179, 180]. This is defined
as a single “sweep”. We perform an initial 600 sweeps
to thermalise the lattice and thereafter apply 12 sweeps
between each of the 200 configurations, to reduce auto-
correlation. We checked that none of the ensembles used
for this analysis show significant evidence of topological
freezing.

B. Mesons

The observable quantities of interest for this paper are
the flavour non-singlet meson masses and the related de-
cay constants. They are measured by examining the
large-time behaviour of two-point correlation functions
involving interpolating operators sourcing the mesons,
which we denote as OM . We list the interesting oper-
ators and their properties in Table II.
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TABLE III. Massless and continuum extrapolation of the de-
cay constants, f̂ , and masses, m̂, expressed in units of the gra-
dient flow scale, w0, for quenched mesons in the Sp(4) theory,
for the three representations considered in this study. The
uncertainties reported are determined by the extrapolation,
starting from the statistical uncertainties of the individual
measurements. Reduced chi-squared values, χ2/Nd.o.f., that
are greater than 3.0 are highlighted in red (e.g., 3.06). All
Sp(4) measurements with (f) or (as) mesons have been per-
formed on newly generated configurations, and agree, within
errors, with those reported in Ref. [122]. The massless and
continuum extrapolations for f̂2

AV and f̂2
av, which are displayed

by the plots in Appendix B, are affected by large systematics
due to numerical noise.

Sp(4)
Representation Channel Massless limit χ2/Nd.o.f.

Fundamental

f̂PS 0.0818(11) 1.29
f̂V 0.1598(30) 1.61
f̂AV 0.215(12) 1.11
m̂V 0.6023(49) 1.70
m̂AV 1.087(43) 1.04
m̂S 1.053(37) 2.93
m̂T 0.5994(80) 1.47
m̂AT 1.145(48) 2.21

Antisymmetric

f̂ps 0.1083(12) 1.11
f̂v 0.1945(64) 1.62
f̂av 0.205(16) 0.64
m̂v 0.7500(90) 1.38
m̂av 1.164(66) 0.54
m̂s 1.162(65) 1.89
m̂t 0.774(15) 2.18
m̂at 1.360(71) 2.21

Symmetric

f̂PS 0.1542(19) 2.45
f̂V 0.275(12) 1.55
f̂AV 0.406(20) 2.47
m̂V 0.881(11) 1.39
m̂AV 1.460(71) 2.07
m̂S 1.284(54) 3.06
m̂T 0.897(16) 2.96
m̂AT 2.078(99) 3.38

Masses and decay constants of mesons made of
fermions transforming in the fundamental representation
in a channel labelled as M are denoted as mM and fM ,
respectively. Because we study mesons comprised of
fermions transforming in three distinct representations
of the group, in order to distinguish them we change the
aspect of the label. While retaining upper case labels
for the (f) fermions, mesons made of (as) fermions have
lower case labels, and calligraphic lettters are used for
the labels of mesons made of (s) fermions. For example,
the pseudoscalar masses in the (f), (as), and (s) cases are
denoted by mPS, mps, and mPS , respectively. In Table II
and in rest of this subsection, we denote a general chan-
nel by an uppercase, e.g. as M , to lighten the notation,
the replacements needed for the other two cases being
clear from the context.

TABLE IV. Massless and continuum extrapolation of the
decay constants, f̂ , and masses, m̂, expressed in units of
the gradient flow scale, w0, for quenched mesons in the
Sp(6) theory, for the three representations considered in this
study. The uncertainties reported are determined by the
extrapolation, starting from the statistical uncertainties of
the individual measurements.

Sp(6)
Representation Channel Massless limit χ2/Nd.o.f.

Fundamental

f̂PS 0.1075(23) 1.13
f̂V 0.1931(70) 1.83
f̂AV 0.243(17) 1.81
m̂V 0.5883(89) 1.83
m̂AV 1.077(56) 1.63
m̂S 0.880(63) 1.35
m̂T 0.611(11) 1.32
m̂AT 1.102(62) 2.07

Antisymmetric

f̂ps 0.1939(32) 2.89
f̂v 0.353(18) 1.90
f̂av 0.267(24) 1.26
m̂v 0.782(12) 1.47
m̂av 1.026(83) 1.13
m̂s 0.897(68) 1.00
m̂t 0.779(19) 1.24
m̂at 1.468(94) 1.67

Symmetric

f̂PS 0.2142(51) 2.72
f̂V 0.476(19) 2.28
f̂AV 0.426(39) 1.97
m̂V 0.912(10) 1.56
m̂AV 1.027(93) 1.42
m̂S 0.673(62) 0.59
m̂T 0.893(19) 2.08
m̂AT 1.61(14) 1.07

The zero-momentum 2-point correlation function of
operators OM and OM ′ is defined as

CM,M ′(t) ≡
∑
x⃗

⟨0|OM (x⃗, t)O†
M ′ (⃗0, 0)|0⟩ . (3)

We set M = M ′, and examine the large-time behaviour of
the correlation function, that we approximate as follows:

CM,M (t → ∞) ≃ (4)
|⟨0|OM |M⟩|2

2mM

(
e−mM t + e−mM (T−t)

)
,

having ignored contamination from states other than the
lightest one. In the case of S, T and AT channels, we
measure only the mass of the ground state composite
particle. In the other three cases (PS, V and AV), we
extract also the decay constant, besides the mass. To do
so, for V and AV channels we exploit the fact that the
matrix elements obey the following relations:

⟨0|OV |V ⟩ = fV mV ϵµ (5)
⟨0|OAV |AV ⟩ = fAV mAV ϵµ (6)
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TABLE V. Massless and continuum extrapolation of the
decay constants, f̂ , and masses, m̂, expressed in units of
the gradient flow scale, w0, for quenched mesons in the
Sp(8) theory, for the three representations considered in this
study. The uncertainties reported are determined by the
extrapolation, starting from the statistical uncertainties of
the individual measurements. Reduced chi-squared values,
χ2/Nd.o.f., that are greater than 3.0 are highlighted in red
(e.g., 3.02).

Sp(8)
Representation Channel Massless limit χ2/Nd.o.f.

Fundamental

f̂PS 0.1118(20) 0.49
f̂V 0.1877(77) 0.66
f̂AV 0.242(19) 1.66
m̂V 0.5753(63) 0.71
m̂AV 0.989(55) 1.36
m̂S 0.859(51) 0.75
m̂T 0.573(11) 1.23
m̂AT 0.954(65) 0.86

Antisymmetric

f̂ps 0.2175(45) 1.87
f̂v 0.430(20) 1.26
f̂av – –
m̂v 0.7939(64) 1.28
m̂av – –
m̂s – –
m̂t 0.8078(97) 1.04
m̂at – –

Symmetric

f̂PS 0.2380(64) 1.80
f̂V 0.677(15) 1.63
f̂AV – –
m̂V 0.9513(53) 3.02
m̂AV – –
m̂S – –
m̂T 0.9608(72) 1.81
m̂AT – –

where ϵµ is the polarisation vector, normalised so that
ϵµϵµ = 1.

For the decay constant of the pseudoscalar mesons, we
use one additional correlation function:

CAV,PS(t) =
∑
x⃗

⟨0|OAV (x⃗, t)O†
PS (⃗0, 0)|0⟩ . (7)

Its large-time behaviour is expected to be described as

CAV,PS (t → ∞) ≃ (8)
fPS⟨0|OPS |PS⟩∗

2mPS

(
e−mPSt − e−mPS(T−t)

)
.

The normalisations are chosen so that the corresponding
decay constant in QCD is fπ ≃ 93 MeV.

From the large-time behaviour of all these correlation
functions, we can hence measure nine observables, for
each of the three types of fermions, and for each of the
three gauge groups.

TABLE VI. Massless and continuum extrapolation of the
decay constants, f̂ , and masses, m̂, expressed in units of the
gradient flow scale, w0, for quenched mesons, extrapolated to
the Sp(∞) theory, for the three representations considered
in this study. The uncertainties reported are determined by
the extrapolation, starting from the statistical uncertainties
of the individual measurements. Reduced chi-squared values,
χ2/Nd.o.f., that are greater than 3.0 are highlighted in red
(e.g., 4.63). When the large-N extrapolation has been
performed with only two data points, this has been done
by simple error propagation, solving for the coefficients
of a linear extrapolation. Only statistical uncertainties
have been included. A few extrapolations for the heaviest
states made of fermions in large representations result in
negative values of mass squared, due to the existence of
large systematic errors affecting these few observables. The
large-N extrapolation for (as) and (s) fermions do not agree,
except for the pseudoscalar decay constant, as discussed in
the main body of the paper.

Sp(∞)
Representation Channel Massless limit χ2/d.o.f.

Fundamental

f̂2
PS/Nc 0.01906(80) 2.97
f̂2
V/Nc 0.0500(49) 2.51

f̂2
AV/Nc 0.075(16) 0.17
m̂2

V 0.301(15) 0.15
m̂2

AV 0.85(22) 0.63
m̂2

S 0.32(18) 0.47
m̂2

T 0.320(24) 4.63
m̂2

AT 0.62(25) 1.09

Antisymmetric

f̂2
ps/N

2
c 0.0863(27) 1.43

f̂2
v/N

2
c 0.317(26) 0.45

f̂2
av/N

2
c 0.095(24) –

m̂2
v 0.699(24) 0.04

m̂2
av 0.45(60) –

m̂2
s -0.29(48) –

m̂2
t 0.703(39) 0.75

m̂2
at 2.77(91) –

Symmetric

f̂2
PS/N

2
c 0.0898(45) 0.00

f̂2
V/N

2
c 0.730(35) 20.15

f̂2
AV/N

2
c 0.22(11) –

m̂2
V 1.033(28) 1.92

m̂2
AV -1.10(71) –
m̂2

S -1.94(37) –
m̂2

T 1.042(40) 5.38
m̂2

AT -0.8(.6) –

C. Scale setting

We adopt a scale-setting procedure that is especially
suited to studies of novel strongly coupled models, and is
based on the gradient flow and its lattice implementation,
the Wilson flow [181, 182]. We follow the same process
outlined in Ref. [129], in the context of the Sp(2N) lat-
tice programme, and report here only basic definitions
necessary to fix the notation in the following.

The gradient flow for gauge fields, Bµ(t, x), is defined
by solving in five space-time dimensions the differential
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FIG. 1. Masses (top) and decay constants (bottom) squared
of mesons in the Sp(Nc) theory with (quenched) matter con-
sisting of fermions transforming in the fundamental represen-
tation, (f), extrapolated to the massless and continuum limits,
expressed in units of the gradient flow scale, w0, computed for
Nc = 4, 6, 8, and further extrapolated to Nc → ∞.

equation

dBµ(t, x)
dt

= DνFµν(t, x) , Bµ(0, x) = Aµ(x) , (9)

where t is known as flow-time, Dµ ≡ ∂µ + [Bµ, ·] and
Fµν(t, x) ≡ [Dµ, Dν ]. The flow defined by the above
equation drives the configuration Aµ(x) at t = 0 of the
gauge fields towards a stationary point of the continuum
Yang-Mills action. It is possible to show that, at leading
order in the gauge coupling, it implements a Gaussian
smoothening of the field over a region of mean-square
radius

√
8t. A renormalized coupling, α, can then be

defined at this scale as follows

α(µ−1 =
√
8t) ≡ kαt2⟨E(t)⟩ ≡ kαE(t) , (10)

where E(t) = 1
4Fµν(t)Fµν(t), and kα is a numerical co-

efficient that can be extracted from perturbation the-
ory [183]. A reference scale t0 can be defined implicitly
as follows:

E(t0) = t2⟨E(t)⟩
∣∣
t=t0

= E0 , (11)

FIG. 2. Masses (top) and decay constants (bottom) squared
of mesons in the Sp(Nc) theory with (quenched) matter con-
sisting of fermions transforming in the 2-index antisymmetric
representation, (as), extrapolated to the massless and con-
tinuum limits, expressed in units of the gradient flow scale,
w0, computed for Nc = 4, 6, 8, and further extrapolated to
Nc → ∞.

with a conventional choice of E0. Alternatively, one can
define the related quantity

W(t) = t
d

dt
E(t) , (12)

and the scale ω0 as

W(t = ω2
0) = W0 , (13)

for an appropriate, conventional choice of W0 [184].
On the lattice, the Wilson flow Vµ(t) is defined by

solving the differential system:

dVµ(t, x)
dt

= −g20(∂x,µS
flow[Vµ])V (t, x) , (14)

Vµ(0, x) = Uµ(x) , (15)

where Sflow[Vµ] is the Wilson action. The configurations
Uµ(x) in a given ensemble are used as initial conditions
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FIG. 3. Masses (top) and decay constants (bottom) squared
of mesons in the Sp(Nc) theory with (quenched) matter con-
sisting of fermions transforming in the 2-index symmetric rep-
resentation, (s), extrapolated to the massless and continuum
limits, expressed in units of the gradient flow scale, w0, com-
puted for Nc = 4, 6, 8, and further extrapolated to Nc → ∞.

for the system, and the flow is obtained by numerical
integration. The lattice observables are then computed
with the resulting, finite flow-time, smoothened configu-
rations. In order to compute the Wilson flow scale, w0,
on the lattice, we adopted the clover-leaf discretization
for E(t). We follow the strategy described in detail in
Ref. [129] in order to fix reference values for W0 for differ-
ent choices of N . We summarise in Table I the resulting
value of 1/â ≡ w0/a thus obtained. In the following, we
adopt thehatted notation to present dimensional quanti-
ties in units of the gradient flow scale, i.e. m̂ = mw0, for
a generic mass m.

D. Continuum and massless extrapolation

As we discussed in the introduction to this paper,
the quenched approximation is expected to yield reason-

ably good estimates for observable quantities when the
fermion contribution to the dynamics is small. This is
the case for moderately large fermion masses, but also
when the number of (f)-type fermions is small while the
number of colours is large. We extrapolate our numerical
lattice data to the continuum and massless limit simulta-
neously. As we look at comparatively large groups, such
as Sp(8), it is also interesting to perform extrapolations
to the large-N limit as well. Yet, before proceeding to
describe our analysis, we alert the reader to use some
caution when using the results of such extrapolations in
phenomenological applications, in view of the systematic
uncertainty intrinsic in the quenched approximation.

Having set the scale using the Wilson flow, we fol-
low a procedure inspired by WχPT prescription [173,
174], truncated at the next-to-leading order—see also
Refs. [121, 122] for earlier implementations of this strat-
egy in Sp(2N) theories. The same formal expression
holds for masses and decay constants:

m̂2,NLO
M = m̂2,χ

M (1 + L0
m,Mm̂2

PS) +W 0
m,Mâ , (16)

f̂2,NLO
M = f̂2,χ

M (1 + L0
f,Mm̂2

PS) +W 0
f,Mâ , (17)

where the superscript χ denotes a quantity in the mass-
less limit, with 1/â ≡ w0/a, and m̂PS the mass of pseu-
doscalar meson in units of the gradient flow scale (in the
appropriate representation of Sp(2N)). The coefficients
appearing on the right-hand side of these relations are
extracted by fitting numerical results obtained with dif-
ferent values of lattice coupling, β, and fermion masses.

III. SUMMARY OF RESULTS

In this section, we display, summarise, and critically
discuss our final results, extrapolated to the massless
and continuum limits. Details about the intermediate
results can be found in the Appendix, and in the data
release [185]. Given the correlator, C(t), we can ex-
tract the effective mass accounting for both forward- and
backward-propagations in Euclidean time, t, defining the
effective mass as

meff(t) = arccosh

[
C(t+ a) + C(t− a)

2C(t)

]
. (18)

We include in the analysis only numerical results ob-
tained from ensembles for which we found unambiguous
evidence of a clear plateau in the effective-mass plot.

We restricted attention to cases in which finite-volume
effects are smaller than the statistical uncertainties—see
Appendix A and Fig. 4. Our results for the contin-
uum, massless extrapolations are listed in Tables III, IV,
and V. The masses and decay constants of mesons made
of (quenched) fermions of type (f), (as), and (s), respec-
tively, are displayed in Figs. 1, 2 and 3. All these plots
show the 1σ-equivalent best-fit ranges, obtained by boot-
strapping the statistical error through the maximum like-
lihood process based upon WχPT. We report the mass of
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FIG. 4. Masses of PS mesons made of (f) fermions in the
Sp(6) theory, plotted as a function of mPSL, where L = Nsa
is the extent of the spatial lattice direction, for two repre-
sentative choices of fermion mass. We normalise the mass
to its infinite volume extrapolation (mPS/m∞). The dashed
line is the prediction based on the infinite volume formula:
1 +A e−m∞L

(m∞L)3/2
, where A and m∞ are fitting parameters.

the lowest excitation in the V, AV, S, T, and AT channels,
and the decay constants of the PS, V, and AV lightest
states, omitting few cases in which the measurements are
inconclusive.

Before discussing the individual results, we highlight
the presence of five major sources of systematic effects
in this study. First and foremost, the calculations use
quenched fermions, hence part of the dynamics is not in-
cluded faithfully in the Monte Carlo process generating
the ensembles. One expects the results to be reasonably
accurate in the limit in which the number of fermions is
small, or their mass is large. Available measurements for
the Sp(4) theory with N(f) = 2 fermions transforming in
the fundamental representation suggest that the discrep-
ancy might not exceed the level of 10% ÷ 25%, but this
conclusion depends on the observable of interest [121]. In
order to achieve a better precision, particularly to include
large number of fermions—for example, by approaching
the lower end of the conformal window—dedicated cal-
culations with dynamical fermions are needed.

In the numerical calculations the fermion mass is large
enough to kinematically prevent the lightest V meson
decay to PS pairs. On theoretical grounds, we know

that the quenched approximation may lead to unitar-
ity problems in the low mass region, and hence we avoid
it. Empirically, we also found that finite-volume effects
become severe when we use light masses in the fermion
propagators, hence we restricted attention to choices for
which mPS/mV

>∼ 0.6. The reader should hence exercise
some caution in using the results of next-to-leading order
WχPT to extrapolate to massless and continuum limits.

A third limitation is given by the fact that some of the
meson masses are comparatively large, when expressed in
lattice units. We retained in the analysis only ensembles
and choices of the fermion masses for which mPSa ≪ 1,
but the masses of the AV, AT, and S states are often far
larger. This lattice artefact manifests itself as a deteriora-
tion of the signal in the effective mass plots, particularly
in the S and AT channels for the (as) and (s) fermions.

One way to ameliorate the aforementioned difficulty
would be to perform the study on finer lattices, hence
raising the intrinsic cutoff of the theory and reducing
finite-spacing effects. To do so would require the adop-
tion of larger values of the lattice coupling, β. Unfortu-
nately, by doing so autocorrelation grows, thermalisation
takes longer, and the calculations would become too ex-
pensive to justify within the quenched approximation.
Furthermore, this might lead to topological freezing, es-
pecially for large groups, Sp(6) and Sp(8).

A simple way of visualizing the size of finite-spacing ef-
fects is to display the measurements of masses and decay
constants of the mesons at finite β, together with their
extrapolations obtained with WχPT. We report in the
Appendix a catalogue of such plots. The extrapolations
for the mass of the V and T states are affected by rather
large finite-spacing effects. For the purpose of this paper,
of benchmarking the space of Sp(2N) theories coupled to
matter fermion fields, this is adequate. Future precision
studies with dynamical fermions will require a more rad-
ical approach, possibly involving improving the action.

Finally, we conducted a quite extensive study of the
size of finite-volume effects—see Appendix A, as well as
the example in Fig. 4. Given the comparative simplicity
of the dynamics implemented in the ensemble generation,
we could generate many ensembles, by varying the vol-
ume up to to Ṽ = 603×120×a4, hence ensuring that this
source of systematic effects can be completely ignored.
Interestingly, we found that for finite volume effects to
be smaller than statistical uncertainties we must use vol-
umes for which mPSL >∼ 8 for Sp(6) (as shown in Fig. 4),
or even mPSL >∼ 11 for Sp(8). This finding highlights the
need to perform dedicated studies of finite volume effects
in calculations with dynamical fermions, as such strong
requirements might prove computationally challenging to
meet6.

Having discussed the main sources of systematic uncer-
tainty, we can now proceed to comment on our results for

6 Note that finite volume effects can be more severe in the
quenched approximation, see Refs. [186, 187].
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TABLE VII. Numerical results for the sum rules s0, s1, and
s2, as defined in the main text, which include only the lightest
bound states. All results for Sp(2N) use extrapolations to
the massless and continuum limits of the (quenched) theories
discussed in the body of the paper. The SU(3) case is
included for comparison, and uses numerical values lifted
from Ref. [188], for finite mass of the two (f) fermions. The
uncertainties are computed with simple error propagation,
ignoring correlations. The Sp(8) case is incomplete, as some
measurements are missing, as explained in the main text.

Theory s0 s1 s2
Sp(4), (f) 0.393(76) -1.07(22) -4.90(84)
Sp(4), (as) 0.455(96) -0.42(20) -1.68(55)
Sp(4), (s) 0.25(17) -1.49(31) -4.99(99)
Sp(6), (f) 0.71(15) -0.89(26) -4.31(1.02)
Sp(6), (as) 1.71(34) 0.13(14) 0.02(26)
Sp(6), (s) 1.26(63) 0.00(17) -0.02(27)
Sp(8), (f) 0.59(18) -1.02(31) -3.91(1.03)
Sp(8), (as) − − −
Sp(8), (s) − − −
Sp(∞), (f) 0.98(44)Nc −0.88(37) −3.23(1.50)
Sp(∞), (as) 3.0(3.6)N2

c 0.428(89) 0.81(27)
Sp(∞), (s) 11.4(1.3)N2

c 0.58(15) 1.32(15)
SU(3), N(f) = 2 0.298(54) −0.35(18) −1.48(44)

(mπ = 139.6 MeV )

the physical observables, starting from the case of mat-
ter transforming in the fundamental representation. The
top panel of Fig. 1 shows that the lightest state is a V
meson, corresponding to the ρ meson in QCD. The de-
generacy between V and T channels agrees with current
algebra, within the uncertainties, for all Sp(Nc = 2N)
theories considered here. All states in AV, AT and S
channels are heavier, and affected by sizable errors. Their
masses, expressed in units of w0, tend consistently to de-
crease with Nc, but appear to converge to a finite result.
Conversely, the decay constants squared (bottom panel
of Fig. 1) grow proportionally to Nc, as expected from
large-Nc arguments. Even after taking into account their
leading-order Nc behavior, we find residual dependence
on Nc, as discussed in the following subsection. Figs. 2
and 3 display the same information, but for mesons made
of (as) and (a) fermions. Again, the vector and tensor
states are the lightest, and degenerate, as expected. The
decay constant for mesons made of matter transforming
in the 2-index representations scale with N2

c .

A. Towards large N

Figures 1 to 3 display also the result of extrapolating
the numerical results to the large-Nc limit. This is per-
formed by assuming that all the squares of the meson
masses exhibit the following behavior:

m̂2
M (Nc) = m̂2

M (∞) +
∆m̂2

M (∞)

Nc
. (19)

In the case of the square of the decay constants, we as-
sume the following relations to hold:

f̂2
M (Nc)

Nc
=

f̂2
M (∞)

Nc
+

∆f̂2
M (∞)

N2
c

, (20)

f̂2
m(Nc)

N2
c

=
f̂2
m(∞)

N2
c

+
∆f̂2

m(∞)

N3
c

, (21)

f̂2
M(Nc)

N2
c

=
f̂2
M(∞)

N2
c

+
∆f̂2

M(∞)

N3
c

, (22)

for mesons constituted of (f), (as), and (s) fermions, re-
spectively. As (in most cases) three independent mea-
surements are available, obtained for Sp(4), Sp(6), and
Sp(8), we apply a maximum likelihood analysis to extract
the two unknown coefficients, and perform the Nc → +∞
extrapolations.

In the case of fermions transforming on the antisym-
metric and symmetric representations, mesons and decay
constants tend to be larger than in the fundamental case,
but are affected by bigger uncertainties. We can still ver-
ify that the lightest states in the V and T channel are
degenerate, as expected, but in several examples we are
not able to measure the mass and decay constant for the
Sp(8) case, as shown in Table V. In such occurrences, the
large-Nc limit is obtained by simple etrapolation from the
two available data points—see Table VI.

We do not find agreement in the large-N extrapola-
tions of the properties of mesons made of (as) and (s)
fermions, with the noticeable exception of the decay con-
stant of the pseudoscalar state. This fact, combined with
the large value of some χ2/Nd.o.f , and with the fact that
for many observables we could not use Sp(8) results,
suggests that the large-N extrapolations for the mesons
made of (s) fermions are affected by large systematic un-
certainties, and should not be used in phenomenologi-
cal studies. We decided to report these results, despite
their poor quality, to illustrate the fact that, in order to
study the large-N limit of this type of mesons, a more
refined numerical strategy will be needed. We remind the
reader that our main objective in this paper is to bench-
mark what is achievable within this large class of theories,
hence even such negative result is of some value. Simi-
lar conservative arguments may apply also to the Sp(8)
theory with (as) fermions, while for Sp(4) and Sp(6) the
measurements performed with (as) fermions yield reason-
able results, and the values of χ2/Nd.o.f are acceptable.

B. Sum rules

The Weinberg sum rules [189] are exact results, that
can be formulated as follows:∑

i

(
f̂2
V,i − f̂2

AV,i

)
= f̂2

PS , (23)

∑
i

(
m̂2

V,if̂
2
V,i − m̂2

AV,if̂
2
AV,i

)
= 0 , (24)
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FIG. 5. Decay constants squared in the PS, V, and AV channels comprised of fermions in the fundamental representation of
Sp(4). The reduced chi-squared value is printed at the top of each plot. Data points in the pink shaded region are not included
in the curve-fitting procedure. The grey band represents the continuum and massless extrapolation, with the blue square being
the observable and the vertical width corresponding to the statistical error. In instances where a reliable extrapolation cannot
be made, no grey band is shown. All quantities are expressed in units of the gradient flow scale, w0. The extrapolation with
the smallest β value removed is shown as a lighter grey band and a black triangle in cases where data were available at the
smallest β value.

where the summation is over the whole tower of states
sourced by the V and AV meson operators. It is interest-
ing to question whether these rules can be saturated by
restricting the sums to the lightest state in each channel.
Our numerical results do not support saturation, as we
shall see.

An extension of the sum rules is given by the quantity:

S ≡ 4π
∑
i

(
f̂2
V,i

m̂2
V,i

−
f̂2
AV,i

m̂2
AV,i

)
, (25)

where, again, the sum runs over all the states in the V
and AV channels. In the case of a 2-flavor QCD-like the-
ory, this is one of the many, equivalent, definitions of the
Peskin-Takeuchi precision parameter, S [190], if we inter-
pret the underlying dynamics in terms of a technicolor
model of electroweak symmetry breaking. Interestingly,
this quantity is dimensionless, therefore does not depend
on the scale-setting procedure adopted. Extrapolating
to small Higgs masses the combination of indirect tests
of the electroweak theory, following Ref. [191], yields a
conservative bound |S| <∼ 0.4, at the 3σ confidence level.
We can only provide a rough estimate for this quantity,
obtained by saturating the defining sum with the first
resonance, as is the case for the Weinberg sum rules, re-
minding the reader that, since this has not proved to be a
valid approximation in the latter case, the result should
be taken with a grain of salt.

For ease of comparison, we define three dimensionless

quantities, involving only the lightest states:

s0 ≡ 4π

(
f̂2
V

m̂2
V

− f̂2
AV

m̂2
AV

)
, (26)

s1 ≡ 1− f̂2
AV + f̂2

PS

f̂2
V

, (27)

s2 ≡ 1− m̂2
AVf̂

2
AV

m̂2
Vf̂

2
V

. (28)

We compute them with massless and continuum limit
extrapolations, and report the results in Table VII. The
numerical evidence we collected indicates that neither s1
nor s2 vanish, which would discourage one from using
the approximation of saturating the sum rules on the
first resonance only. These results suggest to use cau-
tion, as in general s0 will also differ from S. It would
be interesting to repeat this exercise with lattice calcu-
lations that involve dynamical fermions, to see how the
dynamics affects them. For completeness, and to facil-
itate comparison, we include in the table also the esti-
mates of the same quantities for 2-flavor QCD, for which
we borrow the input from Table II of Ref. [188], even
if these numerical results are obtained with a non-zero
mass for the quarks (mπ = 139.6 MeV): fπ = 92.4± 0.35
MeV, fρ = 153.4 ± 7.2 MeV, fa1

= 152.4 ± 10.4 MeV,
mρ = 775.8± 0.5 MeV, ma1

= 1230± 40 MeV.
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FIG. 6. Decay constants squared in the ps, v, and av channels comprised of fermions in the antisymmetric representation of
Sp(4). The reduced chi-squared value is printed at the top of each plot. Data points in the pink shaded region are not included
in the curve-fitting procedure. The grey band represents the continuum and massless extrapolation with the blue square being
the observable and the vertical width corresponding to the statistical error. In instances where a reliable extrapolation cannot
be made, no grey band is shown. All quantities are expressed in units of the gradient flow scale, w0. The extrapolation with
the smallest β value removed is shown as a lighter grey band and a black triangle in cases where data were available at the
smallest β value.

IV. CONCLUSIONS AND OUTLOOK

We reported the results of a first systematic study of
the spectra of mesons in Sp(2N) lattice gauge theories
with fermions in three different representations, in the
quenched approximation, for N = 2, 3, 4. We applied
next-to-leading order WχPT to extract the continuum
and massless limits of the spectroscopy observables. We
also performed a first simplified extrapolation towards
the large-N limit. Finally, we computed non-trivial quan-
tities, related to the Weinberg sum rules, using the lat-
tice numerical results, with the additional drastic ap-
proximation of including only the ground states. For all
these measurements, we also performed an extensive ex-
ploration of the lattice parameter space, to assess the
magnitude of finite-size effects. Details about the inter-
mediate steps of these calculations can be found in the
public releases in Refs. [185].

In principle, our results are applicable to phenomeno-
logical studies of models of new physics that extend the
standard model, particularly when the number of fermion
species is small, and when the quenched approximation
is sufficient to provide useful estimates of masses and de-
cay constants for the mesons. This includes the context
of composite Higgs models and models of dark matter
with strong-coupling origin. However, the systematics
highlighted in our discussion, which affect more severely
some of the states we have analysed, would suggest to
exercise judicious caution if using these results for phe-

nomenological applications.
This study sets the stage for future, extensive and high

precision measurements of spectroscopy observables in
the corresponding lattice gauge theories with dynamical
fermions, by benchmarking the lattice parameter space.
A first study of the spectrum of fermion bound states
(chimera baryons), that have model-building relevance
in the context of top partial compositeness, performed in
the quenched approximation and for Sp(4) gauge theo-
ries, can be found in Ref. [192]. An ongoing, extensive
research programme of study of the dynamical theories
with fermions transforming in multiple representations
will provide precision measurements and explore comple-
mentary regions of parameter space, relevant for some
phenomenological applications, for which one does not
expect the quenched approximation to hold.
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Appendix A: Finite volume effects

Finite size effects arise from the limited extent of the
lattice as well as its toroidal nature. These artefacts can
contaminate our measurements of observable quantities.
It is possible to extrapolate to infinite volume (the ana-
logue of the thermodynamic limit of statistical mechan-
ics) from a lattice of finite extent, L = Nsa, by assuming
that the mass of the lightest state at finite volume, which
we denote generically as mπ in this Appendix, is related
to the infinite-volume limit, m∞, via the relation

mπ = m∞

(
1 +A

e−m∞L

(m∞L)3/2

)
. (A1)
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FIG. 8. Masses squared in the V, T, AV, AT, and S channels comprised of fermions in the fundamental representation of Sp(4).
The reduced chi-squared value is printed at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless extrapolation with the blue square being
the observable and the vertical width corresponding to the statistical error. In instances where a reliable extrapolation cannot
be made, no grey band is shown. All quantities are expressed in units of the gradient flow scale, w0. The extrapolation with
the smallest β value removed is shown as a lighter grey band and a black triangle in cases where data were available at the
smallest β value.

As a preliminary study, propaedeutic to the one re-
ported in the body of this paper, we examined the finite
size effect by plotting mπ/m∞ as a function of m∞L as
emerges from different lattice volumes as well as with
different bare masses, m0, for the relevant fermion. We
choose the value of m∞L such that the finite volume
result is within a few per mille of the infinite volume
one, such that this source of systematics can be ignored
in comparison with the statistical uncertainties. Details
about this study can be found in Ref. [185], while here we
only provide one example, in Fig. 4, for the Sp(6) theory.

The finite size effects for Sp(4) quenched mesons in
the fundamental and antisymmetric representations were
studied in Ref. [122], and it was found that one should
restrict the analysis to cases in which mπL ≳ 7.5 for
both fundamental and antisymmetric representations,
with the identification mπ = mPS. Interestingly, we
find that this requirement is even more severe for the
Sp(6) and Sp(8) theories. The ensembles and choice of

fermions masses used in the analysis the forms the body
of this paper are lead to satisfying these requirements.
To prevent non-physical processes, such as the analo-
gous process to the ρ → ππ decay, we also demand that
0.5 < mPS/mV < 1, for all fermion species, so that the
quenched approximation can be justified.

Appendix B: Continuum and massless extrapolations

Having computed (quenched) meson masses and decay
constants in a discrete spacetime lattice at finite bare
mass, we then extrapolate to the continuum and mass-
less limits simultaneously, by means of next-to-leading
order WχPT. We plot our measurements, and the ex-
trapolations, for Sp(4), Sp(6) and Sp(8) in Figs. 5 to 22,
while the numerical details can be found in Ref. [185].
For the extrapolations to the massless limit, we have ex-
cluded the points for which f̂PS does not exhibit a linear
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FIG. 9. Masses squared in the v, t, av, at, and s channels comprised of fermions in the antisymmetric representation of Sp(4).
The reduced chi-squared value is printed at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless extrapolation with the blue square being
the observable and the vertical width corresponding to the statistical error. In instances where a reliable extrapolation cannot
be made, no grey band is shown. All quantities are expressed in units of the gradient flow scale, w0. The extrapolation with
the smallest β value removed is shown as a lighter grey band and a black triangle in cases where data were available at the
smallest β value.

behaviour in m̂PS. We exclude this set of points from all
massless extrapolations at fixed N and representation.

In a similar spirit, we display our large-N extrapola-
tions of the massless and continuum extrapolations, for

all three fermion representations, in Figs. 23 to 28, while
intermediate results and the complete set of fitted pa-
rameters can be downloaded from Ref. [185].
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the smallest β value removed is shown as a lighter grey band and a black triangle in cases where data were available at the
smallest β value.

[astro-ph.IM].
[114] C. Caprini et al., Detecting gravitational waves from

cosmological phase transitions with LISA: an update,
JCAP 03, 024, arXiv:1910.13125 [astro-ph.CO].

[115] M. Maggiore et al., Science Case for the Einstein Tele-
scope, JCAP 03, 050, arXiv:1912.02622 [astro-ph.CO].

[116] K. Holland, M. Pepe, and U. J. Wiese, The Deconfine-
ment phase transition of Sp(2) and Sp(3) Yang-Mills
theories in (2+1)-dimensions and (3+1)-dimensions,
Nucl. Phys. B 694, 35 (2004), arXiv:hep-lat/0312022.

[117] G. Aad et al. (ATLAS), Observation of a new particle
in the search for the Standard Model Higgs boson with
the ATLAS detector at the LHC, Phys. Lett. B 716, 1
(2012), arXiv:1207.7214 [hep-ex].

[118] S. Chatrchyan et al. (CMS), Observation of a New Bo-
son at a Mass of 125 GeV with the CMS Experiment at
the LHC, Phys. Lett. B 716, 30 (2012), arXiv:1207.7235
[hep-ex].

[119] E. Bennett, D. K. Hong, J.-W. Lee, C. J. D. Lin, B. Lu-
cini, M. Piai, and D. Vadacchino, Sp(4) gauge theory on
the lattice: towards SU(4)/Sp(4) composite Higgs (and
beyond), JHEP 03, 185, arXiv:1712.04220 [hep-lat].

[120] J.-W. Lee, E. Bennett, D. K. Hong, C. J. D. Lin, B. Lu-
cini, M. Piai, and D. Vadacchino, Progress in the lat-
tice simulations of Sp(2N) gauge theories, PoS LAT-
TICE2018, 192 (2018), arXiv:1811.00276 [hep-lat].

[121] E. Bennett, D. K. Hong, J.-W. Lee, C. J. D. Lin, B. Lu-
cini, M. Piai, and D. Vadacchino, Sp(4) gauge theories
on the lattice: Nf = 2 dynamical fundamental fermions,
JHEP 12, 053, arXiv:1909.12662 [hep-lat].

[122] E. Bennett, D. K. Hong, J.-W. Lee, C.-J. D. Lin,
B. Lucini, M. Mesiti, M. Piai, J. Rantaharju, and

D. Vadacchino, Sp(4) gauge theories on the lattice:
quenched fundamental and antisymmetric fermions,
Phys. Rev. D 101, 074516 (2020), arXiv:1912.06505
[hep-lat].

[123] E. Bennett, J. Holligan, D. K. Hong, J.-W. Lee, C. J. D.
Lin, B. Lucini, M. Piai, and D. Vadacchino, Color
dependence of tensor and scalar glueball masses in
Yang-Mills theories, Phys. Rev. D 102, 011501 (2020),
arXiv:2004.11063 [hep-lat].

[124] E. Bennett, J. Holligan, D. K. Hong, J.-W. Lee, C. J. D.
Lin, B. Lucini, M. Piai, and D. Vadacchino, Glueballs
and strings in Sp(2N) Yang-Mills theories, Phys. Rev.
D 103, 054509 (2021), arXiv:2010.15781 [hep-lat].

[125] B. Lucini, E. Bennett, J. Holligan, D. K. Hong,
H. Hsiao, J.-W. Lee, C. J. D. Lin, M. Mesiti, M. Piai,
and D. Vadacchino, Sp(4) gauge theories and beyond
the standard model physics, EPJ Web Conf. 258, 08003
(2022), arXiv:2111.12125 [hep-lat].

[126] E. Bennett, J. Holligan, D. K. Hong, H. Hsiao,
J.-W. Lee, C. J. D. Lin, B. Lucini, M. Mesiti,
M. Piai, and D. Vadacchino, Progress in Sp(2N) lat-
tice gauge theories, PoS LATTICE2021, 308 (2022),
arXiv:2111.14544 [hep-lat].

[127] E. Bennett, D. K. Hong, H. Hsiao, J.-W. Lee, C. J. D.
Lin, B. Lucini, M. Mesiti, M. Piai, and D. Vadacchino,
Lattice studies of the Sp(4) gauge theory with two
fundamental and three antisymmetric Dirac fermions,
(2022), arXiv:2202.05516 [hep-lat].

[128] E. Bennett, D. K. Hong, J.-W. Lee, C. J. D. Lin, B. Lu-
cini, M. Piai, and D. Vadacchino, Color dependence
of the topological susceptibility in Yang-Mills theories,
Phys. Lett. B 835, 137504 (2022), arXiv:2205.09254



23
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Sp(8). The reduced chi-squared value is printed at the top of each plot. Data points in the pink shaded region are not included
in the curve-fitting procedure. The grey band represents the continuum and massless extrapolation with the blue square being
the observable and the vertical width corresponding to the statistical error. In instances where a reliable extrapolation cannot
be made, no grey band is shown. All quantities are expressed in units of the gradient flow scale, w0. The extrapolation with
the smallest β value removed is shown as a lighter grey band and a black triangle in cases where data were available at the
smallest β value.

FIG. 19. Decay constants squared in the PS and V channels comprised of fermions in the symmetric representation of Sp(8).
The reduced chi-squared value is printed at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless extrapolation with the blue square being
the observable and the vertical width corresponding to the statistical error. In instances where a reliable extrapolation cannot
be made, no grey band is shown. All quantities are expressed in units of the gradient flow scale, w0. The extrapolation with
the smallest β value removed is shown as a lighter grey band and a black triangle in cases where data were available at the
smallest β value.
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FIG. 26. Masses in V, T, AV, AT, and S channels, with fermions in the fundamental representation extrapolated to Nc → ∞.
Reduced chi-squared values are printed at the top of each plot. All quantities are expressed in units of the gradient flow scale,
w0.
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FIG. 27. Masses in v, t, av, at, and s channels, with fermions in the antisymmetric representation extrapolated to Nc → ∞.
Reduced chi-squared values are printed at the top of each plot. All quantities are expressed in units of the gradient flow scale,
w0.
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FIG. 28. Masses in V, T , AV, AT and S channels, with fermions in the symmetric representation extrapolated to Nc → ∞.
Reduced chi-squared values are printed at the top of each plot. All quantities are expressed in units of the gradient flow scale,
w0.


