CO2 uptake decreased and CH4 emissions increased in first two years of peatland seismic line restoration
Date
2022-04Author
Subject
Metadata
Show full item recordAbstract
Oil and gas exploration has resulted in over 300,000 km of linear disturbances, known as seismic lines, throughout boreal peatlands across Canada. Sites are left with altered hydrologic and topographic conditions that prevent tree re-establishment. Restoration efforts have concentrated on tree recovery through mechanical mounding to re-create microtopography and support planted tree seedlings to block sightlines and deter the use of lines by wolves, but little is known about the impact of seismic line disturbance or restoration on peatland carbon cycling. This study looked at two mounding treatments and compared summer growing season carbon dioxide and methane fluxes to untreated lines and natural reference areas of a wooded fen in the first two years post-restoration. We found no significant differences in net ecosystem CO2 exchange, but untreated seismic lines were slightly more productive than natural reference areas and mounding treatments. Both restoration treatments increased ecosystem respiration, decreased net productivity by 6–21 g CO2 m−2 d−1, and created areas of increased methane emissions, including an increase in the contribution of ebullition, of up to 2000 mg CH4 m−2 d−1 over natural and untreated lines. Further research on this site to assess the longer-term impacts of restoration, as well as application on other sites with varied conditions, will help determine if these restoration practices are effective at restoring carbon cycling.
Publisher
Journal
Volume
Issue
Pagination
Publisher URL
Recommended, similar items
The following license files are associated with this item: