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Explainable deep learning for medical imaging classification

by Megan Courtman

Abstract

Machine learning is increasingly being applied to medical imaging tasks. How-

ever, the “black box” nature of techniques such as deep learning has inhibited the

interpretability and trustworthiness of these methods, and therefore their clinical

utility. In recent years, explainability methods have been developed to allow better

interrogation of these approaches.

This thesis presents the novel application of explainable deep learning to several

medical imaging tasks, to investigate its potential in patient safety and research.

It presents the novel application of explainable deep learning to the detection of

aneurysm clips in CT brains for MRI safety. It also presents the novel application of

explainable deep learning to the detection of confounding pathology in radiology re-

port texts for dataset curation. Furthermore, it makes novel contributions to Parkin-

son’s research, using explainable deep learning to identify progressive brain changes

in MRI brain scans, and to identify differences in the brains of non-manifesting

carriers of Parkinson’s genetic risk variants in MRI brain scans. In each case, con-

volutional neural networks were developed for classification of data, and Shapley

Additive exPlanations (SHAP) were used to explain predictions. A novel pipeline

was developed to apply SHAP to volumetric medical imaging data.

The application of explainable deep learning to various types of data and task

demonstrates the flexibility of the combination of convolutional neural networks

and SHAP. Additionally, these applications highlight the importance of combining

explainability with clinical expertise, to check the viability of the models and to

ensure that they meet a clinical need. These novel applications represent useful new

tools for safety and research, and potentially for improvement of clinical care.
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Chapter 1

Introduction

1.1 Motivation

Artificial intelligence (AI) is increasingly being used in radiology and radiological

research, driven by a desire for greater efficacy and efficiency in medical care [1].

The volume of radiological data is outpacing the availibility of trained reporters

[2], increasing radiologists’ workloads and their susceptibility to errors. AI offers a

potential solution to this problem: the prospect of seamless integration into the ra-

diological workflow to speed up processes and reduce errors. In some cases, AI could

augment the radiological process by providing pre-screened images and identified

features. In other cases, where the performance of AI exceeds the performance of

radiologists, processes could be entirely automated [1].

The promise of AI has led to some extreme projections: in 2016, Geoffrey Hinton,

one of the founders of deep learning technology, infamously said “people should stop

training radiologists now. It’s just completely obvious than in five years deep learning

is going to do better than radiologists” [3]. This has not come to pass. Despite the

promise of AI and individual successful studies, extremely few applications have

crossed the chasm between research and clinical practice. Many of those which have

are of dubious legitimacy; a study in 2021 found that of 100 commercially available

AI products in radiology, 64% had no peer-reviewed evidence for their efficacy, and

only 18% had demonstrated clinical impact [4].
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There are several factors that have limited the utility of AI in radiological prac-

tice, two of the most significant of which are addressed in this thesis. The first

is that the development of successful models is reliant on a great volume of high-

quality, labelled data [5], and such curated data is frequently unavailable and would

require extensive manual ground-truthing [1]. The second is that the “black box”

nature of many of the most successful deep learning techniques has inhibited their

interpretability and trustworthiness [5].

The opacity of deep learning models has begun to be addressed in recent years

with the introduction of explainable AI techniques. These approaches are designed

to increase the interpretability of models despite the model complexity; in the case

of radiology, they can be used to yield a map which can be overlaid on the image to

indicate which anatomical regions have informed a given prediction [6]. Such visu-

alisation techniques provide powerful insights into the workings of complex models.

This thesis will focus on the utility of explainable AI in radiological model develop-

ment: particularly how the explanation of predictions can be combined with insights

from medical experts to verify the validity of models and to refine them to improve

their performance. Whilst the thesis will focus on models in research and develop-

ment, it is worth noting that explainable AI also holds promise for models that have

been progressed to the production stage: it can be used for auditing (assessing mod-

els’ conformance to regulations and procedures) and quality assurance (identifying

potential weaknesses) [6].

In summary, there is a need to address issues such as data curation and model

explainability, so that the demonstrable potential of deep learning techniques might

be translated into effective radiological practice.

1.2 Aims and objectives

This project aimed to use explainable AI for medical imaging applications, to counter

the limitations of successful but often opaque deep learning techniques.

The core objectives were to:
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• conduct a literature review to identify existing applications of explainable AI

to medical imaging

• identify and collect relevant data

• develop novel applications of explainable deep learning to medical imaging

classification

• demonstrate the potential utility of these applications in clinical settings

1.3 Contributions to knowledge

This thesis makes the following contributions to knowledge. It:

1. presents a novel application of explainable AI for the detection of aneurysm

clips in Computerised Tomography (CT) brain scans for Magnetic Resonance

Imaging (MRI) safety

2. presents a novel application of explainable AI for the detection of confounding

pathology in radiology report texts

3. presents a bespoke application of Shapley Additive exPlanations (SHAP) to

volumetric medical imaging

4. identifies progressive Parkinson’s brain changes in MRI brain scans using ex-

plainable AI

5. identifies differences in the brains of non-manifesting carriers of Parkinson’s

genetic risk variants in MRI brain scans using explainable AI

6. presents the application of explainable AI to a novel routinely-collected dataset

of Parkinson’s MRI brain imaging
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1.4 Outline of thesis

This thesis consists of seven chapters. This chapter has introduced the project and

highlighted motivations, aims and objectives and contributions of the thesis. Chap-

ter 2 provides a background to the project, detailing the concepts of AI, machine

learning, deep learning, explainable AI, and the impact of these technologies in radi-

ology. Chapter 3 describes the methods used in this research, including the develop-

ment environment, the model architectures, the performance metrics, the evaluation

methods, and the explainability technique. Chapter 4 provides an initial illustration

of the potential use of explainable AI for medical imaging, discussing explainable

models developed for the detection of aneurysm clips in CT brain scans. Chapter 5

details a potential use of explainable AI for radiological data curation, discussing ex-

plainable models developed for the detection of confounding pathology in MRI brain

scan reports. Chapter 6 presents a potential use of explainable AI for uncovering

new insights in such research datasets, discussing explainable models developed for

the detection of Parkinson’s disease in MRI brain scans and how these have detected

progressive changes as well as differences in the brains of non-manifesting carriers

of Parkinson’s genetic risk variants. Finally, Chapter 7 discusses the contributions

to knowledge, limitations, future directions, and conclusions.
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Chapter 2

Background

2.1 Artificial intelligence

Artificial intelligence describes a broad area of study in the field of computer science,

which might be summarised as the study of agents that receive information from

the environment and perform actions [7]. The term was coined in 1955 in a proposal

for a Dartmouth College summer research project, which theorised that every as-

pect of intelligence could be simulated by a machine [8]. The outlined components

of the “artificial intelligence problem” bear remarkable resemblance to areas of AI

that continue to be studied nearly 70 years later: automation, calculation efficiency,

abstraction, random seeding, machine self-improvement, computer understanding of

language, and the arrangement of hypothetical “neurons” to form concepts.

Progress in AI has been slower and more turbulent than anticipated by the

proposers of the Dartmouth summer program, who expected that a group of ten

scientists could make significant advances over the course of two months [8]. In fact,

over the decades the development of AI has undergone a cycle of optimistic, produc-

tive “springs” and pessimistic, unproductive “winters” [9]. Whilst the original goal of

general machine intelligence remains unmet, bursts of progress have ultimately re-

sulted in the substantial success of domain-level applications. Today AI can be seen

discretely applied in nearly every aspect of life, due to the development of techniques

in areas such as computer vision, natural language processing, speech recognition,
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and robotic control.

2.1.1 Machine learning

A large component of the field of AI is the subfield of machine learning. Machine

learning describes systems which improve their performance through exposure to

data [10]. The system maps input data to targets through training rather than

explicit programming: the system is shown many examples of inputs and targets,

which allows it to learn rules for automating the task. The central task of the

system is to meaningfully transform data by learning useful representations of input

data. The “learning” in machine learning describes an automatic search for better

representations of the data. The search takes place in a predefined set of operations,

called a “hypothesis space”, and uses guidance from a feedback signal [11]. Machine

learning tasks include clustering, regression, classification, outlier detection, image

generation, and text completion [12].

Machine learning started to flourish in the 1990s, and has quickly become the

most popular subfield of AI due to the availability of fast hardware and large

datasets. It is strongly tied to the field of statistics, but differs in its focus on

engineering and empirical results rather than mathematical theory [11].

Supervised learning is a category of machine learning which is popular in medical

imaging applications. This describes algorithms which induce models from labelled

training data. These models can then be used to predict the labels for unlabelled

data [13]. Supervised architectures include decision trees, support vector machines,

linear regression models, random forests, boosting models, and neural networks [14].

2.1.2 Deep learning

Much of the recent development in medical AI has been driven by a subset of machine

learning called deep learning, which describes the use of layered neural networks to

build representations of complicated concepts out of simpler concepts (discussed

further in section 3.2) [15]. A distinctive aspect of deep learning is that it does
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not require manual feature selection or engineering, and can learn more abstract

representations that might not have been anticipated by human practitioners.

The first successful practical application of neural networks was in 1989, when

Yann LeCun of Bell Labs combined the earlier ideas of convolutional neural networks

and backpropagation (discussed further in section 3.2) and applied them to the

classification of handwritten digits [16]. This network was then used by the United

States Postal Service in the 1990s [11].

The broader uptake and success of neural networks in the early 2010s was largely

driven by the image classification competition ImageNet [17]. In 2012, a team led

by Alex Krizhevsky and advised by Geoffrey Hinton entered and achieved a top-five

accuracy of 83.6% (compared to the previous winner’s 74.3%) [18]. The competition

has allowed annual improvements in the performance of deep convolutional neural

networks ever since. By 2015, the winner had reached an accuracy of 96.4% [19].

Deep learning has now achieved remarkable results in tasks such as speech recog-

nition, handwriting recognition, machine translation, text-to-speech conversion, dig-

ital assistants, autonomous driving, ad targeting, search results, answering natural

language questions, and game playing [11]. Several factors have facilitated the suc-

cess of deep learning. The first is hardware: the development of Graphics Processing

Units (GPUs) for the gaming market has made powerful hardware available for deep

learning applications [11]. Another factor in the success of deep learning has been

the availability of data: the exponential progress in storage hardware and the rise of

the internet has made very large datasets available to fuel deep learning applications

[11]. Often the best performing networks have been trained on large datasets like

ImageNet, and then honed for specific applications, in a process known as transfer

learning. A third factor in the success of deep learning has been advances in the

algorithms that form neural networks (discussed further in section 3.2), allowing for

very large and effective networks [11]. As a result of these successes, investment in

deep learning has been monumental, and open-sourcing of deep learning develop-

ment tools has made its implementation extremely accessible [11].
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In terms of medical applications, traditional pre-defined feature machine learning

systems have not generally met the stringent performance requirements for clinical

utility [20], but deep learning methods have achieved higher performances and it is

anticipated that they will reach a high enough standard to be clinically useful [1].

2.2 Artificial intelligence in radiology

Healthcare is an environment which has already been affected by the development

of AI, in areas such as drug discovery, remote patient monitoring, wearables, risk

management, hospital management, and medical diagnostics and imaging [1]. Radi-

ological processes in particular have long been obvious candidates for AI integration;

since the 1980s the automation of clinical tasks has shifted radiology to a quantifiable

computable domain [21]. In the last decade, there have been significant advances in

AI-based medical image classification due to increased compute power, the open-

sourcing of large labelled datasets, and the development of deep learning [22]. There

are now thousands of publications applying computer vision techniques to medical

imaging [23].

2.2.1 Benefits

One of the demands of radiology which has invited the integration of AI is the sheer

quantity of data that needs to be processed. The amount of imaging is increasingly

outstripping the number of available trained readers [2]. In North America, for ex-

ample, the number of imaging studies increases by up to 5% a year on average,

whereas the number of radiology positions only increases by 2% a year [24]. A study

in 2015 reported that radiologists had to interpret an image every 3-4 seconds on

average to meet demand [25]. Fatigue is a known problem in radiology, and affects

diagnostic accuracy [26]. The promise of AI is clear: some rote tasks could be entirely

automated, while other tasks could be streamlined by the providing radiologists with

pre-screened images and identified features [27]. Both approaches would save radiol-
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ogists time, benefitting both their welfare and their performance. A study has found

that most radiologists are optimistic about the impact of AI on their practice, due

to the expectation that it will result in lowered risk of errors and increased time

with patients [28].

Human errors can arise for reasons beyond fatigue and demand. Radiologists’

assessments are informed by education and experience, and therefore can be sub-

jective. They can also be affected by inattentional blindness, as demonstrated by a

study in which radiologists were asked to perform a familiar lung nodule detection

task, and 83% did not observe an inserted image of a gorilla [29]. AI tools have

the potential to detect patterns that radiologists have not been trained to observe,

patterns that are obfuscated to humans by context, or patterns that are not even

accessible to the human visual system [30]. The quantified outputs of these tools

have the benefit of being consistent and reproducible, and not subject to disparities

in healthcare provision.

AI usually relies on large datasets, and large radiological datasets should theo-

retically be readily available due to the extensive routine collecting of imaging [1].

For example, nearly a million labelled chest X-rays have been open sourced [31–

33]. Promisingly accurate radiological results have already been achieved using AI

trained on such datasets. A study classifying chest X-rays as normal or abnormal

achieved accuracy of over 95% [34]. A study applying deep learning to diagnosis of

hip fractures in X-ray images achieved an accuracy of over 99% [35]. Studies have

used machine learning to detect brain haemorrhages [36], liver mass classification

[37], and vertebral compression [38] in CT scans, all with accuracies comparable to

or greater than that of radiologists. Some studies have demonstrated that the high-

est accuracies are achieved when the findings of AI and radiologists are combined

[39]. These results indicate the potential diagnostic value of incorporating AI as a

clinical tool.

AI also has the potential to make healthcare more equitable by being data-driven

and, theoretically, not being subject to human biases and long-standing inequalities.
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For example, a study that used deep learning to predict the severity of osteoarthritis

in knee X-rays found that this approach dramatically reduced unexplained racial

disparities in pain [40]. However, this equity is only achievable if key steps are taken,

such as ensuring high quality and lack of bias in data, addressing model limitations,

and facilitating community participation [22]. The absence of such steps can lead to

the realisation of risks of using AI in a medical setting.

2.2.2 Risks

There have been many cases of AI being misused or poorly understood in healthcare

research. An example which illustrates many of the common pitfalls is the application

of machine learning to detecting COVID-19 in chest radiographs and CT scans. Over

two thousand papers were published on this subject between January and October

2020, but a review found that none of the models in the sixty-two included studies

were of potential clinical use due to methodological flaws or underlying biases [41].

A broader review of prediction models for COVID-19 diagnosis screened over thirty-

seven thousand titles and included 232 models in their analysis. They too found that

all of the models were at high or unclear risk of bias [42].

A problem which plagues many machine learning applications is the quality of

the input data. In the COVID-19 example, the collation of publicly available images

into “Frankenstein datasets” led to duplication of images, and also to the likelihood of

implicit biases, as unusual or severe cases of COVID-19 were more likely to appear

in publications [41]. Many of the papers also failed to mention that they used a

control dataset consisting of paediatric patients; the models were therefore likely to

be distinguishing between children and adults rather than pneumonia and COVID-

19 [41]. A study also demonstrated that it was possible for a model to classify the

distinct sources of COVID-19 images with high accuracy once the lung region had

been excluded entirely [43]. This indicates that the models could therefore have been

distinguishing between sources rather than between pathologies. A similar finding

was reported in an earlier study that used deep learning to detect pneumonia in
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chest radiographs. The models were able to detect where a radiograph was acquired

with extremely high accuracy and, as the hospitals had different disease burdens,

they were able to exploit this information in their predictions [44].

Another problem demonstrated by the COVID-19 example was that of flawed

methodology. Many of the AI models suffered from a high or unclear risk of bias in at

least one domain. For example, many validation datasets were not representative of

the target population, and many studies defaulted to using the image preprocessing

classically used for ImageNet classification rather than using clinical judgement [41].

These problems are not without recourse. Suggested solutions include exercising

caution when using publicly available datasets, using well-curated external validation

datasets, using clinical judgement in the process of model development, open sourc-

ing code, and assessing studies against established frameworks [41]. These measures

should lead to more generalisable AI models, more accurate reporting of models and

more awareness of model limitations.

As few machine learning applications have yet been fully deployed in clinical

settings, it is unsurprising that early adoptions have encountered unforeseen prac-

tical difficulties. For example, a deep learning system developed by Google for the

detection of diabetic retinopathy in eye scans achieved greater than 90% accuracy

in the laboratory, but presented problems when deployed in a clinical setting. It

rejected more than a fifth of the scans because it had been trained to reject low

quality images, causing great difficulties for the clinicians and patients involved in

the implementation of the system [45]. Such practical considerations will need to be

addressed if AI applications are to be successfully realised. The involvement of clin-

icians in the development of models is likely to mitigate against such shortcomings.

The use of AI can also raise a number of ethical issues, such as that of privacy.

An example which highlights this is DeepMind’s collaboration with the Royal Free

NHS Trust in London. In 2016 DeepMind was granted access to three hospitals’

medical data in exchange for the development of an application to assist in the

management of acute kidney injury. Outrage ensued when an investigation revealed
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that DeepMind was granted access to the identifiable medical histories of 1.6 mil-

lion patients without their consent having been given: data collection that was far

beyond the scope of what had been stated publicly [46]. The controversy could have

been avoided with the implementation of good data protection practices, such as

the curation of appropriate and limited datasets, high quality public consultation,

transparent Patient and Public Involvement (PPI), respect for opt-outs, and clear

communication of results. Confidential data can also be vulnerable due to insecure

connections between medical institutions and externally hosted AI systems [1]. De-

centralised federated learning is being adopted as a solution to this: the practice of

training a model across separate servers holding local data without there being any

data exchange between devices [47]. It is evident that many of the potential pitfalls

of using AI in a medical setting have multiple potential solutions.

A further problem lies in the interpretation of AI models. Due to the complexity

and abstract feature representation inherent in deep learning, these models have been

described as “black boxes” that are difficult to understand, and their opaque use in

a clinical setting has been challenged. The lack of transparency affects the models’

trustworthiness: it has been argued both that users cannot trust an opaque model

and also that they might trust it too much, not noticing any mistakes that it might

make [48]. This has led to recommendations that AI models be explainable in a way

that clinical users can understand and use to justify their decision-making [49]. In

fact General Data Protection Regulation laws in the European Union set out detailed

transparency obligations for algorithmic decision-making, requiring the provision of

“meaningful information about the logic involved, as well as the significance and the

envisaged consequences of such processing for the data subject” [50].

2.3 Explainable artificial intelligence

Explainable artificial intelligence describes techniques which have been developed to

counter the “black box” nature of machine learning methods such as deep learning.

Explainability is the task of finding an interpretable model that approximates the
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opaque model as closely as possible [51]. These methods can be global (providing an

overall approximation of the behaviour of a model) or local (providing explanations

for particular instances) [51]. Explainability has become an important issue to the

general public as well as machine learning practitioners, as algorithmic decision

making has become more impactful on society and individuals [52].

The number of studies looking at using explainable AI in healthcare has increased

exponentially over the last few years [53]. Explainability is not needed when there

are no significant consequences for unacceptable results or when the task is well

understood, but in radiology neither of these conditions are met: a wrong diagnosis

can have serious consequences, and a clinical diagnosis is not a trivial task [54].

Explainability is needed in radiology to audit systems, enhance trust and adhere

to regulations [6]. It may be used for tasks such as image segmentation, lesion and

organ detection, computer aided diagnosis and staging, prognosis, radiation therapy

planning, triaging, and image reconstruction [6].

Various explainability methods have been evaluated for the interpretation of deep

learning medical image models, many of which provide a visualisation of the features

which contributed to the model’s output [55]. One of the most popular methods is

SHapley Additive exPlanations (SHAP) [53] (discussed further in Section 3.5), which

was used in this research.

However, explainable AI has not been universally championed. The ability of

current explainability methods to engender trust, provide transparency and mitigate

bias has been doubted [56]. It has also been suggested that model transparency

can still give rise to undue trust and hamper the user’s ability to detect mistakes

[57]. Explainability of AI systems is an ongoing debate and is at the forefront of

discussions in the field.

2.4 Concluding remarks

This chapter has provided a background to the project, detailing the concepts of AI,

machine learning, deep learning, explainable AI, and the impact of these technologies
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in radiology. Deep learning has achieved remarkable results in medical imaging tasks,

and offers the promise of a streamlined radiological workflow by the automation of

some processes and the augmentation of others. However, there are concerns about

the risks of this technology in radiology, including the “black box” nature of deep

learning algorithms and arising issues of trust. This thesis will explore the use of

explainable AI as a solution to this issue that will allow the potential of AI in

radiology to be realised effectively and responsibly.
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Chapter 3

Methods

The following describes the methods which were used universally across the radio-

logical tasks formulated for this research.

3.1 Development environment

To make the code in this research reproducible, reliable and easy to develop, universal

decisions were made with regard to the operating systems, programming languages

and other tools used.

3.1.1 Linux

This research was conducted on Linux-based machines. Linux is a Unix-like oper-

ating system, the kernel of which is free and open-source [58]. This research used

systems based on Ubuntu: a distribution of Linux which is designed to be easy to

access and easy to use [59]. It is well-supported for machine learning applications

[60].

3.1.2 Python

Python is a high-level, general-purpose, object-oriented, open source programming

language, designed for ease and speed of development. It prioritises quality, produc-
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tivity, portability and integration [61]. It is one of the most popular programming

languages.

Python is made highly extensible by the use of modules, many of which have

applications in machine learning. Several of these will be discussed in further depth in

Section 3.1.3. Other libraries used in this research include NumPy for array support

and mathematical functions [62], pandas for manipulating and analysing data [63],

Matplotlib and seaborn for generating plots [64, 65], OpenCV, imutils, scikit-image

and Pillow for image functions [66–69], SciPy for scientific computing [70], pydicom

for handling DICOM medical imaging files [71], and dicom2niti and NiBabel for

handling neuroimaging files [72, 73]. Environments were built and maintained using

the Anaconda Python distribution [74].

3.1.3 Machine learning libraries

This research made use of scikit-learn, TensorFlow and Keras. The library scikit-

learn is a Python module containing many machine learning tools [75]. TensorFlow is

a free and open source machine learning library developed by the Google Brain team,

and has a particular focus on the development of deep neural networks [76]. Keras

is a free and open source deep learning Python library which acts as an interface to

TensorFlow [77].

3.1.4 Jupyter

JupyterLab is an open source web-based interactive development environment for

notebooks, code and data [78]. It supports many programming languages, including

Python. It was used in this work to allow iterative changes to be made efficiently,

in a format that was easy to document and understand.

3.1.5 Graphics Processing acceleration

This research made use of two different types of Graphics Processing Unit (GPU):

an NVIDIA Quadro RTX 6000 and an NVIDIA GeForce RTX 3080. TensorFlow has
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the capability to utilise NVIDIA GPUs in model training using a proprietary API

from NVIDIA called CUDA as an interface [79]. This results in greatly accelerated

training.

3.2 Models

3.2.1 Neural networks

Neural networks are mathematical frameworks for learning representations from

data. These frameworks are structured in stacked layers. The term “neural network”

is a reference to neurobiology, from which the concept drew inspiration [11]. An

illustration of the structure is shown in Figure 3.1.
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Figure 3.1: Neural network structure

The neural network, like many modern machine learning systems, uses a tensor

as its basic data structure. This is a container for numerical data with any number

of dimensions. All transformations learned by neural networks can be reduced to a

handful of tensor operations [11].

The core building block of a neural network is the data processing module known

as a layer. Most of deep learning consists of chaining together simple layers that
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together will perform a process of data distillation. The data transformation imple-

mented by a layer is parameterised by its weights. The “learning” in deep learning

describes the automatic search for a set of weight values such that the network will

correctly map example inputs to their associated targets [11].

The network receives information about how far its output is from the expected

output via the loss function or objective function. This takes the predictions of the

network and the true target to compute a distance score, capturing how well the

network has performed for a specific example. The network then uses this score as a

feedback signal to adjust the values of the weights marginally in a direction that will

lower the loss score for the instance in question. This adjustment is performed by the

optimizer, which implements an algorithm called backpropagation. All operations

used in the network are differentiable but chained together: backpropagation uses

the chain rule from calculus to compute the gradient values of a neural network [11].

Different optimizers have been trialed; the Adam optimisation algorithm has been

used extensively throughout this research. [80].

The network is trained iteratively in loops. The weights are initially randomised

and then adjusted slightly for every example seen, to minimise the loss function. A

training loop consists of four stages:

1. Drawing a batch of training samples and corresponding targets.

2. Running the network on the batch to obtain predictions.

3. Computing the loss of the network.

4. Updating network weights to reduce the loss on this batch.

Each iteration over all the training data is called an epoch [11].

3.2.2 Convolutional neural networks

Convolutional neural networks, in their present form, were first successfully applied

by Yann LeCun of Bell Labs, who combined the earlier idea of convolutional neu-

ral networks with the backpropagation algorithm to classify handwritten digits (the
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MNIST dataset) [16]. Due to the developments enabled by the ImageNet compe-

tition (discussed in section 2.1.2), they have become the state-of-the-art for image

classification, though have recently been joined by another type of neural network

known as a transformer, originally designed for natural language processing [81],

and now applied to imaging tasks [82].

The distinctive feature of the convolutional neural network is the convolution

layer, which allows the network to learn local patterns. In the case of images, pat-

terns are found in small 2D windows of the images. These patterns are translation

invariant: a learned pattern can be recognised anywhere in the input. Spatial hi-

erarchies of patterns can also be learned: later convolution layers will learn larger

patterns made of the features of the earlier layers, allowing the network to learn

increasingly abstract and complex concepts [11].

The convolution layer works by sliding windows over input data (for example,

an image). At each stop, the patch is transformed into a one-dimensional vector via

a convolution kernel: a tensor product with the learned weight matrix. The vectors

are then reassembled into an output feature map, which represents the presence

of a pattern at different locations in an input. A pooling layer is then used to

aggressively downsample the feature maps by extracting windows from the feature

maps and outputting the maximum value of each channel [11].

Convolutional neural networks are extremely flexible, and in this research they

have been used to classify one-dimensional text data, two-dimensional image data,

and three-dimensional image data. The Keras library provides implementations for

these different input dimensions, as well as the capability to adjust all network

hyper-parameters [77].

3.3 Performance metrics

Performance metrics were chosen to convey various aspects of the performance of

classification models. In most cases, these were binary classification tasks. The com-

putation of these metrics involves the terms true positive (TP), false positive (FP),
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Table 3.1: Confusion matrix to explain equation nomenclature

Predicted
Positive Negative

Actual Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

false negative (FN) and true negative (TN). Table 3.1 displays this classification

metric nomenclature.

3.3.1 Accuracy

Accuracy quantifies the proportion of all predictions that are predicted correctly.

The sum of the true positives and true negatives is divided by the total number of

predictions. This metric is affected by class imbalance.

Accuracy =
TP + TN

TP + TN + FP + FN

3.3.2 Sensitivity

Sensitivity quantifies the proportion of positives that are predicted correctly. The

number of true positives is divided by the sum of the true positives and false nega-

tives.

Sensitivity =
TP

TP + FN

3.3.3 Specificity

Specificity quantifies the proportion of negatives that are predicted correctly. The

number of true negatives is divided by the sum of the false positives and true nega-

tives.

Specificity =
TN

FP + TN

Chapter 3 Megan Courtman 31



Explainable deep learning for medical imaging classification

3.3.4 Balanced accuracy

Balanced accuracy is the arithmetic mean of sensitivity and specificity. It is useful

when dealing with imbalanced data, where using the accuracy metric alone might

exaggerate the discriminatory ability of the model.

Balanced accuracy =
Sensitivity + Specificity

2

When dealing with imbalanced data, the model predictions derived can be ad-

justed using Bayes’ Rule to reflect the actual prevalence of each class [83].

3.3.5 Receiver Operating Characteristic curve

A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity against 1

- specificity [84]. The points on the curve correspond to the different cut-off points

that could be used to determine whether the model’s output, a probability, is a

positive prediction.

The area under the curve (AUC) represents the overall performance of the model.

A value of 1 would correspond to a perfect model, whereas a value of 0.5 would

correspond to a model with no discriminatory ability. This metric is not sensitive to

the prevalence of each class.

3.4 Evaluation

3.4.1 Training, test and holdout sets

Models cannot be evaluated on the same data they were trained on because they

“overfit” to the training data, i.e. they effectively memorise characteristic patterns

in the training data which do not generalise to a broader population. The aim

in machine learning is to develop models that will generalise to unseen data, and

overfitting is a central obstacle [11].
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Figure 3.2: Five-fold cross-validation

To evaluate how well a machine learning model will generalise to unseen data, it

is common practice to divide the available data into a training, test and holdout set.

The model is iteratively trained and evaluated on the training and test sets, before

finally being tested once on the holdout set. The repeated use of the training and

test sets allows hyper-parameters to be tuned. However, this repeated optimisation

means that information about the test data may leak into the model. Data leakage

is another major obstacle in the development of machine learning models. The single

use of the holdout set means that no information about that data can leak into the

model, and so the model’s performance on this data should be representative of the

model’s performance on unseen data (although if the holdout set originates from the

same distribution as the training and test data, then it is not truly representative

of external data) [11].

3.4.2 K-fold cross-validation

A more advanced version of this data split called k-fold cross-validation was used

in this research. Where enough data was available, a holdout set was reserved from

the outset. The remaining data was then used for iteratively training and testing.

This data was split into k partitions of equal size. For each partition i, a model was

trained on the remaining k −1 and evaluated on partition i. The final metric given

is then the mean of the k metrics obtained. An illustrative schematic is shown in

Figure 3.2.
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3.4.3 Addressing overfitting

Evaluation of machine learning models frequently reveals that the model has been

overfitting to the training data. There are various techniques for mitigating this

effect, many of which were used in this research. Such techniques include:

• Simplifying the model (in the case of neural networks, by reducing the size

of the network), as a model with more parameters has more memorization

capacity [11].

• Reducing the dimensions of the input data, to reduce the impact of arbitrary

patterns in the detail and enhance the impact of general patterns in the whole.

• “Early stopping” of training before convergence [85].

• Adding weight regularization: putting constraints on the complexity of the

network by forcing its weights to only take small values [11].

• Adding dropout: a technique which randomly drops out a number of output

features of a layer during training, thus introducing noise to break up arbitrary

patterns that are not significant [86].

• Using data augmentation: artificially increasing the size of the dataset by con-

figuring random transformations of the input data [11].

3.5 Explainability

3.5.1 Shapley Additive exPlanations

Shapley values are an idea from coalitional game theory, devised to address the issue

of fair attribution in co-operative games [87]. The term was coined by Lloyd Shapley

in 1953 [88] to describe a method for assigning payouts to players depending on

their contribution to the total payout. For the task of interpreting machine learning

models, the model’s prediction is the payout, and the features are players. The
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Shapley value is the average marginal contribution of a feature across all possible

coalitions of features.

SHapley Additive exPlanations (SHAP) were proposed by Lundberg and Lee in

2017 [89]. An innovation of this paper was that it expressed the traditional concept of

Shapley values as an additive feature attribution method: a linear function of binary

variables. The additive space for probabilistic classifiers is usually taken to be the

logit, which is the log-odds of the prediction [89, 90]. SHAP can be used to provide

both global and individual explanations, which helped to unify the field of explain-

able machine learning by connecting Shapley values to local interpretable model-

agnostic explanations (LIME) [91], Deep Learning Important FeaTures (DeepLIFT)

[92], and Layer-Wise Relevance Propagation [93]. Another benefit of SHAP values

is that they are expressed in the same units as the model prediction, which makes

them intuitively accessible. SHAP is now one of the most popular methods for in-

terpreting machine learning models, due to its flexibility, modularity and ecosystem

of adaptations [94].

The SHAP explanation is specified as:

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′
i

where g is the explanation model, z′ ∈ {0, 1}M are the simplified features, M is

the maximum coalition size and ϕj ∈ R is the feature attribution for a feature j, the

Shapley values [89].

The open source shap library implements SHAP in Python. This includes various

explainers, such as the PartitionExplainer and the DeepExplainer. The Partition-

Explainer is used in this research for 2D images and text because it is particularly

useful when groups of features are highly correlated or interact strongly with each

other (like pixels in an image or words in a sentence). The PartitionExplainer defines

a hierarchy of features for its analysis, the result of which is a set of SHAP values

for each feature that take into account both the individual importance of the feature
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and the importance of the feature as part of its group. The DeepExplainer is used

in this research for 3D images, because it is specifically designed for deep learning

models and is the fastest method for explaining these particularly computationally

expensive 3D models [94].

3.5.2 SHAP for images

In the case of images, SHAP values represent the attribution of each pixel to the

change of the expected model prediction when conditioning on that pixel using

reference samples. In the PartitionExplainer, a masker is used to blur out pixels not

in the coalition being considered. In the DeepExplainer, pixel absence is simulated

by replacing pixels with pixels from a background dataset [94].

3.5.3 SHAP for text

In the case of text, words are coded as tokens, and SHAP values represent the

attribution of each token to the change of the expected model prediction when

conditioning on that token using reference samples. In the PartitionExplainer the

absence of words is simulated by replacing these with a fixed token (e.g. “...”) [94].

3.6 Concluding remarks

This chapter has described the methods used in this research, including the develop-

ment environment, the model architectures, the performance metrics, the evaluation

methods, and the explainability technique. The universal use of common methods

demonstrates their utility and flexibility. The following chapters will outline the

application of those techniques to a range of radiological tasks and data types.
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Magnetic Resonance Imaging safety:

aneurysm clip detection

4.1 Introduction

Screening of patients for aneurysm clips and other metallic devices prior to mag-

netic resonance imaging (MRI) is vital to ensure that the patient and device can be

scanned safely. There have been numerous makes and designs of aneurysm clip over

decades [95], many of which have been categorized as MRI safe. For these partic-

ular implants, MRI is not absolutely contraindicated, but the devices need careful

prior assessment to ensure that the scan takes place under manufacturer-specified

conditions. However, not all historic clips are MRI safe, and even those that are safe

in some conditions may not be safe in all conditions [96]. At least one fatality has

been caused by the displacement of an aneurysm clip [97]. Safe examination requires

review of medical records and co-ordination of multiple experts [98]. Late detection

has the potential to result in last minute cancellations and wasted scanner time.

Failure to perform the required checks can result in clip failure, with potentially

catastrophic consequences.

MRI is the standard imaging modality for many conditions. Appropriate screen-

ing policies and procedures are essential before permitting entry to the MRI scanner
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to prevent injury [99]. Best practice is to use referrer and patient questionnaires

to identify patients with devices or other issues that need further investigation.

Questionnaires are not fail-safe as referrer responses can be unreliable and patient

responses are often not available until the day of the scan.

Deep learning has previously been used successfully to detect medical implants.

Pre-trained convolutional neural networks have been used to detect pacemakers in

chest radiographs with 99.67% accuracy [100] and spinal implants in lumbar spine

lateral radiographs with 98.7% precision and 98.2% recall [101]. A convolutional

neural network trained from scratch has been used to identify dental implants in

X-ray images with 94.0% segmentation accuracy and 71.7% classification accuracy

[102]. In another application, a segmentation network has been developed to identify

orthopedic implants in hip and knee radiographs with 98.9% accuracy and 100%

top-three accuracy, exceeding the performance of five senior orthopedic specialists

[103].

This chapter describes the design of a deep learning model for the detection of the

presence of aneurysm clips in computerized tomography (CT) brain scans. The vast

majority of patients with aneurysm clips will have had CT brain imaging previously

performed as part of their treatment or another hospital attendance, presenting the

potential to screen these previous scans as part of an automatic pre-MRI safety

check. This would improve MRI safety, reduce last-minute cancellations, and save

time and resources.

4.2 Data

4.2.1 Subject inclusion

Data were obtained from Derriford Hospital, a large teaching hospital with a regional

neurosurgery centre serving the South West of the United Kingdom. The study

design was retrospective and observational using pre-existing medical image data.

The date range covered was May 2011 to April 2022. A database of patients with
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aneurysm clips was used to identify cases for inclusion in the study. A list of all

patients undergoing aneurysm clip surgery was identified from surgical records. The

radiology information system (RIS) (Cris, Wellbeing Software) was used to identify

all post-surgical CT brain examinations for these patients (n=140). A custom SQL

query was then used to search the RIS for matched controls (n=140). For each scan

with an aneurysm clip present, a scan with no aneurysm clip present was identified.

These control scans were matched according to:

• scan type

• age at time of scan, within a window of ± six months

• scan date, within a window of ± twelve months

• gender

Images for the investigations identified on the RIS were downloaded from PACS

using dcmtk (OFFIS e.V.) [104]. These studies were anonymised using custom

anonymisation software based on the Clinical Trials Processor (RSNA MIRC project)

[105].

4.2.2 Ground truth confirmation

Manual review of images was performed by two board-certified radiologists to ensure

correct labelling. In the event of any disagreement of the correct labels, a third

board-certified radiologist reviewed the case to confirm the correct labelling.

4.2.3 Split

Two sets of images were extracted from the fully curated dataset: a set of localizers

and a set of full CT brains. Most CT scan studies begin with one or more localizer

scans. These are of poorer quality than full CT scans, but aneurysm clips can often

still be clearly seen (Figure 4.1). Localizer scans acquired in the same plane were

identified automatically using the DICOM tags. From the fully curated dataset, 274
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Figure 4.1: Sagittal localizer with aneurysm clip present, circled

scans were identified which contained saggital localizers: 136 with aneurysm clips

and 134 without. These localizers were randomly divided at a scan level: 28 scans

(10%) were reserved as a holdout set (10 with aneurysm clips and 18 without). The

remaining 246 (90%) were used for model development (126 with aneurysm clips

and 120 without).

To standardise the full CT brain dataset, scans reconstructed using the same

kernel were identified automatically using the DICOM tags. From the fully curated

dataset, 214 scans were identified which had been reconstructed using a bone kernel:

104 with aneurysm clips and 110 without. These were randomly divided at a scan

level: 22 scans (10%) were reserved as a holdout set (11 with aneurysm clips and

11 without). The remaining 192 (90%) were used for model development (93 with

aneurysm clips and 99 without).

For both localizers and full CT brains, five-fold cross-validation was used to

develop and assess models, with the data divided into 80% training data and 20%

test data in each fold.

For both types of image, the five developed models were then finally tested on

the holdout set.
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4.3 Image preprocessing

The images were preprocessed before model input by a deterministic automatic

pipeline developed in Python using tools from OpenCV [66], SciPy [70] and scikit-

image [68]. For the two-dimensional localizer scans, black borders were removed.

Pixel values were rescaled between zero and one. Images were cropped to contain

the head only, and the bottom of the images removed to exclude the mandible. This

optimisation was included after the explainability technique revealed that models

were being confounded by the presence of fillings, resulting in false positive results.

Images were resized to 400×400 pixels.

For the three-dimensional scans, the Hounsfield values were clipped with a level

of 2000 and a window of 500 to optimize the visibility of metal. Pixel values were

scaled between zero and one. Images were cropped to contain the head only and

resized to 256×256×40 pixels.

4.4 Model development

Python-based deep neural networks were built with Keras [77] using the Tensor-

Flow backend [76]. Graphics processing unit hardware acceleration on an NVIDIA

GeForce RTX 3080 was used for neural network training. Jupyter Lab [106] was used

for model development to enable iterative improvements to be made efficiently.

For the classification of the two-dimensional localizer images, a convolutional

neural network based on a pre-trained model was selected as a proven choice for

computer vision and image classification tasks using transfer learning [23]. Several

well-established pre-trained base networks were trialled, including VGG16 [107], In-

ception V3 [108], Xception [109], DenseNet [110] and MobileNet V2 [111]. Following

analysis for each model, MobileNet V2 achieved the greatest performance and was

chosen for the final models (Figure 4.2a).

For the classification of the three-dimensional CT images, a three-dimensional

convolutional neural network was trained from scratch, due to a lack of available
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(a) MobileNet V2 for localizers

(b) 3D-CNN for full CT brains

Figure 4.2: Network architectures
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Table 4.1: Performance of different base models for localizer images

Base model Mean
ROC AUC

Parameters Inference
time (ms)

GFLOPS

VGG16 0.84 15,767,361 24.9 97.9
Inception V3 0.95 26,001,185 27.4 21.0

XCeption 0.98 25,059,881 25.5 29.4
DenseNet 0.98 22,258,241 30.7 27.4

MobileNet V2 0.99 4,883,521 26.2 2.0

pre-trained three-dimensional classification networks [112]. Several different hyper-

parameter configurations were trialled. Following curve analysis for each iteration,

the one which achieved the smallest loss on the validation data was chosen for the

final models (Fig. 4.2b). Rectified Linear Units (ReLU) were used for the activation

functions for the fully connected layers [113], and dropout of 0.3 was used before

the final layer [86].

The models were trained for a maximum of 100 epochs using stochastic gradi-

ent descent with the Adam optimization algorithm (learning rate 0.001) [80]. The

binary cross-entropy loss function was utilized. The batch size was 64. The im-

ages were augmented with a 50% probability of horizontal flip. Other augmentation

methods were trialled, but did not result in any further increase in performance. The

models achieving the lowest loss on the test sets during training were saved using

checkpoints.

A classification threshold was then chosen for the models which maximized sen-

sitivity, and therefore minimized the prevalence of false negatives.

4.5 Model evaluation

Of the pre-trained base models trialled for the localizer images, MobileNet V2

achieved the greatest mean test Receiver Operating Characteristic (ROC) area un-

der the curve (AUC) and was chosen for the final models. Other base model results

are reported in Table 4.1.

A classification threshold of 0.16 was chosen to maximize sensitivity whilst main-
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Figure 4.3: Mean test performance metrics for MobileNet V2 models in training

Table 4.2: Performance metrics for MobileNet V2 models with classification
threshold of 0.16

Performance
metric

Training
mean

Holdout
mean

ROC AUC 0.99 1.00
Accuracy 95% 82%
Sensitivity 100% 100%
Specificity 89% 82%

taining a high accuracy and specificity (Figure 4.3). The final models achieved a

mean test sensitivity of 100%. Other performance metrics are reported in Table 4.2.

When tested on the holdout set of 28 localizer images, the final models achieved

a sensitivity of 100%. Other performance metrics are reported in Table 4.2.

After models had been trained on three-dimensional CT images, a classification

threshold of 0.30 was chosen to maximize sensitivity whilst maintaining a high accu-

racy and specificity (Figure 4.4). The final models achieved a mean test sensitivity

of 96%. Other performance metrics are reported in Table 4.3.

When tested on the holdout set of 22 three-dimensional CT images, the final

models achieved a mean sensitivity of 96%. Other performance metrics are reported
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Figure 4.4: Mean test performance metrics for 3D models in training

Table 4.3: Performance metrics for 3D models with classification threshold of 0.30

Performance
metric

Training
mean

Holdout
mean

ROC AUC 0.99 0.96
Accuracy 90% 95%
Sensitivity 100% 96%
Specificity 79% 95%
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in Table 4.3. Of the 22 images, 19 were correctly classified by all five models. Of the

three images that were incorrectly classified by at least one model, two were false

positives and one was a false negative.

4.6 SHAP heatmaps

The incorrectly classified 2D localizer images were analysed using the SHAP ex-

plainability method. In the early stages of the research, this demonstrated the need

to remove the mandible from the images, as prior to this removal the models were

confounded by the presence of fillings.

After the images had been cropped and models developed, the SHAP explain-

ability method was used to analyse the incorrectly classified examples in the holdout

test set. Three of the 28 images were incorrectly classified by all five models, and five

other images were misclassified by at least one of the models. All of these errors were

false positives. The average SHAP maps show that bright areas have contributed to

the models’ incorrect predictions, including other metal devices (Figure 4.5a). See

Figure B.1 of Appendix B for all false positive average SHAP maps.

The SHAP explainability method was also used to analyse the localizer images

that the models classified correctly. Of the 28 images in the holdout test set, 20

were classified correctly by all five models. The average SHAP maps for the true

positives show that the pixels containing aneurysm clips contributed positively to

models’ correct predictions that a clip is present (Figure 4.5b). See Figure B.2 of

Appendix B for all true positive average SHAP maps.

The signal was much stronger than the confounding signals in the false positive

predictions, and was much stronger than any signal in the true negative predictions

where no clip had been detected (Figure 4.5c). See Figure B.3 of Appendix B for all

true negative average SHAP maps.
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(a) False positive, as predicted by five models. The mean output
probability of the image containing a clip is 0.46.

(b) True positive, as predicted by five models. The mean output
probability of the image containing a clip is 0.99.

(c) True negative, as predicted by five models. The mean output
probability of the image containing a clip is 0.00.

Figure 4.5: Maps of average SHAP values. Any pixels highlighted in red have
contributed to the prediction that an aneurysm clip is present; any pixels

highlighted in blue have contributed to the prediction that no aneurysm clip is
present. In the case of the true positive, the aneurysm clip has been circled in

green for clarity.
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4.7 Discussion

The trained models exhibit excellent performance for both localizer images and full

CT brain scans. Both types of model generalize well to the unseen data in the

holdout sets and score particularly highly in terms of sensitivity. The sensitivity for

the localizer models is 100% in both the training and the holdout data: there are no

dangerous false negatives. The computational resources required to run the models

are particularly low in the case of the localizer images.

The use of an explainability method is particularly valuable in this application

because it demonstrates that the correct parts of the localizer image are informing

the models. In general, the positive (red) signal in the images is strongly localized

and more observable than the negative (blue) signal, which is weaker and more

distributed. This suggests that the models are being positively informed by the

presence of aneurysm clips, and are being informed on a more widespread and low

level by the absence of aneurysm clips.

The use of the explainability method also enhanced the model development pro-

cess. Early use of SHAP revealed that false positives were being caused by the

inclusion of metal fillings. This informed the decision to develop an automatic pre-

processing stage to remove the mandible from images, which resulted in better model

performance.

As this application is a potential safety tool, the models have been developed and

classification thresholds chosen to maximize sensitivity and minimize false negatives.

As a result, they are sometimes confounded by other bright areas in the images,

making some false positives likely. This could create additional work for a human

operator, but it is a preferable error to dangerous false negatives. The heatmaps

also demonstrate that other metal devices such as skull flap fixing plates and skin

clips can be responsible for false positives (see Figure B.1 of Appendix B). These

are still valuable to detect for MRI safety. Future work could assess these models

on a CT brain dataset incorporating a wider range of metallic implants, to analyse
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whether models trained to detect aneurysm clips specifically generalize to metal

implant detection more broadly.

The detection of fillings and other implants might also indicate that the model is

detecting intensity rather than the presence of aneurysm clips specifically. This may

have been caused by the preprocessing stage of scaling the pixels of individual images

between 0 and 1, which will have had the effect of producing detectably skewed

histograms for images containing high-intensity aneurysm clips. Future work should

assess whether removing or adjusting this preprocessing step results in models that

are more specific to aneurysm clip detection.

It was anticipated that models developed for full CT brains might perform better

than models developed for localizer scans, as the aneurysm clip would be presented

in three dimensions and in greater detail. However, the performance of the three-

dimensional models was slightly poorer. This may have been due to the presence of

too much other confounding detail; in the case of the localizers, the use of lower-

dimension input data may have mitigated against the problem of overfitting (as

discussed in Section 3.4.3). The poorer performance of the three-dimensional models

may also have been due to the models having been trained from scratch rather than

taking advantage of pre-learned patterns. Pre-trained networks were used for the

localizer scans due to their ready availability for transfer learning in two-dimensional

image data. At this time, there is a notable lack of equivalent pre-trained networks

available for transfer learning in three-dimensional image data. If pre-trained three-

dimensional networks become available in the future, then they might be successfully

leveraged in this application.

Future work could consider using an ensemble model. Ensemble methods are con-

sidered the state of the art for many machine learning applications, as they harness

the power of weaker learners [114]. An ensemble model for this application could

incorporate different learning algorithms, as well as bagging or boosting approaches.

The size of the data is a limitation of this research, caused by the rarity of

CT scans depicting aneurysm clips. If it were possible to obtain more data this
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might enable the development of even more accurate models in training, and enable

more representative assessment of models in the holdout set. We have mitigated this

limitation to an extent by augmenting the training data with horizontal flip, thus

artificially increasing the size of the dataset.

Another limitation of this research is the lack of external validation. External

validation sets are difficult to obtain as appropriate publicly available databases

do not exist. We have mitigated this limitation as far as possible in this study by

reserving an unseen holdout test set. However, these data originate from the same

source as the training data, and the metrics reported may not be representative

of the models’ performance on data from a different distribution. For example, the

balance of the data used in this study is not representative of the typical MRI patient

population, in which only a small minority would have aneurysm clips present. An

external validation set would allow for more accurate assessment of the models’

capability to generalize to other populations.

4.8 Concluding remarks

A pre-trained MobileNet V2 neural network achieved high accuracy and 100% sensi-

tivity for the detection of aneurysm clips in CT localizer scans, and the explainability

method informed model development and demonstrated that the network was focus-

ing on appropriate regions of interest in the images. A trained-from-scratch neural

network also achieved high accuracy and sensitivity for the detection of aneurysm

clips in full CT brain scans. This application could be a useful addition to cur-

rent processes, enabling automatic safety screening for devices in advance of MRI

appointments.

This chapter has provided an initial illustration of the potential application of

explainable deep learning to CT imaging for patient safety. The explainability tech-

nique informed the development of the model, and allowed the validity of the model’s

predictions to be confirmed. The following chapters will explore the application of

these techniques in a research context.
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Dataset curation: natural language

processing for pathology detection

5.1 Introduction

The previous chapter demonstrated an application of AI for medical imaging safety,

and showed how explainable AI can be used to interpret and quality check such

models. The dataset was relatively easily curated: a set of CT brains containing

aneurysm clips was matched with a set of CT brains not containing aneurysm clips.

However, in many cases, curation of a radiological research dataset would be much

more challenging. In Chapter 6, models built to differentiate Parkinson’s disease

(PD) scans from control scans will be discussed. Unlike the aneurysm clips task,

a medical practitioner would not be able to look at standard MRI sequences and

detect the presence of PD. The problem is more complicated, the potential patterns

to be detected more subtle. There would appear to be a much greater risk of the

model being confounded by other brain abnormalities, particularly in the case of

a routinely-collected dataset, in which scans have been acquired for any number

of reasons. In this chapter, the possibility of using deep learning for the automatic

removal of such confounding pathology will be investigated.

Routinely acquired scans are accompanied by reports written by radiologists
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which communicate findings and interpretations. We hypothesised that such reports

could be used for the automatic detection of confounding pathology, and conse-

quently the potential removal of identified scans from a radiological dataset. The

raw format of radiology reports is unstructured free text, which makes them diffi-

cult to interpret and analyse computationally [115]. To convert reports into a more

accessible format, studies have made use of natural language processing (NLP): a

technique which allows structured information to be extracted from free text [116].

Extracted structured data has been used for a variety of purposes, such as diagnosis

surveillance, case retrieval, quality assessment, patient prioritisation, and research

cohort selection [115, 117, 118]. This field has expanded in recent years due to sig-

nificant developments in deep learning techniques [115]. Prior to this, rule-based

NLP techniques were used, which were effective for radiology report classification

but required extensive manual development [119].

In previous studies which have used NLP for research dataset curation, cohorts

have been positively identified for inclusion. For example, studies have identified pa-

tients with pneumonia [120], pulmonary nodules [121], pulmonary embolisms [122],

abdominal aortic aneurysm [123], liver disease [124], hepatocellular cancer [125] and

ureteric stones [126]. These applications have often been followed by manual case

validation and data collection. In this study, by contrast, imaging data has been ex-

tracted for an existing clinical database, and we investigated whether NLP could be

applied to this imaging dataset for the exclusion of potential sources of confounding

data. This approach holds particular promise for the development of effective super-

vised machine learning models, which rely on highly curated labelled datasets [127].

Automatic removal of scans that contain confounding pathology may improve the

quality of the dataset, enhancing the performance and generalisability of developed

models.
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5.2 Data

5.2.1 Subject inclusion

A database of PD patients was used to identify cases for inclusion in the study. The

radiology information system (RIS) was used to identify all MRI brain imaging for

PD patients. A custom database query was then used to search the RIS for matched

controls. For each scan from a PD patient, two control scans were identified. All

scans had been routinely acquired for any number of reasons. Scans were matched

according to:

• scan type

• age at time of scan, within a window of ± six months

• scan date, within a window of ± twelve months

• biological sex

The final dataset contained a total of 2038 reports: 705 for scans from PD patients

and 1333 control scans (Table 5.1). A non-identifiable unique identifier was assigned

to each report.

Table 5.1: Demographic summary of PD and control cohorts

Cohort Count Median age
(interquartile

range)

Male/female percentage split

Parkinson’s 705 69 (62-79) 62/38
Control 1333 70 (64-76) 61/39

Combined 2038 70 (63-76) 63/38

5.2.2 Ground truth confirmation

Manual review of reports was performed by two radiologists. Reference guidance on

report labelling was produced to promote consistent technique between members
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of the labelling team. In the event of any disagreement of the correct labels, a

third member of the clinical research team reviewed the case to confirm the correct

labelling.

The task was formulated as a multi-class classification problem. Each report was

given a label for abnormality. The three labels given were “normal” (n=350), “ab-

normal” (n=1531) or “not enough information” (n=157). A demographic summary

is provided in Table 5.2.

Table 5.2: Demographic summary of reports by abnormality classification

Classification Count Median age
(interquartile

range)

Male/female
percentage split

PD/control
percentage split

Normal 350 63 (54-70) 61/39 45/55
Abnormal 1531 71 (66-77) 63/38 32/68

Not enough
information

157 68 (62-72) 63/37 34/66

Each report was also given a label for small vessel disease. The three labels

given were “no small vessel disease” (n=1009), “small vessel disease” (n=869) or “not

enough information” (n=160). Small vessel disease was isolated for its own category

as it was by far the most common pathological finding in the dataset. It is known

to be a common finding in brain imaging, particularly in elderly subjects [128] A

demographic summary is provided in Table 5.3.

Table 5.3: Demographic summary of reports by small vessel disease classification

Classification Count Median age
(interquartile

range)

Male/female
percentage split

PD/control
percentage split

No small
vessel disease

1009 67 (57-73) 61/39 32/68

Small vessel
disease

869 74 (69-79) 62/38 38/62

Not enough
information

160 68 (63-73) 62/38 32/68
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5.2.3 Split

80% of the reports (n=1630) were used to train and develop models. Five-fold cross-

validation was used, with the data divided into 80% training data and 20% test data

in each fold. The five final developed models were tested on the remaining holdout

set containing 20% of samples (n=408).

5.3 Text preprocessing

Reports were preprocessed to standardise text prior to model input. Punctuation and

special characters were removed using pandas [63]. Text was converted to lowercase

and tokenised using Keras [77].

5.4 Model development

Python-based deep neural networks were built with Keras using the TensorFlow

backend [76]. One-dimensional convolutional neural networks were trained from

scratch to classify the reports. Several different hyperparameter configurations were

trialled. Following curve analysis for each iteration, the one which achieved the

smallest loss on the validation data was chosen (Figure 5.1). ReLU was used for the

activation functions for the fully connected layers [113], and dropout of 0.2 was used

before the final layer [86].

The models were trained for a maximum of 100 epochs using stochastic gradient

descent with the Adam optimization algorithm (learning rate 0.001) [80]. Early

stopping with a patience of 50 epochs was used [85]. The sparse categorical cross-

entropy loss function was utilized. The labels were encoded as integers using the

LabelEncoder from scikit-learn, which does not introduce any ordinal relationship

between labels [75]. The Receiver Operating Characteristic (ROC) Area Under the

Curve (AUC) was calculated by generating a one-vs-the-rest ROC curve per class,

and then providing the mean of the three one-vs-the-rest AUCs.
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Figure 5.1: Network architecture
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Table 5.4: Performance metrics for the models developed to classify radiology
reports

Mean Receiver
Operating

Characteristic
(ROC)

Area-Under-the-
Curve (AUC)

[95% CI]

Mean balanced
accuracy [95%

CI]

Abnormality Training 0.97 [0.96, 0.98] 0.84 [0.82, 0.85]
Holdout 0.97 [0.96, 0.97] 0.82 [0.79, 0.86]

Small vessel disease Training 0.97 [0.96, 0.99] 0.84 [0.81, 0.88]
Holdout 0.98 [0.97, 0.98] 0.87 [0.85, 0.88]

5.5 Model evaluation

5.5.1 Abnormal scans

In the training set, the final models achieved a mean test ROC AUC of 0.97 and a

mean test balanced accuracy of 0.84 (Table 5.4). When tested on the holdout set, the

five final models achieved a mean ROC AUC of 0.97, and a mean balanced accuracy

of 0.82 (Table 5.4).

5.5.2 Small vessel disease

In the training set, the final models achieved a mean test ROC AUC of 0.97, and a

mean test balanced accuracy of 0.84 (Table 5.4). When tested on the holdout set, the

five final models achieved a mean ROC AUC of 0.98, and a mean balanced accuracy

of 0.87 (Table 5.4).
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5.6 SHAP plots

5.6.1 Abnormal scans

SHAP was used to explain the models’ predictions in the holdout set. The most

informative words are shown in Figure 5.2. Of the 408 reports, 340 (83%) were

correctly classified by all five models (an example is shown in Figure 5.3) and eighteen

(4%) were misclassified by all five models (an example is shown in Figure 5.4).

Figure 5.2: Probability SHAP values for words contributing most to the
“abnormal” label
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Figure 5.3: Probability SHAP values for an “abnormal” report correctly classified by all five models. Words highlighted in red have
positively contributed to the model’s prediction; words highlighted in blue have negatively contributed to the model’s prediction.

Figure 5.4: Probability SHAP values for a “normal” report misclassified as “abnormal" by all five models. Words highlighted in red have
positively contributed to the model’s prediction; words highlighted in blue have negatively contributed to the model’s prediction.
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5.6.2 Small vessel disease

SHAP was used to explain the models’ predictions in the holdout set. The most

informative words are shown in Figure 5.5. Of the 408 reports, 363 (89%) were

correctly classified by all five models (an example is shown in Figure 5.6) and fifteen

(4%) were misclassified by all five models (an example is shown in Figure 5.7).

Figure 5.5: Probability SHAP values for words contributing most to the
“abnormal” label
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Figure 5.6: A “small vessel disease” report correctly classified by all five models. Words highlighted in red have positively contributed to
the model’s prediction; words highlighted in blue have negatively contributed to the model’s prediction.

Figure 5.7: A “no small vessel disease” report misclassified as “small vessel disease" by all five models. Words highlighted in red have
positively contributed to the model’s prediction; words highlighted in blue have negatively contributed to the model’s prediction.
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5.7 Discussion

The deep learning models demonstrated excellent performance in classifying both

abnormality and small vessel disease in radiology reports. The SHAP explainability

method highlighted that relevant words were being used by the models to make these

predictions, such as “lipoma” and “cyst” in the case of abnormality classification,

and “vessel” and “ischaemic” in the case of small vessel disease classification. These

words can also occasionally confound the models, for example when they are later

negated (Figures 5.4 and 5.7). Future work could investigate whether other model

architectures are more sensitive to these contexts. As this application is intended to

exclude confounding data from research datasets, future work could also consider

tuning the models to increase sensitivity to particular abnormalities dependent on

the pathophysiology of the disease under investigation.

A limitation of this study is the lack of external validation, as such datasets are

difficult to obtain. We have mitigated this limitation as far as possible in this study

by reserving an unseen holdout test set. However, as these data originate from the

same source as the training data, the metrics reported may not be representative

of the models’ performance on data from a different distribution. For example, re-

porting styles are likely to vary between institutions. Additionally, these data were

drawn from a population of PD patients and matched controls, resulting in a dataset

that is demographically unrepresentative of a general population, as there are more

male than female patients and PD commonly presents later in life [129]. These scans

are likely to represent the spectrum of pathology in that age group, but the older

population means that there is likely to be more pathology present in this dataset

than in a more random selection of scans. Within this selection, there are also de-

mographic differences between classes which should be noted. The “abnormal” and

“small vessel disease” scans are from an observably older population (see Tables 5.2

and 5.3). Future work could assess whether this age bias has had a confounding

effect on the models, and could consider whether it might be helpful to include age
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explicitly as a separate variable.

Nonetheless, the demonstrated accuracy of this technique makes it useful for au-

tomated processing of radiology data as part of an image analysis pipeline, allowing

automated removal of investigations that may contain confounding data. In the con-

text of the PD project, for example, these classifications could be used to automat-

ically remove confounding “abnormal” or “small vessel disease” scans, to investigate

whether this data cleaning improves the performance of PD classification models. In

the future this technique may alleviate the need for costly ground-truthing of scans

by researchers.

5.8 Concluding remarks

This chapter has detailed a potential use of explainable deep learning for radio-

logical data curation, discussing explainable models developed for the detection of

confounding pathology in MRI brain scans. The use of an explainability method veri-

fied the validity of the models’ predictions. The next chapter will investigate whether

these techniques can be used to uncover new insights in such research datasets.
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Chapter 6

Parkinson’s disease imaging: new

insights using explainable AI

6.1 Introduction

The previous two chapters have demonstrated the utility of explainable deep learn-

ing for MRI safety (Chapter 4) and for automatic cleaning of radiological datasets

(Chapter 5). These were tasks that would be achievable by medical practitioners,

but training AI models to perform them might allow such processes to be auto-

mated and resources to be saved. In this chapter, we will discuss the potential of

applying AI to a problem that is not currently achievable by medical practitioners:

the detection of Parkinson’s disease in standard MRI sequence brain imaging. This

research tests the hypothesis discussed in Section 2.2.1 that AI might be able to

detect patterns inaccessible to the human visual system, and investigates the utility

of explainable AI in elucidating novel findings.

6.1.1 Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative condition resulting from a complex

array of disease mechanisms which cause the accelerated death of predominantly

dopaminergic neurons [130]. The noradrenergic, serotonergic and cholinergic systems
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are also affected [131]. It is a progressive movement disorder with a mean age of

onset of 55 [131], and manifestation in motor symptoms such as resting tremor,

bradykinesia, rigidity and postural instability [132], as well as a variety of non-

motor symptoms such as mood disorders, cognitive dysfunction, pain and sensory

dysfunction [133].

The condition was first characterised in 1817 by Dr. James Parkinson in An Es-

say on the Shaking Palsy, which detailed his observations of six men who exhibited

tremors, bent postures, unusual gaits, and a tendency to fall [134]. Fifty years later,

Dr. Jean-Martin Charcot added slowness of movement and stiffness to the list of

symptoms of “la maladie de Parkinson”, and observed that not all patients experi-

enced tremors [135]. In the intervening years much has been discovered about the

pathology of PD, but the underlying cause of neuron death remains unclear [136].

PD is the fastest growing neurological disorder in the world [137]. In 1855 ap-

proximately twenty-two people died of PD in England and Wales [138]; by 1990

there were 2.6 million cases globally, and by 2015 there were 6.3 million [139]. By

2020 this had increased again to an estimated 9.4 million people living with PD

[140].

6.1.2 Neuropathology

The pathological hallmarks of PD are the loss of nigrostriatal dopaminergic neu-

rons and the presence of Lewy bodies, discovered by Frederic Lewy in 1912 [141]

and named by Constantin Tretieakoff in 1919 after he observed them in autopsied

parkinsonian brains [142]. A major component of Lewy bodies is α-synuclein, a pro-

tein which has been associated with PD since 1997, when Dr. Mihael Polymeropoulos

and colleagues identified that the p.A53T pathogenic variant of the α-synuclein gene

gives rise to a form of familial PD [143]. Although this association has been estab-

lished, the physiological function of α-synuclein in the pathogenesis of PD remains

unknown. Lewy bodies are understood to appear sequentially in PD, first in the

dorsal motor nucleus and olfactory nucleus, and spreading to the substantia nigra
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pars compacta [144].

The substantia nigra, an area of the brain responsible for movement, is normally

dopamine-rich. In 1958, Dr. Arvid Carlsson established dopamine’s function as a

neurotransmitter, and demonstrated the effect of lowering dopamine in mammalian

brains and subsequently the effect of administering levodopa [145]. This paved the

way for the discovery that levodopa could be effectively used to treat parkinso-

nian symptoms, and for the discovery that dopamine levels in the brains of people

with PD are severely reduced [146]. The loss of dopaminergic neurons, which nor-

mally contain significant amounts of neuromelanin [147], explains the classic post

mortem finding of substantia nigra depigmentation in the brains of people with PD.

Neurodegeneration and Lewy body formation are found in the noradrenergic, sero-

tonergic and cholinergic systems, as well as in the cerebral cortex, olfactory bulb,

and autonomic nervous system [148].

6.1.3 Diagnosis

Historically, Lewy bodies could only be observed post mortem; there was no defini-

tive diagnostic test for their presence. Recently, however, the seed aggregation assay

test has been introduced for the detection of abnormal α-synuclein oligomers in

serum. This is a promising step towards improving the diagnosis and management

of synucleinopathies. Prior to this development, PD diagnosis had been based on

clinical criteria, primarily the observation of motor symptoms: asymmetrical rest-

ing tremor, slowness of movement (bradykinesia), rigidity, and clinical improvement

following administration of dopaminergic therapy [132]. Such features are included

in the diagnostic criteria developed by the UK Parkinson’s Disease Society Brain

Bank [149] and by the National Institute of Neurological Disorders and Stroke [150].

In 2015 the Movement Disorder Society updated their diagnostic criteria to include

non-motor symptoms (such as sleep dysfunction, autonomic dysfunction, hyposmia

and psychiatric dysfunction) in addition to the motor symptoms [151].

Differentiating PD from other forms of parkinsonism can pose difficulties, espe-
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cially in the early stage of the disease. As well as PD, there are atypical parkinsonian

conditions including dementia with Lewy bodies, multiple system atrophy, progres-

sive supranuclear palsy and corticobasal syndrome. These disorders are pathologi-

cally characterised by the abnormal deposition of the proteins α-synuclein and tau.

The sites of these depositions result in differing symptoms that can overlap with

symptoms of PD [152]. The diagnostic accuracy for PD is between 80% and 90%,

and even lower in early-stage disease [153].

There is an ongoing search for reliable biomarkers for PD, to allow it to be

distinguished from other conditions and to allow its progression to be monitored

[154]. Candidates include protein biomarkers, dopamine metabolites, amino acids

and other compounds found in blood, serum, and cerebrospinal fluid (CSF) [154].

Potential biomarkers may also be found in neuroimaging.

6.1.4 Imaging

The only robust diagnostic imaging test for PD is a dopamine active transporter

(DAT) scan, which uses single-photon emission computed tomography (SPECT).

The radioactive tracer attaches to the dopamine transporter found on dopaminergic

neurons, and a visual interpretation of the scan can then be used to distinguish

between normal binding and reduced or absent binding. It is particularly useful

in differential diagnosis, as it can be used to distinguish between the nigrostriatal

dopaminergic degeneration of PD and the non-nigrostriatal degeneration of aytpical

parkinsonism [155].

Recently there have been some advances in using structural imaging in PD.

Diagnosis has been augmented using high-field magnetic resonance imaging (MRI)

with accelerated acquisition combined with new sequences [156]. Imaging of the

substantia nigra has previously been difficult due to its low contrast in standard

T1 and T2-weighted MRI [157], but new sequences sensitive to iron and nigral

pigments have allowed for the assessment of pathological surrogates such as loss of

dorsal nigral hyperintensity and increased nigral iron content. Iron-related changes
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have also been observed using transcranial sonography [158]. In addition, diffusion-

weighted imaging has been used to assess the alteration of nigral diffusivity seen in

PD [159]. Outside of the substantia nigra, new methods in network analysis have

allowed the tracking of subtle changes across the brain by analysing co-varying

atrophy in cortical and subcortical structures [160].

6.1.5 Prodromal Parkinson’s disease

PD has a prodromal stage: a period during which neurodegeneration has begun, but

the motor symptoms that would allow clinical diagnosis are not defined [161]. The

basis for this non-motor prodrome is that the pathologic process may not start in

the substantia nigra [144]. In prodromal PD, patients experience a variety of non-

motor symptoms, such as hyposmia, rapid eye movement (REM) sleep behaviour

disorder (RBD), autonomic dysfunction, depression, visual changes and cognition

changes [161]. These symptoms can precede diagnosis by a decade or more [162].

The speed of the progression from prodromal PD to the full clinical stages varies

among patients and cannot be reliably predicted [163]. As dopaminergic deficiency is

present by the time that motor symptoms appear and a diagnosis can be made, it is

evident that progressive nigral and extra-nigral neurodegeneration must take place

in this prodromal phase. Studies now indicate that at the time of diagnosis, up to

80% of dopaminergic neurons within the basal ganglia have degenerated [164–167].

The detection of prodromal PD holds great promise for disease treatment. If

effective therapeutic interventions (such as promising prospective neuroprotective

compounds) could be administered at this early stage of disease development, the

death of the dopaminergic neurons could be prevented or even reversed, and thus

the most debilitating features of PD avoided.

At present there is no test for prodromal PD, although some research criteria

have been proposed (including markers such as RBD, olfactory loss and constipation,

as well as risk factors such as having a relative with PD and pesticide or solvent

exposure) [163]. Imaging biomarkers hold promise for prodromal PD detection, as
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structural imaging could conceivably be used to detect the neurodegeneration which

preceeds the onset of motor symptoms. Studies in cohorts considered at risk of

developing PD have demonstrated visible brain changes in DAT scans [168, 169],

positron emission tomography (PET) scans [169, 170], SPECT scans [171], and

ultrasound scans [172, 173], but it is yet to be seen whether such brain changes

would be visible in a retrospective cohort of patients who later received a diagnosis

of PD.

6.1.6 Prodromal imaging biomarkers: challenges

Despite the promise of prodromal imaging biomarkers, various potential modalities

entail significant clinical disadvantages. DAT and PET scans are cumbersome and

expensive tests requiring the administration of a radioactive tracer, making them

unsuitable for a population level screening strategy. If they were able to detect pro-

dromal brain changes, routine brain imaging modalities such as standard sequence

MRI would be more practically viable and clinically useful. MRI scans are often

ordered following the onset of memory problems, and are becoming increasingly

common. However, standard MRI sequences have not been used for PD detection,

as they have not appeared to show the associated brain changes.

The task of assessing imaging biomarkers for prodromal PD also encounters

the difficulty of gathering a suitable cohort. As there is no test for prodromal PD,

the only cohorts which can be prospectively recruited are those considered at risk

of developing PD (due to genetic factors or presence of non-motor symptoms, for

example), and there can be no certainty if or when they might later be diagnosed. To

assess imaging biomarkers in a cohort of confirmed prodromal PD patients would

require the curation of a retrospective cohort, which would entail collecting past

pre-diagnosis imaging data from a cohort of PD patients and a cohort of matched

controls.
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6.1.7 Genetic risk factors

Much research into the prodromal phase of PD has focussed on those with the

PD genetic risk factors glucocerebrosidase (GBA) and Leucine-rich repeat kinase 2

(LRRK2 ). These risk factors are distinct from “monogenic” forms of PD, which are

rare, transmit PD in a Mendelian manner with near 100% penetrance and can man-

ifest as early as the third decade. Conversely GBA and LRRK2 have a penetrance

of 8–10% and 28–74% respectively [174, 175]. LRRK2 PD manifests at an average

age of 59.4 [176], and is thought to progress more slowly, often with a milder tremor

predominant phenotype. GBA manifests at an average age of 55.8 [176], is associ-

ated with more cognitive/neuropsychiatric symptoms and tends to progress more

rapidly [177]. Disease phenotype in GBA appears to be variant dependent. Based on

a classification of symptoms documented in cases of the autosomal recessive lysoso-

mal storage disorder Gaucher disease (caused by GBA variants in a biallelic state),

GBA risk variants can be classified as “severe”, “mild” and non Gaucher causing PD

risk variants (from here abbreviated to “PD risk variants”) [177].

6.2 Data

6.2.1 Parkinson’s Progression Markers Initiative

The Parkinson’s Progression Markers Initiative (PPMI) is an international obser-

vational study conducted by the Michael J. Fox Foundation, recruiting patients

through outpatient neurology practices at academic centres in Austria, Canada,

France, Germany, Greece, Israel, Italy, the Netherlands, Norway, Spain, the UK,

and the USA, with the goal of identifying clinical and biological markers of disease

heterogeneity and progression in PD [178]. The PPMI study is registered with Clini-

calTrials.gov (number NCT01141023). Detailed information about inclusion criteria,

informed consent, demographic data, and study design can be found on the PPMI

website.
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Participants in this study were included in one of four cohorts: idiopathic PD

(IPD - non-carriers of genetic variants associated with PD), healthy controls, man-

ifesting carriers (GBA PD or LRRK2 PD) and non-manifesting carriers of GBA

(GBA nPD) and LRRK2 (LRRK2 nPD) risk variants. The diagnosis for each group

was made by site investigators who are movement disorder specialists and confirmed

by a central consensus committee review. The PPMI study was approved by the in-

stitutional review board at each site, and participants provided written informed

consent.

At baseline all PPMI subjects underwent a non-contrast enhanced T2-weighted

brain MRI using a 1.5 or 3 Tesla scanner, and a non-contrast enhanced 3D volumetric

T1-weighted brain MRI.

Image acquisition

All available MRI studies (n=5988) were downloaded from the PPMI website on 25

November 2020, along with demographic and clinical data, including genetic status

and date of PD diagnosis. From this full MRI dataset, all T2-weighted axial scans

were identified automatically using MRI parameters (Echo Time, Repetition Time)

contained within the DICOM tags. These scans contained twenty-four unique se-

quence descriptions; most were described as “Axial PD-T2 TSE FS”. In all cases

voxels were anisotropic, with the most common dimensions being 0.94×0.94×3mm.

Twenty-eight unique institution names were present in the DICOM tags; in a mi-

nority of cases the institution was not recorded.

Data organisation

The data were grouped into pairs of cohorts for the constructing of binary classi-

fication models. Cohorts to be compared were matched by age and sex. Ten-fold

cross-validation was used to develop and assess models, with the data divided into

90% training data and 10% test data in each fold. As many subjects have con-

tributed more than one scan to the dataset, scans were grouped by subject before
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being divided so that the same subject never appeared in both the training and the

test data. In most cases, a holdout dataset was not reserved as the cohort sizes were

small and available training data needed to be maximised. However, to assess the

possible impact of overfitting in the cross-validation strategy, a model trained for

the largest cohort (all IPD scans and matched controls) was tested on a reserved

holdout set which comprised 20% of the scans.

6.2.2 University Hospitals Plymouth NHS Trust

Routinely collected National Health Service (NHS) data were acquired from the

University Hospitals Plymouth NHS Trust (UHPNT). This has a secondary care

catchment population of 475,000 [179]. The area served, the South West of England,

is the oldest population in the UK with a high disease prevalence.

Image acquisition

A database of PD patients was used to identify cases for inclusion in the study. The

radiology information system (RIS) was used to identify all MRI brain imaging for

PD patients. A custom database query was then used to search the RIS for matched

controls. For each scan from a PD patient, three control scans were identified. All

scans had been routinely acquired for any number of reasons. Scans were matched

according to:

• scan type

• age at time of scan, within a window of ± six months

• scan date, within a window of ± twelve months

• biological sex

From the full MRI dataset, all T2-weighted axial scans were identified auto-

matically using MRI parameters (Echo Time, Repetition Time) contained within

the DICOM tags. Scan sequence descriptions were mostly absent from the DICOM
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tags, but six unique descriptions were present, of which the most common was

“*ep_b0”. In all cases voxels were anisotropic, with the most common dimensions

being 0.45×0.45×5mm. The scans were all acquired from one institution. The final

dataset consisted of 244 case scans (from 203 patients) and 744 control scans (from

724 patients). Date of diagnosis was also acquired where available for PD patients.

Data organisation

The data were grouped into pairs of cohorts for the constructing of binary classifica-

tion models. Ten-fold cross-validation was used to develop and assess models, with

the data divided into 90% training data and 10% test data in each fold. As some

patients have contributed more than one scan to the dataset, scans were grouped

by patient before being divided so that the same patient never appeared in both the

training and the test data.

6.3 Image preprocessing

Scans were skull-stripped using the FMRIB Software Library [180]. The output

of the skull-stripping pipeline was manually audited, and parameters adjusted for

optimal results. All further preprocessing was carried out using Python. Pixel values

were clipped to the 2.5–97.5% range, to minimise the influence of extreme outliers.

Volumes were cropped to the outermost dimensions of the brain and resized to

32×32×16 pixels. Pixel values were scaled between zero and one.

6.4 Model development

Python-based deep neural networks were built with Keras [77] using the TensorFlow

backend [76]. Graphics processing unit hardware acceleration was used for neural

network training.

For each pair of cohorts, a three-dimensional convolutional neural network was

trained from scratch, due to a lack of available pre-trained three-dimensional clas-
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Figure 6.1: 3D convolutional neural network architecture overview

sification networks. To approximate the optimal network structure for these data,

different hyperparameter configurations were trialled in the early stages. These hy-

perparameters were tuned following curve analysis at each iteration. Once no further

reductions in the validation loss could be achieved, the hyperparameter configura-

tion was finalised, and this architecture was used for all models (Figures 6.1 and

6.2). ReLU was used for the activation functions for the fully connected layers [113],

and dropout of 0.2 was used after each convolution block and before the final layer

[86].
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6.5 Model evaluations

6.5.1 PPMI

Idiopathic Parkinson’s disease

In this analysis, 504 scans from 193 subjects with IPD were used. Within this co-

hort, 34% of subjects had one scan, 8% had two scans, 21% had three scans, 36%

had four scans, and 1% had five scans. All subjects had undergone genetic testing

for LRRK2, GBA or α-synuclein (SNCA) mutations with no pathological or PD

risk factor variants found. To investigate whether model performance is affected by

disease progression, these scans were stratified by time since diagnosis: those ac-

quired more than four years after diagnosis (n=98), those acquired two to four years

after diagnosis (n=133), those acquired one to two years after diagnosis (n=122),

and those acquired less than a year after diagnosis (n=151). Each of these cohorts

was matched on age and sex with healthy control scans in a ratio of 1:1. Demo-

graphic data for these cohorts are shown in Table 6.1. Classification thresholds were

chosen to maximise accuracy and balance sensitivity and specificity (Figure A.1 in

Appendix A).

In IPD subjects who had been diagnosed more than 4 years previously, relatively

high accuracies (86%, 95% CI [79%, 93%]) and AUC scores (0.88, 95% CI [0.79,

0.98]) were achieved. These scores reduced successively as duration from diagnosis

decreased (Table 6.2), with scans undertaken less than one year from diagnosis

yielding an accuracy of 65%, 95% CI [56%, 74%], and an AUC of 0.70, 95% CI [0.60,

0.80] (Figure 6.3). All IPD models demonstrated similar regions of interest, notably

in CSF voxels surrounding the brainstem (Figure 6.4). The importance of brainstem

information is further explored later in this section.
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Table 6.1: Demographic and scan data for all compared PPMI cohorts.
IPD = idiopathic PD

LRRK2 PD = LRRK2 PD manifesting carriers
LRRK2 nPD = LRRK2 non PD manifesting carriers

GBA PD = GBA PD manifesting carriers
GBA nPD = GBA non PD manifesting carriers

GC GBA nPD = Gaucher causing GBA variants non manifesting carriers

Compared cohorts Cohort
size

Median age
(interquartile

range)

%
Male

Median symptom
duration in months
(interquartile range)

% 3 T
scans

% Dementia % Mild
cognitive

impairment

IPD < 1 year 151 63 (55-69) 69 14 (10-25) 87 0 16
Matched controls 151 62 (56-69) 69 - 97 0 1

IPD 1–2 years 122 63 (54-69) 69 28 (23-40) 99 0 19
Matched controls 122 62 (54-69) 69 - 98 0 2

IPD 2–4 years 133 65 (56-71) 67 41 (35-55) 100 1 21
Matched controls 133 65 (56-70) 67 - 96 0 2
IPD > 4 years 98 65 (56-73) 66 67 (59-83) 100 0 21

Matched controls 98 65 (56-72) 66 - 100 0 3
All IPD 513 64 (56-71) 66 37 (23-60) 98 0 18

Matched controls 513 64 (56-71) 66 - 96 0 2
LRRK2 PD 98 65 (59-70) 55 36 (20-52) 93 0 7

Matched controls 98 63 (56-69) 55 - 96 0 1
LRRK2 nPD 115 60 (56-65) 49 - 95 0 3

Matched controls 115 60 (56-65) 49 - 97 0 0
LRRK2 nPD < average age of onset 52 56 (53-57) 58 - 90 0 0

Matched controls 52 56 (53-57) 58 - 98 0 0
LRRK2 nPD > average age of onset 63 64 (62-68) 40 - 98 0 6

Matched controls 63 64 (60-69) 40 - 97 0 0
LRRK2 PD 95 65 (57-70) 56 55 (37-82) 96 0 7
Matched IPD 95 65 (57-70) 56 35 (23-59) 96 1 18
LRRK2 PD 95 65 (57-70) 56 55 (37-82) 96 0 7

Matched LRRK2 nPD 95 65 (57-70) 56 - 93 0 7
GBA PD 128 63 (54-73) 53 33 (14-56) 92 0 14

Matched controls 128 60 (54-69) 53 - 97 0 1
GBA nPD 109 63 (57-67) 46 - 95 0 2

Matched controls 109 63 (57-67) 46 - 95 0 1
GC GBA nPD 101 63 (57-67) 47 - 95 0 2

Matched controls 101 60 (55-65) 47 - 98 0 0
GBA nPD > average age of onset 91 64 (61-69) 45 - 96 0 2

Matched controls 91 62 (57-66) 45 - 97 0 1
GBA PD 127 62 (55-71) 58 41 (23-65) 96 1 18

Matched IPD 127 62 (55-71) 58 35 (24-62) 97 1 15
GBA PD 109 63 (57-67) 54 58 (26-77) 96 0 12

Matched GBA nPD 109 63 (57-67) 54 - 95 0 2
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(a) IPD < 1 year vs matched controls (b) IPD 1–2 years vs matched controls

(c) IPD 2–4 years vs matched controls (d) IPD > 4 years vs matched controls

Figure 6.3: Receiver Operating Characteristic (ROC) curves for idiopathic PD
(IPD) models. The bold red line represents the mean ROC curve; the dotted lines

represent the ROC curve per k-fold.
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Table 6.2: Model performance results for all compared PPMI cohorts.
IPD = idiopathic PD

LRRK2 PD = LRRK2 PD manifesting carriers
LRRK2 nPD = LRRK2 non PD manifesting carriers

GBA PD = GBA PD manifesting carriers
GBA nPD = GBA non PD manifesting carriers

GC GBA nPD = Gaucher causing GBA variants non manifesting carriers

Compared cohorts Mean test ROC
AUC [95% CI]

Mean test accuracy
[95% CI]

Mean test
sensitivity [95%

CI]

Mean test
specificity [95% CI]

IPD < 1 year vs controls 0.70 [0.60, 0.80] 65% [56%, 74%] 64% [53%, 75%] 65% [48%, 82%]
IPD 1–2 years vs controls 0.76 [0.64, 0.87] 72% [63%, 81%] 70% [60%, 81%] 72% [57%, 86%]
IPD 2–4 years vs controls 0.80 [0.72, 0.88] 77% [70%, 84%] 74% [59%, 90%] 74% [55%, 92%]
IPD > 4 years vs controls 0.88 [0.79, 0.98] 86% [79%, 93%] 85% [70%, 100%] 84% [75%, 94%]
LRRK2 PD vs controls 0.94 [0.89, 0.99] 92% [88%, 97%] 92% [82%, 100%] 92% [84%, 100%]
LRRK2 nPD vs controls 0.95 [0.91, 0.99] 94% [89%, 98%] 93% [88%, 98%] 93% [85%, 100%]

LRRK2 nPD < average age of onset vs controls 0.95 [0.86, 0.99] 90% [85%, 92%] 89% [81%, 100%] 90% [84%, 100%]
LRRK2 nPD > average age of onset vs controls 0.99 [0.98, 1.00] 98% [93%, 100%] 97% [93%, 100%] 98% [92%, 100%]

LRRK2 PD vs IPD 0.88 [0.82, 0.93] 83% [74%, 91%] 82% [69%, 95%] 81% [72%, 90%]
LRRK2 PD vs LRRK2 nPD 0.73 [0.61, 0.86] 79% [70%, 88%] 78% [62%, 94%] 78% [66%, 90%]

GBA PD vs controls 0.84 [0.69, 0.98] 81% [70%, 92%] 79% [62%, 96%] 79% [65%, 93%]
GBA nPD vs controls 0.92 [0.83, 1.00] 89% [79%, 98%] 88% [82%, 93%] 89% [73%, 100%]

GC GBA nPD vs controls 0.96 [0.91, 1.00] 93% [88%, 98%] 92% [86%, 97%] 92% [81%, 100%]
GBA nPD > average age of onset vs controls 0.93 [0.90, 0.97] 89% [84%, 94%] 88% [81%, 94%] 88% [79%, 97%]

GBA PD vs IPD 0.69 [0.61, 0.78] 69% [62%, 77%] 69% [59%, 78%] 68% [55%, 81%]
GBA PD vs GBA nPD 0.82 [0.74, 0.90] 81% [76%, 87%] 78% [61%, 96%] 78% [65%, 91%]
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(a) IPD < 1 year from diagnosis vs matched controls

(b) IPD 1–2 years from diagnosis vs matched controls

(c) IPD 2–4 years from diagnosis vs matched controls

(d) IPD > 4 years from diagnosis vs matched controls

Figure 6.4: Mean SHapley Additive exPlanation (SHAP) maps for correct predictions of idiopathic PD (IPD). Pixels highlighted in red have
contributed to the prediction.
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Holdout testing

In this analysis, all IPD scans were matched on age and sex with healthy control

scans in a ratio of 1:1. Demographic data are shown in Table 6.1. Of the total

1026 scans, 80% (n=818) were used for model development, and 20% (n=208) were

reserved as a holdout test set for final evaluation of the model. The classification

threshold was chosen in the development stage to maximise accuracy and balance

sensitivity and specificity (Figure A.1 in Appendix A).

In development, the models yielded medium performance results (Table 6.3), with

an AUC of 0.71 (95% CI [0.57, 0.85]) and an accuracy of 71% (95% CI [60%, 81%]).

This performance is not surprising given the previously demonstrated decreasing

performance for earlier disease stages (Table 6.2) and the skew in this cohort’s

population towards earlier disease stages (Table 6.1).

The holdout results were similar, albeit slightly lower (Table 6.3, with an AUC of

0.69 (95% CI [0.65, 0.73]) and an accuracy of 63% (95% CI [58%, 69%]). This demon-

strates that there has not been major overfitting in the k-fold model development

strategy.

Table 6.3: Holdout performance results for models trained on all idiopathic
Parkinson’s disease and matched controls

Validation
strategy

Mean ROC
AUC [95%

CI]

Mean
accuracy
[95% CI]

Mean
sensitivity
[95% CI]

Mean
specificity
[95% CI]

K-fold test score 0.71 [0.57,
0.85]

71% [60%,
81%]

71% [54%,
88%]

70% [53%,
87%]

Holdout score 0.69 [0.65,
0.73]

63% [58%,
69%]

68% [56%,
80%]

56% [39%,
73%]

Masking experiments

This same dataset of all IPD scans and matched controls was used to conduct some

experiments to further investigate the regions of interest identified in the SHAP

maps (Figure 6.4). In one experiment, the whole brain was masked out of the image

Chapter 6 Megan Courtman 81



Explainable deep learning for medical imaging classification

to assess the impact of non-brain information. In the other, the brainstem (identified

using the FMRIB Software Library tool FIRST [180]) was masked out of the image,

to see whether brainstem atrophy was informing the models.

Table 6.4: Performance results for models trained on masked images

Masked out Mean test ROC AUC
[95% CI]

Mean test accuracy
[95% CI]

Whole brain 0.50 53% [47%, 59%]
Brainstem 0.79 [0.71, 0.86] 74% [64%, 84%]

When the whole brain was masked out, the model performance was no better

than random guessing (Table 6.4), indicating that no non-brain information has con-

founded the previously reported models. When just the brainstem was masked out,

the performance of the models was somewhat higher than the previously reported

models (Tables 6.3 and 6.4), indicating that the brainstem, and brainstem atrophy

in particular, has not been a source of discriminative information. The higher per-

formance results might be attributed to the removal of non-informative data, and

the focusing of the models on more informative data, likely cortical changes.

LRRK2

In this analysis, 210 scans from 159 carriers of LRRK2 risk variants were used.

These were stratified into PD manifesting carriers (LRRK2 PD, n=95) and non

PD manifesting carriers (LRRK2 nPD, n=115). In the case of the non-manifesting

carriers, scans were further stratified by time of scan and divided into those acquired

after the age of 59.4 (the average age of onset of LRRK2 PD) [176] (n=63), and

those taken before (n=52). Each pair of compared cohorts was matched on age and

sex in a ratio of 1:1. Demographic data for these cohorts are shown in Table 6.1.

Classification thresholds were chosen to maximise accuracy and balance sensitivity

and specificity (Figure A.2 in Appendix A).

Models performed well in all cases (Table 6.2 and Figure 6.5). Ninety two percent

of LRRK2 PD/control scans, 95% CI [88%, 97%], (AUC 0.94, 95% CI [0.89, 0.99])

82 Megan Courtman Chapter 6



Explainable deep learning for medical imaging classification

were predicted correctly. Ninety four percent of LRRK2 nPD/control scans, 95% CI

[89%, 98%], (AUC 0.95, 95% CI [0.91, 0.99]) were predicted correctly. This rose to

98%, 95% CI [93%, 100%] (AUC 0.99, 95% CI [0.98, 1.00]) in the scans from LRRK2

nPD subjects over the age of onset. Three of the 115 LRRK2 nPD scans came from

subjects who converted to motor Parkinson’s during the study period. The model

correctly predicted these scans in all cases, with probability estimates of 93%, 99%

and 97% respectively. Notably the model comparing LRRK2 PD and IPD performed

better than equivalent GBA PD models, predicting LRRK2 scans with 83% accu-

racy, 95% CI [74%, 91%] (AUC 0.88, 95% CI [0.82, 0.93]). Average SHAP heatmaps

demonstrated predominant interest in pixels immediately adjacent to the brainstem

parenchyma (Figure 6.6). In the LRRK2 nPD/control model, there appeared also

to be additional interest in pixels adjacent to the cerebellum, particularly in scans

from subjects over the average age of onset.

Chapter 6 Megan Courtman 83



Explainable deep learning for medical imaging classification

(a) LRRK2 PD vs matched controls (b) LRRK2 nPD vs matched controls

(c) LRRK2 nPD < average age of onset vs
matched controls

(d) LRRK2 nPD > average age of onset vs
matched controls

(e) LRRK2 PD vs matched IPD (f) LRRK2 PD vs matched LRRK2 nPD

Figure 6.5: Receiver Operating Characteristic (ROC) curves for LRRK2 models.
The bold red line represents the mean ROC curve; the dotted lines represent the

ROC curve per k-fold.

84 Megan Courtman Chapter 6



(a) LRRK2 PD vs matched controls

(b) LRRK2 nPD vs matched controls

(c) LRRK2 nPD < average age of onset vs matched controls
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(d) LRRK2 nPD > average age of onset vs matched controls

(e) LRRK2 PD vs matched IPD

(f) LRRK2 PD vs matched LRRK2 nPD

Figure 6.6: Mean SHapley Additive exPlanation (SHAP) maps for correct predictions of LRRK2 carriers. Pixels highlighted in red have
contributed positively to the prediction; pixels highlighted in blue have contributed negatively to the prediction.
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GBA

In this analysis, 236 scans from 159 carriers of a GBA variant were used. These were

stratified into PD manifesting carriers (GBA PD, n=127) and non PD manifesting

carriers (GBA nPD, n=109). The scans were also stratified into 184 scans from

carriers of Gaucher causing GBA variants (GC GBA) and 51 scans from carriers of

the non Gaucher causing PD variants p.E326K (alternative nomenclature p.E365K)

and p.T369M (p.T409M). There were insufficient numbers to build models using

cases stratified into “mild” and “severe” variants. The GBA nPD group was also

further stratified by time of scan: divided into those acquired after the age of 55.8

(the average age of onset of GBA related PD) [176] (n=91), and those taken before

(n=18). The latter cohort was not large enough to build a model. Each pair of

compared cohorts was matched on age and sex in a ratio of 1:1. Demographic data

for these cohorts are shown in Table 6.1. Classification thresholds were chosen to

maximise accuracy and balance sensitivity and specificity (Figure A.3 in Appendix

A).

GBA models performed well (Table 6.2 and Figure 6.7). The model built for the

combined GBA PD cohort was able to successfully predict GBA PD scans with an

accuracy of 81%, 95% CI [70%, 92%] (AUC 0.84, 95% CI [0.69, 0.98]). The model

built for the combined GBA nPD cohort was able to successfully predict GBA nPD

scans with an accuracy of 89%, 95% CI [79%, 98%] (AUC 0.92, 95% CI [0.83, 1.00]).

This increased marginally to 93%, 95% CI [84%, 94%] (AUC 0.96, 95% CI [0.90,

0.97]) in the combined ‘mild’ and ‘severe’ GBA nPD cohort. In the cohort of GBA

nPD participants over the average age of onset, performance was almost identical

to the main model (89% accuracy, 95% CI [88%, 98%], AUC 0.93, 95% CI [0.91,

1.00]). In common with idiopathic PD, SHAP heatmaps demonstrated interest in

non-parenchymal pixels surrounding the brainstem (Figure 6.8). Additionally there

was a focus on pixels adjacent to the posterior occipital lobe.
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(a) GBA PD vs matched controls (b) GBA nPD vs matched controls

(c) GC GBA nPD vs matched controls (d) GBA nPD > average age of onset vs
matched controls

(e) GBA PD vs matched IPD (f) GBA PD vs matched GBA nPD

Figure 6.7: Receiver Operating Characteristic (ROC) curves for GBA models. The
bold red line represents the mean ROC curve; the dotted lines represent the ROC

curve per k-fold.
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(a) GBA PD vs matched controls

(b) GBA nPD vs matched controls

(c) GC GBA nPD vs matched controls
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(d) GBA nPD > average age of onset vs matched controls

(e) GBA PD vs matched IPD

(f) GBA PD vs matched GBA nPD

Figure 6.8: Mean SHapley Additive exPlanation (SHAP) maps for correct predictions of GBA carriers. Pixels highlighted in red have
contributed positively to the prediction; pixels highlighted in blue have contributed negatively to the prediction.
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6.5.2 UHPNT

In this analysis, 244 scans from 203 patients with PD were used. The 236 scans for

which a date of diagnosis was present were then stratified by time of scan: divided

into those acquired after diagnosis (n=131) and those acquired before diagnosis

(n=105). Each pair of compared cohorts was matched on age in a ratio of 1:1.

Demographic data for these cohorts are shown in Table 6.5. Classification thresholds

were chosen to maximise accuracy and balance sensitivity and specificity (Figure A.4

in Appendix A).

Table 6.5: Demographic and scan data for all compared UHPNT cohorts

Compared cohorts Cohort
size

Median age
(interquartile

range)

Median disease
duration in months
(interquartile range)

% 1.5
T

scans

All PD 244 70 (62-76) 1 (0-41) 96
Matched controls 244 70 (62-76) - 98
PD post-diagnosis 131 73 (65-78) 36 (3-71) 95
Matched controls 131 73 (65-78) - 97
PD pre-diagnosis 105 68 (58-71) - 97
Matched controls 105 68 (58-71) - 98

These models had some predictive power (Table 6.6 and Figure 6.9), but exhib-

ited notably inferior performance when compared to the models developed for the

PPMI dataset. The models built for all PD scans predicted PD with an accuracy of

61%, 95% CI [56%, 66%] (AUC 0.63, 95% CI [0.57, 0.69]). The models built for the

stratified scans performed better: those built for scans taken after diagnosis were

able to predict PD scans with an accuracy of 68%, 95% CI [62%, 73%] (AUC 0.66,

95% CI [0.55, 0.78]). Unexpectedly, the performance was higher for the models built

for scans taken before diagnosis, with an accuracy of 77%, 95% CI [68%, 85%] (AUC

0.78, 95% CI [0.70, 0.85]). In common with the PPMI models, the SHAP heatmaps

demonstrated interest in the pixels surrounding the brainstem (Figure 6.10), but

the signal is weaker and less focused.
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(a) PD vs matched controls (b) PD post-diagnosis vs matched controls

(c) PD pre-diagnosis vs matched controls

Figure 6.9: Receiver Operating Characteristic (ROC) curves for UHPNT models.
The bold red line represents the mean ROC curve; the dotted lines represent the

ROC curve per k-fold.
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Table 6.6: Model performance results for all compared UHPNT cohorts.

Compared
cohorts

Mean test ROC
AUC [95% CI]

Mean test
accuracy [95%

CI]

Mean test
sensitivity [95%

CI]

Mean test
specificity [95%

CI]

All PD vs
controls

0.63 [0.57, 0.69] 0.61 [0.56, 0.66] 0.59 [0.44, 0.74] 0.61 [0.48, 0.75]

PD
post-diagnosis

vs controls

0.66 [0.55, 0.78] 0.68 [0.62, 0.73] 0.66 [0.53, 0.79] 0.67 [0.52, 0.81]

PD
pre-diagnosis vs

controls

0.78 [0.70, 0.85] 0.77 [0.68, 0.85] 0.75 [0.62, 0.88] 0.75 [0.64, 0.86]
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(a) PD vs matched controls

(b) PD post-diagnosis vs matched controls

(c) PD pre-diagnosis vs matched controls

Figure 6.10: Mean SHapley Additive exPlanation (SHAP) maps for correct predictions of PD in UHPNT cohorts. Pixels highlighted in red
have contributed positively to the prediction; pixels highlighted in blue have contributed negatively to the prediction.
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Table 6.7: Demographic and scan data for external validation cohorts

Compared cohorts Cohort
size

Median age
(interquartile

range)

Median disease
duration in months
(interquartile range)

% 3 T
scans

PPMI post-diagnosis 511 64 (56-71) 20 (8-34) 96
Matched controls 511 64 (56-71) - 92
UHPNT > 4 years

post-diagnosis
51 74 (67-79) 91 (62-125) 8

Matched controls 51 74 (67-79) - 6
UHPNT 2-4 years

post-diagnosis
24 74 (62-78) 38 (34-42) 4

Matched controls 24 74 (62-78) - 0
UHPNT 1-2 years

post-diagnosis
9 76 (68-78) 18 (14-20) 1

Matched controls 9 76 (68-78) - 0
UHPNT < 1 year

post-diagnosis
71 69 (61-73) 1 (0-2) 3

Matched controls 71 69 (61-73) - 1

6.5.3 External validation

In this analysis, the models that had been trained on the PPMI data were tested on

equivalent UHPNT data, and the models that had been trained on the UHPNT data

were tested on equivalent PPMI data. In the case of the UHPNT models, only the

models developed for post-diagnosis scans could be tested on the PPMI data, as the

PPMI data does not contain scans acquired prior to diagnosis. These models were

tested on 511 scans from PPMI subjects with IPD, with PPMI controls matched on

age and sex in a ratio of 1:1. In the case of the PPMI models, only the IPD models

could be tested on the UHPNT dataset. The appropriate models were tested on

51 UHPNT scans acquired more than four years after diagnosis, 24 UHPNT scans

acquired two to four years after diagnosis, nine UHPNT scans acquired one to two

years after diagnosis, 71 UNPHT scans acquired less than a year after diagnosis,

and in each case UHPNT controls matched on age in a ratio of 1:1. Demographic

data for these cohorts are shown in Table 6.7.

These models all performed notably poorly (Table 6.8 and Figure 6.11). The

models trained on UHPNT data predicted PD with an accuracy of 51%, 95% CI

[50%, 52%] (AUC 0.52, 95% CI [0.49, 0.55]). This is no better than random guessing.

Likewise the models trained on PPMI data predicted PD with an accuracy of AUC
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Table 6.8: Model performance results for external validation of PPMI and UHPNT
models

Model Test cohort Mean ROC
AUC [95% CI]

Mean accuracy
[95% CI]

UHPNT post-diagnosis vs
controls

PPMI post-diagnosis vs
controls

0.52 [0.49, 0.55] 0.51 [0.50, 0.52]

PPMI > 4 years
post-diagnosis vs controls

UHPNT > 4 years
post-diagnosis vs controls

0.57 [0.55, 0.60] 0.50

PPMI 2-4 years
post-diagnosis vs controls

UHPNT 2-4 years
post-diagnosis vs controls

0.55 [0.51, 0.59] 0.50

PPMI 1-2 years
post-diagnosis vs controls

UHPNT 1-2 years
post-diagnosis vs controls

0.53 [0.46, 0.60] 0.50

PPMI < 1 year
post-diagnosis vs controls

UHPNT < 1 year
post-diagnosis vs controls

0.51 [0.50, 0.53] 0.50

of 0.57, 95% CI [0.55, 0.60] for scans acquired more than four years after diagnosis,

0.55, 95% CI [0.51, 0.59] for scans acquired two to four years after diagnosis, 0.53,

95% CI [0.46, 0.60] for scans acquired one to two years after diagnosis, and 0.51,

95% CI [0.50, 0.53] for scans acquired less than a year after diagnosis. It is notable

that the AUC was lower for earlier cases of PD, just as it was for the PPMI data (see

Table 6.2). The accuracy was always 50%. This was because the output probabilities

that the scans were from a PD patient were always extremely tightly grouped; this

meant that all the scans would fall on one side of the classification threshold chosen

and exactly half were correctly predicted. In contrast, the UHPNT model that was

tested on the PPMI data output a much greater range of probabilities, but still

performed as poorly.
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(a) UHPNT post-diagnosis vs controls
tested on PPMI post-diagnosis vs controls

(b) PPMI > 4 years vs controls tested on
UHPNT > 4 years vs controls

(c) PPMI 2-4 years vs controls tested on
UHPNT 2-4 years vs controls

(d) PPMI 1-2 years vs controls tested on
UHPNT 1-2 years vs controls

(e) PPMI < 1 year vs controls tested on
UHPNT < 1 year vs controls

Figure 6.11: Receiver Operating Characteristic (ROC) curves for external
validation of PPMI and UHPNT models. The bold red line represents the mean

ROC curve; the dotted lines represent the ROC curve per k-fold.
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6.5.4 Combined PPMI and UHPNT data

In this analysis, scans from PPMI subjects with IPD were combined with scans from

UHPNT patients with PD. These scans were stratified by time since diagnosis so

that results could be compared with previous models as closely as possible. UHPNT

scans acquired more than four years after PD diagnosis (n=51) were age-matched

with UHPNT controls (n=51), with PPMI scans acquired more than four years

after diagnosis (n=51), and with PPMI controls (n=51). UHPNT scans acquired one

to four years after PD diagnosis (n=35) were age-matched with UHPNT controls

(n=35), with PPMI scans acquired one to four years after diagnosis (n=35), and with

PPMI controls (n=35). There were not enough scans to divide this cohort into scans

acquired two to four years after diagnosis and one to two years after diagnosis, as

had been done with the PPMI dataset. UHPNT scans acquired less than a year after

PD diagnosis (n=71) were age-matched with UHPNT controls (n=71), with PPMI

scans acquired less than a year after diagnosis (n=71), and with PPMI controls

(n=71). Demographic data for these cohorts are shown in Table 6.9. Models were

built to differentiate between PD scans and control scans. Classification thresholds

were chosen to maximise accuracy and balance sensitivity and specificity (Figure

A.5 in Appendix A).

Table 6.9: Demographic and scan data for combined PPMI and UHPNT cohorts

Compared cohorts Cohort
size

Median age
(interquartile

range)

Median disease
duration in months
(interquartile range)

% 3 T
scans

PD > 4 years 102 74 (67-79) 61 (52-90) 54
Matched controls 102 74 (67-79) - 52

PD 1-4 years 70 75 (64-78) 26 (19-35) 50
Matched controls 70 75 (64-78) - 50

PD < 1 year 142 69 (61-74) 2 (1-5) 46
Matched controls 142 69 (61-74) - 49

In common with the PPMI models, these combined models were better at de-

tecting more advanced PD (Table 6.10 and Figure 6.12). The models built for scans

acquired more than four years after diagnosis predicted PD with an accuracy of

86%, 95% CI [78%, 94%] (AUC 0.92, 95% CI [0.87, 0.97]). The models built for
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scans acquired one to four years after diagnosis predicted PD with an accuracy of

86%, 95% CI [79%, 94%] (AUC 0.83, 95% CI [0.72, 0.94]). The models built for

scans acquired less than a year after diagnosis exhibited poorer performance, pre-

dicting PD with an accuracy of 72%, 95% CI [63%, 80%] (AUC 0.68, 95% CI [0.58,

0.79]). The performance of these models was usually slightly higher than the per-

formance of the equivalent models trained on PPMI data alone. When the metrics

were calculated for the PPMI and UHPNT scans separately, the performance of

the models was usually notably higher for the PPMI scans. In common with other

models, the SHAP heatmaps demonstrated interest in the pixels surrounding the

brainstem (Figure 6.13).
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Table 6.10: Model performance results for compared combined PPMI and UHPNT cohorts.

Compared cohorts Overall
mean test
ROC AUC
[95% CI]

Mean test
ROC AUC

by data
source

(PPMI/
UNPHT)

Overall
mean test
accuracy
[95% CI]

Mean test
accuracy by
data source

(PPMI/
UNPHT)

Overall
mean test
sensitivity
[95% CI]

Mean test
sensitivity
by data
source

(PPMI/
UNPHT)

Overall
mean test
specificity
[95% CI]

Mean test
specificity by
data source

(PPMI/
UNPHT)

PD > 4 years vs controls 0.92 [0.87,
0.97]

0.98/0.82 0.86 [0.78,
0.94]

0.94/0.77 0.85 [0.85,
1.00]

0.95/0.78 0.85 [0.68,
0.87]

0.97/0.72

PD 1-4 years vs controls 0.83 [0.72,
0.94]

0.80/0.78 0.86 [0.79,
0.94]

0.89/0.84 0.83 [0.71,
0.95]

0.85/0.85 0.84 [0.67,
1.00]

0.85/0.79

PD < 1 year vs controls 0.68 [0.58,
0.79]

0.70/0.67 0.72 [0.63,
0.80]

0.76/0.68 0.69 [0.54,
0.84]

0.74/0.66 0.69 [0.49,
0.89]

0.72/0.64
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(a) PD > 4 years vs matched controls (b) PD 1-4 years vs matched controls

(c) PD < 1 year vs matched controls

Figure 6.12: Receiver Operating Characteristic (ROC) curves for combined PPMI
and UHPNT models. The bold red line represents the mean ROC curve; the

dotted lines represent the ROC curve per k-fold.
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(a) PD > 4 years vs matched controls

(b) PD 1-4 years vs matched controls

(c) PD < 1 year vs matched controls

Figure 6.13: Mean SHapley Additive exPlanation (SHAP) maps for correct predictions of PD in combined PPMI and UHPNT cohorts. Pixels
highlighted in red have contributed positively to the prediction; pixels highlighted in blue have contributed negatively to the prediction.
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6.6 Discussion

6.6.1 PPMI

Our models reliably differentiated PD from control scans. The findings suggest that

deep learning can identify progressive changes in both idiopathic and genetic PD.

The trained models exhibited good performance for established cases of idiopathic

PD, which steadily decreased for models trained on earlier cases of PD.

Most of the interest of our models appears focused on CSF spaces surrounding

the brainstem. Masking experiments suggested that it was not the brainstem itself

which was informing the model predictions; it therefore seems likely that the regions

of interest represent areas that have been affected by cortical changes. Models might

have detected enlargement in the CSF spaces caused by cortical atrophy. Cerebral

atrophy has previously been found in PD, with reported reductions in grey matter

volume in the frontal and temporal lobes [181], and diffuse gyral atrophy throughout

the temporal, parietal and frontal cortices [182]. A recent study has found enlarge-

ment of the interpeduncular and right ambient cisterns in patients with PD [183].

Another possibility is that the models have detected ventricular enlargement caused

by cortical changes. Assymetric lateral ventricular enlargement has been reported

in PD, associated with progression [184]. Ventricular enlargement has also been as-

sociated with cognitive decline in PD [185]. Such progressive patterns might explain

the models’ higher performance for later stages of PD.

To investigate whether these changes were visible in the genetic cohorts, we

built models for the non-manifesting carriers of LRRK2 and GBA variants, both

genetic risk factors for PD. Between 28–74% of LRRK2 and 8–10% of GBA carriers

will develop PD [174, 175], hence a significant portion of these subjects would be

expected to be within the prodromal phase of PD. Given the findings of our IPD

models, we predicted that these models would not perform well, as any brain changes

were anticipated to be early and subtle. However, the performance of these models

was remarkably high for both GBA nPD and LRRK2 nPD groups. Once again,
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explainability techniques suggested a focus on pixels adjacent to the brainstem.

In the case of the non-manifesting GBA carriers, the models also demonstrated

interest in pixels adjacent to the posterior parieto-occipital lobe. GBA-associated

PD has been shown to be associated with a higher frequency of cognitive deficits in

the visuospatial domain as well as visual hallucinations [186], hence atrophic changes

within the wider visual processing regions would seem to be of particular relevance.

Of less clear significance is the highlighting in LRRK2 nPD groups of pixels adjacent

to the cerebellum, particularly amongst older subjects. This has not previously been

reported. It is notable that our models were able to correctly identify the brains of

all the LRRK2 nPD group who subsequently developed motor PD and in all cases

the predictions were made with a high degree of certainty (Figure B.4 in Appendix

B). In the case of both GBA nPD and LRRK2 nPD, we are unable to make more

certain judgement on the drivers of these very high model performances. It does

however suggest that there is scope to use such techniques to identify carriers of these

genetic risk factors using machine learning models. It may also suggest that early

brain changes in GBA and LRRK2 carriers are distinct from early brain changes in

idiopathic PD, which would support speculation that genetic and idiopathic PD are

separate disease pathways that converge on a broadly shared phenotype [187].

To further investigate these findings for potential progressive changes, we subdi-

vided the unaffected GBA and LRRK2 cohorts again by age, to assess whether there

was any difference in the performance of models built to distinguish scans before

and after the average age of onset of GBA/LRRK2 PD. Unfortunately, among the

GBA carriers, there were only enough scans taken after the average age of onset to

build models for these. These had a slightly higher performance than models built

for all GBA unaffected ages. For the LRRK2 carriers, models built for scans from

the older carriers yielded a marginally higher performance than the younger carriers.

In both cases this may suggest that the brain differences become more pronounced

with time.

A limitation of this work was that the impact of movement was not quantitatively
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considered. Movement artefacts (from tremor, for example) are likely to have been

present in the images and might have informed the models. Future work could

consider extracting an estimation of intrascan motion using the diffusion-weighted

imaging present in the PPMI dataset and the EDDY tool from the FMRIB Software

Library [180]. This would allow the impact of motion upon the models to be analysed.

6.6.2 UHPNT

The models trained on UHPNT data were less reliably able to differentiate PD from

control scans than those models trained on PPMI data alone. There are several

likely reasons for this. The first is the size of the data: in the PPMI dataset there

are double the number of total IPD scans (albeit from a slightly smaller number of

individuals) than are present in the UHPNT dataset. In addition, the fewer UHPNT

scans are more diverse in terms of PD progression, with many scans acquired prior

to diagnosis, and therefore containing subtle (if any) early brain changes. The PPMI

scans, in contrast, were all acquired after diagnosis, so on average represent more

advanced cases of PD.

The external validation of the models trained on PPMI and UHPNT scans re-

spectively yielded notably poor results. When tested in external datasets, the models

performed no better than random guessing. This could suggest that the model is

exhibiting extreme overfitting to the training data. However, the SHAP heatmaps

for the trained models indicate that this is unlikely, given that they demonstrate fo-

cused interest in areas associated with the neuropathology of PD (rather than more

diffuse interest that would suggest the learning of spurious patterns). It seems more

likely in this case that the poor generalisability is due to fundamental differences

between the two datasets, which made patterns learned in one ungeneralisable to the

other. One such potentially insurmountable difference is the magnetic field strength

of the scanners used. The vast majority of the PPMI scans were acquired using 3 T

scanners, whereas the vast majority of the UHPNT scans were acquired using 1.5 T

scanners. The greater magnetic field strength used to acquire the PPMI scans may
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have increased the diagnostic capacity of the imaging, as the signal-to-noise ratio is

increased and small structures can be seen more clearly [188]. In other studies, for

example, 3 T has been shown to be superior at detecting brain atrophy [189] and at

visualising the subthalamic nucleus [190].

Another key difference between the datasets is in the resolution of the images.

The voxel dimensions varied between the datasets (and indeed within datasets); for

example, the slice thickness in the PPMI dataset was most commonly 3mm, whereas

in the UHPNT dataset it was most commonly 5mm. Images were resized to uniform

dimensions prior to model input, but this step will have been conducted for vastly

different quantities of voxels, and the results might not have been comparable. Future

work should consider registering all the images to a common template to unify the

resolutions.

A further significant difference between the two datasets is in the preprocessing.

In the PPMI study, all T2 scans were acquired on the same day as a T1 scan.

T1 scans allow for more precise brain extraction - so in order to extract the brain

material from T2 scans, the T2 scan was registered to its matching T1 scan, and the

extracted brain mask from the T1 scan was applied to the T2 scan. For the UHPNT

dataset this stage was not possible, as T2 scans were not reliably accompanied by a

T1 scan. Brain extraction was performed on the T2 scans alone, which is likely to

have been less successful. This may have had effects such as obscuring atrophy.

Another possible difference is in demographics. The cohorts stratified by time

since diagnosis are older in the UHPNT dataset (see Table 6.8) than in the PPMI

dataset (see Table 6.2). The PPMI dataset is geographically more diverse. Other

demographic data are anonymised in the UHPNT dataset, but it is likely that the

subjects of the research PPMI dataset are wealthier and more highly educated than

a sample of the general population.

Finally, the PPMI and UHPNT scans were acquired in very different environ-

ments. The PPMI scans were acquired according to a strict research protocol, with

cohorts and exclusion criteria clearly defined. The UHPNT scans were acquired
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routinely for any number of reasons in much more disparate circumstances, and

probably contained a wide variety of confounding data. The nature of the controls

is likely to be extremely different, as these are not subjects who have been chosen as

healthy controls, but rather patients in need of a scan for a wide variety of reasons.

Given more data, the NLP application developed in Chapter 5 might be used to

automatically remove confounding data. However, in this case the size of the data

was already too small to reduce further.

It is noteworthy that the models trained on the combined PPMI and UHPNT

data performed slightly better than models trained on PPMI data alone, and that

performance was notably higher for test PPMI scans than for test UHPNT scans.

This suggests that the most informative data came from the PPMI images, but that

the UHPNT images contained enough informative data to enhance the performance

of the models beyond what could be learned from PPMI data alone. It is possible

that training models on such diverse datasets allow more generalisable patterns to be

learned. It would be valuable to validate these results in a further external dataset.

These varying results and these differences in datasets highlight the importance

of not assuming that a model that performs well in a research setting will perform

equally well in a routine clinical setting. External validation is rarely performed in

applications of machine learning in medical imaging; these results demonstrate why

this is a major limitation of these studies. The poor results for routinely collected

data are suggestive that this kind of data is sub-optimal for this task, and that

a more appropriate approach would be to develop optimal diagnostic tools in the

clinic.

6.7 Concluding remarks

This chapter has presented a potential use of explainable AI for uncovering new in-

sights in research datasets: discussing explainable models developed for the detection

of PD in MRI brain scans and how these have detected progressive changes as well

as differences in the brains of non-manifesting carriers of Parkinson’s genetic risk
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variants. The next, concluding chapter will discuss the contributions to knowledge,

limitations, future directions, and conclusions from this thesis.
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Contributions to knowledge, future

work and conclusion

7.1 Contributions to knowledge

7.1.1 Detection of aneurysm clips

In Chapter 4, deep learning models were developed to detect aneurysm clips in

CT sagittal localizer scans with 100% sensitivity. This is the first safety tool de-

veloped for the automatic flagging of aneurysm clips prior to MRI appointments.

The computational resources required to run the models are low, and the absence

of dangerous false negatives makes these models particularly suitable for a safety

application (although some false positives are likely). The use of SHAP in model

development demonstrated the many benefits of explainable AI: early in develop-

ment, it demonstrated that the models were being confounded by the presence of

fillings, informing the decision to exclude the mandible from images. Later, SHAP

highlighted that the pixels containing aneurysm clips were indeed contributing very

strongly to the models’ prediction that an aneurysm clip was present. SHAP also

highlighted that other metal devices were responsible for false positives, but these

are still valuable to detect for MRI safety. Explainable AI allowed for the devel-

opment of a better model, and confirmed that the appropriate parts of the images
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were informing model predictions, allowing the model to be more interpretable and

trustworthy.

7.1.2 Detection of pathology in radiology reports

In Chapter 5, deep learning models were developed to classify abnormality and small

vessel disease in radiology reports, with 91% accuracy and 93% accuracy respectively.

This is the first natural language processing tool developed with the aim of automat-

ically removing confounding pathology from radiology research cohorts. SHAP again

enhanced the interpretability and trustworthiness of the models by highlighting that

biologically relevant words were contributing most to model predictions.

7.1.3 Application of SHAP to 3D medical imaging

In Chapter 6, deep learning models were developed to classify the presence of Parkin-

son’s disease in MRI brain scans. These were 3D scans, with multiple 2D frames, for

which a bespoke explainability pipeline had to be built as the shap Python library

does not contain the functionality to visualise explanations for 3D images. The pro-

vided explainers can calculate the Shapley values for 3D convolutional networks,

as confirmed by the creator of the library [191], but this does not appear to be a

common usage. In the literature review conducted for this thesis, no other examples

were found of SHAP being applied to 3D medical imaging.

7.1.4 Identification of progressive Parkinson’s brain changes

In Chapter 6, deep learning models developed to differentiate idiopathic Parkin-

son’s disease from control scans exhibited good performance for established cases,

but steadily lower performance for earlier cases. The SHAP explainability method

highlighted that the same regions of interest, likely affected by cortical changes,

were informing the different models trained on stratified cohorts, suggesting that

progressive changes have been identified.
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7.1.5 Identification of differences in the brains of non-manifesting

carriers of Parkinson’s genetic risk variants

In Chapter 6, deep learning models were developed to differentiate carriers of ge-

netic risk variants for Parkinson’s disease from control scans. Unexpectedly high

performances were achieved, especially for models developed to detect scans from

non-manifesting carriers of genetic variants. The SHAP explainability method high-

lighted that, as with the idiopathic Parkinson’s cohorts, pixels surrounding the brain-

stem were informing these models, as well as pixels adjacent to the posterior parieto-

occipital lobe in the case of non-manifesting GBA carriers, which is consistent with

the known behaviour of GBA-associated Parkinson’s. There is still much scope to

explore the drivers of these high model performances.

7.1.6 Routinely collected dataset of Parkinson’s imaging

In Chapter 6, deep learning models were developed to classify the presence of Parkin-

son’s disease in a routinely-collected NHS dataset. The collation of and development

of models for such a dataset is unprecedented. This retrospective dataset included

imaging acquired from Parkinson’s patients prior to their diagnosis, and so rep-

resented the prodromal as well as the more advanced stages of the disease. It is

valuable to note that these routinely-collected images - acquired using a weaker

magnetic field strength and covering a greater breadth of Parkinson’s disease stages,

and likely confounding pathology - did not yield models that performed as well as

those trained on PPMI, a tightly-controlled research dataset. The additional exter-

nal validation of the models trained on the PPMI and UHPNT datasets respectively

represents a rare undertaking in AI in healthcare, due to the difficulty of acquiring

these datasets. The results demonstrated the vital importance of external valida-

tion and a known issue of AI in healthcare: the difficulty of translating applications

developed in research to clinical practice.
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7.2 Limitations and future directions

7.2.1 Data

In several of the reported tasks, the sample size of data was smaller than would be

hoped for the development of effective deep learning applications. This was largely

due to the difficulty of acquiring radiological datasets. The aneurysm clips CT data,

the radiological report data and the UHPNT MRI data were all acquired from a

single institution, limiting the size of the data available. Further stratifying the data

(e.g. by time of scan in relation to Parkinson’s diagnosis) further reduced the size.

This limitation was mitigated to an extent by the use of data augmentation (e.g.

horizontal flip in the case of images), but the acquisition of more data might enable

the development of even more accurate and more generalisable models.

7.2.2 External validation

A frequent limitation in AI in healthcare research is a lack of external validation.

Cross-validation techniques allow for an approximation of how the developed models

will perform on unseen data, but as the test data originate from the same distribution

as the training data, there are likely to be commonalities that will not be seen in truly

external data. This was seen in this work in the difference between the research PPMI

dataset and the routinely-collected UHPNT dataset (discussed in Section 6.6.2).

For the aneurysm clip models in Chapter 4, no external validation dataset could be

acquired. Likewise for the radiology report text models in Chapter 5, no external

validation dataset could be acquired. In the case of the models developed in Chapter

6, the PPMI and UHPNT datasets could serve as external validation datasets for

models trained on the other, but such tests resulted in poor results, likely due to the

discussed fundamental differences in the datasets. Additional models were trained

on a combination of the datasets, and no further external validation dataset could

be acquired to test these. In the future, further work should be done to validate all
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of these models in external datasets.

7.2.3 Explainable AI

Explainable AI is extremely useful, as demonstrated, but it has its limitations. For

the models developed for aneurysm clip and pathology detection, the use of explain-

able AI confirmed that the model was focusing on expected features; the models were

focusing on pixels containing aneurysm clips as seen in Section 4.6, and biologically

relevant words as seen in Section 5.6. This demonstrated the models’ trustworthi-

ness. However, the task of developing models for Parkinson’s disease detection in

conventional MRI sequences was different in nature, as it represented a task that

could not be performed by clinicians; there were no known discriminatory features to

be confirmed. Explainable AI was still extremely valuable in highlighting the parts

of the images that were informing model predictions. However, there is only so much

that the explainability method can reveal about the inner workings of the model.

We can visualise which pixels were informing model predictions, but we can only

speculate as to what about the nature of those pixels was informative. Causation

is not considered by the explainability method, and highlighted features may be a

result of the presence of noise, artifacts, or group differences from the underlying

data [192]. There is much scope to further interrogate these results, especially in the

cases of regions of interest that have not previously been reported.

SHAP

The flexibility and utility of the SHAP method was demonstrated in this research:

it was implemented for three different tasks which used three different types of

data. However, SHAP still has limitations. For example, any explainability method

involving occlusion is strongly affected by sample size. The more examples seen

in training, the more robust the model will be to changes in non-disease relevant

areas [192]. As discussed in Section 7.2.1, some of the datasets used in this research

are smaller than would be optimal, which may have affected the quality of the
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explainability as well as the model performance.

The shap Python library also has weaknesses, such as the lack of functionality

for visualising explanations for 3D convolutional neural networks. In medical imag-

ing applications, which are likely to use volumetric imaging data, this is a major

drawback. The development of a bespoke 3D explanation pipeline for this work has

demonstrated that such functionality is possible. Its inclusion in the shap library as

default would make 3D explanations much more accessible to researchers applying

machine learning to medical imaging. Some more minor issues with the shap library

include a lack of versatility in plot functions and sometimes unclear documentation.

These again could be addressed to make SHAP more accessible to all.

Clinical expertise

Of vital importance to the future of AI in medical applications is the involvement of

clinical experts. The research conducted for this thesis has been proposed and guided

by clinicians who have the domain knowledge to know where AI could be useful,

to interpret the outputs of explainability methods, and to propose refinements to

the models based on those interpretations. For the aneurysm clip models developed

in Chapter 4, it was radiological expertise which suggested that this would be a

useful automatic safety check, which informed the decision to try lower-dimensional

localizer images in which aneurysm clips could be clearly seen, and which noted

that other metal devices were being highlighted in the heatmaps. For the pathol-

ogy detection models developed in Chapter 5, it was radiological and neurological

expertise which suggested that report texts could be used for automatic removal of

confounding pathology from datasets, and which confirmed that biologically relevant

words were informing the model predictions. For the Parkinson’s disease detection

models developed in Chapter 6, it was neurological and neuroradiological expertise

which suggested that AI might usefully be able to detect early brain changes in MRI

inaccessible to the human visual system, which proposed the stratification of cohorts

by disease stage and genetic status, which interpreted the heatmaps as highlight-
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ing biologically relevant regions, and which suggested that a fundamental difference

between the UHPNT and PPMI datasets might be magnetic field strength.

This is a demonstration of a possible future of medical AI. As discussed in Sec-

tion 2.2.1, AI has the potential to allow the radiological process to be streamlined,

and in some cases entirely automated. It has the potential to lower the risk of human

errors, and to allow clinicians to spend more time with patients. It has the potential

to make healthcare more equitable. However, such a future is put in jeopardy by

the risks of AI, discussed in Section 2.2.2. Previous applications of AI in healthcare

have been beset by problems such as poor quality data, poor methodology, poor

consideration of ethical issues, and poor interpretability of models, which has led

to poorly performing models and mistrust of AI in healthcare. The combination

of explainable AI and clinical expertise, as demonstrated in this research, is a po-

tent pairing which can counter these issues. Using explainable AI to explain model

predictions and using medical acumen to interpret those explanations in a clinical

context is a powerful formula for detecting errors, verifying the validity of models,

and engendering trust.

7.3 Conclusion

AI has enormous potential to save time and reduce errors in the field of radiology, as

well as to open up new insights into disease mechanisms. However, little AI research

has been translated into radiological practice due to difficulties such as access to

high-quality, curated datasets and the limited interpretability and trustworthiness

of “black box” deep learning technology. This thesis outlined several novel applica-

tions of explainable deep learning to medical imaging classification, demonstrating

the potential utility of these applications in clinical settings. Deep learning models

were developed to automatically flag aneurysm clips in advance of MRI appoint-

ments, and the use of explainable AI demonstrated that the models were focusing

on the correct parts of the image. Deep learning models were also developed to de-

tect abnormality in radiology report texts, allowing for the automatic removal of
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confounding pathology in the curation of radiological datasets for the development

of AI models, and the use of explainable AI demonstrated that the models were fo-

cusing on biologically relevant words. Finally, deep learning models were developed

to detect Parkinson’s disease in MRI scans, and the use of explainable AI demon-

strated that the models were focusing on regions of interest that adhere to known

neuropathology. This research has made contributions to MRI safety, medical imag-

ing dataset curation and Parkinson’s research. It highlights the immense potential

of explainable AI techniques in radiological safety and research.
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Appendix A: Threshold plots

(a) IPD < 1 year vs controls. Threshold
chosen: 0.43.

(b) IPD 1–2 years vs controls. Threshold
chosen: 0.50.

(c) IPD 2–4 years vs controls. Threshold
chosen: 0.70.

(d) IPD > 4 years vs controls. Threshold
chosen: 0.42.

(e) All IPD vs controls. Threshold chosen:
0.48.

Figure A.1: Mean test performance metrics for PPMI idiopathic Parkinson’s
disease (IPD) models
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(a) LRRK2 PD vs controls. Threshold
chosen: 0.53.

(b) LRRK2 nPD vs controls. Threshold
chosen: 0.45.

(c) LRRK2 nPD < average age vs
controls. Threshold chosen: 0.30.

(d) LRRK2 nPD > average age vs
controls. Threshold chosen: 0.35.

(e) LRRK2 PD vs IPD. Threshold chosen:
0.44.

(f) LRRK2 PD vs LRRK2 nPD.
Threshold chosen: 0.57.

Figure A.2: Mean test performance metrics for PPMI LRRK2 models.
IPD = Idiopathic Parkinson’s disease

LRRK2 nPD = LRRK2 non Parkinson’s disease manifesting carriers
LRRK2 PD = LRRK2 Parkinson’s disease manifesting carriers
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(a) GBA PD vs controls. Threshold
chosen: 0.58.

(b) GBA nPD vs controls. Threshold
chosen: 0.50.

(c) GC GBA nPD vs controls. Threshold
chosen: 0.65.

(d) GBA nPD > average age vs controls.
Threshold chosen: 0.60.

(e) GBA PD vs IPD. Threshold chosen:
0.55.

(f) GBA PD vs GBA nPD. Threshold
chosen: 0.34.

Figure A.3: Mean test performance metrics for PPMI GBA models.
IPD = Idiopathic Parkinson’s disease

GBA nPD = GBA non Parkinson’s disease manifesting carriers
GC GBA nPD = Gaucher causing GBA variants non-manifesting carriers

GBA PD = GBA Parkinson’s disease manifesting carriers
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(a) PD vs controls.
Threshold chosen: 0.65.

(b) PD post-diagnosis vs controls.
Threshold chosen: 0.25.

(c) PD pre-diagnosis vs controls.
Threshold chosen: 0.50.

Figure A.4: Mean test performance metrics for UHPNT models.
PD = Parkinson’s disease
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(a) PD > 4 years vs controls. Threshold
chosen: 0.23.

(b) PD 1-4 years vs controls. Threshold
chosen: 0.68.

(c) PD < 1 year vs controls. Threshold
chosen: 0.48.

Figure A.5: Mean test performance metrics for combined PPMI and UHPNT
models.

PD = Parkinson’s disease
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Appendix B: SHAP maps

(a) False positive, as predicted by five models.
The mean output probability of the image

containing a clip is 0.46.

(b) False positive, as predicted by five models.
The mean output probability of the image

containing a clip is 0.45.

(c) False positive, as predicted by five models.
The mean output probability of the image

containing a clip is 0.27.

(d) False positive, as predicted by one model.
The mean output probability of the image

containing a clip is 0.10.

(e) False positive, as predicted by one model.
The mean output probability of the image

containing a clip is 0.17.

(f) False positive, as predicted by one model.
The mean output probability of the image

containing a clip is 0.10.

(g) False positive, as predicted by two models.
The mean output probability of the image

containing a clip is 0.15.

(h) False positive, as predicted by four models.
The mean output probability of the image

containing a clip is 0.30.

Figure B.1: Maps of average SHapley Additive exPlanation (SHAP) values for false
positive aneurysm clip predictions. Any pixels highlighted in red have contributed to
the prediction that an aneurysm clip is present; any pixels highlighted in blue have

contributed to the prediction that no aneurysm clip is present.
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(a) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 1.00.

(b) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 0.98.

(c) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 1.00.

(d) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 1.00.

(e) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 0.84.

(f) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 0.99.

(g) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 1.00.

(h) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 1.00.

(i) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 0.75.

(j) True positive, as predicted by five models.
The mean output probability of the image

containing a clip is 0.99.

Figure B.2: Maps of average SHapley Additive exPlanation (SHAP) values for true
positive aneurysm clip predictions. Aneurysm clips are circled in green. Any pixels

highlighted in red have contributed to the prediction that an aneurysm clip is present;
any pixels highlighted in blue have contributed to the prediction that no aneurysm clip

is present.
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(a) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.00.

(b) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.00.

(c) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.00.

(d) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.00.

(e) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.00.

(f) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.01.

(g) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.00.

(h) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.00.

(i) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.01.

(j) True negative, as predicted by five models.
The mean output probability of the image

containing a clip is 0.00.

Figure B.3: Maps of average SHapley Additive exPlanation (SHAP) values for true
negative aneurysm clip predictions. Any pixels highlighted in red have contributed to
the prediction that an aneurysm clip is present; any pixels highlighted in blue have

contributed to the prediction that no aneurysm clip is present.
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(a) Predicted probability that image is from LRRK2 carrier: 93.4%

(b) Predicted probability that image is from LRRK2 carrier: 99.4%

(c) Predicted probability that image is from LRRK2 carrier: 96.8%

Figure B.4: SHapley Additive exPlanation (SHAP) maps for LRRK2 non PD manifesting carriers (LRRK2 nPD) who subsequently developed
motor Parkinson’s disease, predicted by models trained to differentiate between LRRK2 nPD and controls. Pixels highlighted in red have

contributed positively to the prediction; pixels highlighted in blue have contributed negatively to the prediction.
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Appendix C: PPMI data

Table C.1: LRRK2 and GBA variants present in PPMI cohorts

Variant Participant
Count

LRRK2

p.S1647T/p.S1647T / p.G2019S / p.M2397T/p.M2397T 37
p.S1647T / p.G2019S / p.M2397T 31
p.S1647T / p.G2019S / p.M2397T/p.M2397T 20
p.I723V / p.S1647T / p.G2019S / p.M2397T 12
p.N551K / p.R1398H / p.S1647T / p.G2019S / p.M2397T/p.M2397T 11
p.G2019S 11
p.S1647T / p.G2019S / p.N2081D / p.M2397T 6
p.N551K / p.S1647T/p.S1647T / p.G2019S / p.M2397T/p.M2397T 4
p.P1542S / p.S1647T / p.G2019S / p.M2397T/p.M2397T 3
p.R1441G / p.M1646T / p.M2397T 3
p.M1646T / p.S1647T / p.G2019S / p.M2397T/p.M2397T 2
p.N551K / p.R1398H / p.R1441G / p.M1646T / p.M2397T/p.M2397T 2
p.S1647T/p.S1647T / p.G2019S/p.G2019S / p.M2397T/p.M2397T 2
p.I723V / p.S1647T / p.G2019S / p.M2397T/p.M2397T 2
p.I723V / p.M1646T / p.S1647T / p.G2019S / p.M2397T/p.M2397T 2
p.R1441G 2
p.R1441G / p.M1646T / p.S1647T / p.M2397T/p.M2397T 2
p.R1514Q / p.S1647T / p.G2019S / p.M2397T/p.M2397T 2
p.N59K / p.S1647T / p.G2019S / p.M2397T 1
p.N551K / p.S1647T / p.G2019S / p.M2397T 1
p.N551K / p.R1398H / p.R1441C / p.S1647T / p.M2397T/p.M2397T 1
p.I723V / p.S1647T/p.S1647T / p.G2019S / p.M2397T/p.M2397T 1
p.V1330M / p.S1647T / p.G2019S / p.M2397T 1

GBA

PD risk factor GBA variant
p.E326K (p.E365K) 11
p.T369M (p.T408M) 8
p.T336S 1

“Mild” Gaucher causing GBA variant
p.N370S (p.N409S) 113
p.N370S/p.N370S (p.N409S/p.N409S) 8
p.K13R 4
p.R44C (p.R83C) 1
p.A456P (p.A495P) 1
p.R39C (p.R78C) 1
p.E365K/p.N370S (p.E365K/p.N409S) 1
p.G115R/p.G193E (p.G154R/p.G232E) 1
p.I489L (p.I528L) 1

“Severe” Gaucher causing GBA variant
p.L444P (p.483P) 5
p.IVS2+1G>A 1
p.T369M/p.R120W (p.T408M/p.R159W) 1
p.R502C 1

x



Table C.2: Counts of participants included in PPMI analysis and reasons for
withdrawal

Participant count
PD Control LRRK2 GBA

Total included in analysis 193 193 159 159

Withdrawal reason
Subject withdrew consent 29 18 10 15
Death 15 2 3 10
Lost to follow up 12 13 4 2
Other 10 3 5 8
Informant/Caregiver decision 3 2 2 4
Investigator decision 3 1 0 0
Decline in health 2 1 0 0
Transportation/Travel issues 2 0 0 1
Family, care-partner, or social issues 1 0 2 0
Adverse Event 1 0 0 0
Burden of study procedures (other than travel) 0 1 0 0
Sponsor decision 0 0 1 1
Institutionalised 0 0 0 1

Total withdrawals 78 41 27 42
188

xi


