Show simple item record

dc.contributor.authorLi, F
dc.contributor.authorGaillard, M-J
dc.contributor.authorXie, S
dc.contributor.authorCui, Q
dc.contributor.authorFyfe, R
dc.contributor.authorMarquer, L
dc.contributor.authorSugita, S
dc.date.accessioned2023-11-07T10:44:07Z
dc.date.available2023-11-07T10:44:07Z
dc.date.issued2023-11-07
dc.identifier.issn1664-462X
dc.identifier.issn1664-462X
dc.identifier.otherARTN 1240485
dc.identifier.urihttps://pearl.plymouth.ac.uk/handle/10026.1/21596
dc.description.abstract

The Landscape Reconstruction Algorithm (LRA) is regarded as the soundest approach for quantifying taxon-specific plant cover from pollen data. The reliability of relative pollen productivity (RPP) estimates is fundamental in the accuracy of quantitative vegetation reconstruction using the LRA approach. Inconsistent RPP estimates produced by different studies can cast doubt on the reliability and applicability of quantitative vegetation reconstruction. Therefore, it is crucial that the RPP estimates are evaluated before being applied for quantitative vegetation reconstruction. We have tested two alternative approaches, namely, a leave-one-out cross-validation (LOO) method and a splitting-by-subregion strategy, using surface pollen assemblages and the REVEALS model—the first step in the LRA—to evaluate the reliability of RPPs estimates of 10 target taxa obtained in the cultural landscape of Shandong. We compared the REVEALS estimates (RVs) with observations of regional vegetation abundance (OBVs) and pollen proportions (PPs). The RVs of all taxa are generally closer to OBVs than PPs, and the degree of similarity depends strongly on the abundance of individual taxa in plant and pollen; taxa dominant in the region show the highest similarity between RVs and OBVs, such as Artemisia, Poaceae, and Humulus. The RVs of all herb taxa except Humulus and Asteraceae SF Cichorioideae are slightly overrepresented, and the RVs of all tree taxa are underrepresented except for Castanea. The comparison of RVs with OBVs collected from different spatial extents shows that the RVs of all herb taxa are more similar to OBVs collected from shorter distances (100 km and 75 km for the entire region and the subregion, respectively), whereas the RVs of all tree taxa are more similar to OBVs collected from longer distances (150 km and 100 km for the entire region and the subregion, respectively). Furthermore, our findings highlight the importance to test different sizes of area for vegetation surveys for evaluation of the RVs given that the appropriate size of vegetation survey may vary between low pollen producers (mainly herbs) and high pollen producers (mainly trees). We consider that the LOO strategy is the best approach in this case study for evaluating the RPP estimates from surface moss polsters. The evaluation confirms the reliability of the obtained RPP estimates for their potential application in quantitative reconstruction of vegetation abundance in temperate China.

dc.format.extent1240485-
dc.format.mediumElectronic-eCollection
dc.languageeng
dc.publisherFrontiers Media
dc.subjectChina
dc.subjectrelative pollen productivity
dc.subjectevaluation
dc.subjectobservation of regional vegetation
dc.subjectREVEALS model
dc.titleEvaluating the Relative Pollen Productivity Estimates using the REVEALS model: a case study from the cultural landscape in Shandong, China
dc.typejournal-article
dc.typeArticle
plymouth.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/38023872
plymouth.volume14
plymouth.publisher-urlhttp://dx.doi.org/10.3389/fpls.2023.1240485
plymouth.publication-statusPublished online
plymouth.journalFrontiers in Plant Science
dc.identifier.doi10.3389/fpls.2023.1240485
plymouth.organisational-group|Plymouth
plymouth.organisational-group|Plymouth|Research Groups
plymouth.organisational-group|Plymouth|Faculty of Science and Engineering
plymouth.organisational-group|Plymouth|Faculty of Science and Engineering|School of Geography, Earth and Environmental Sciences
plymouth.organisational-group|Plymouth|Research Groups|Marine Institute
plymouth.organisational-group|Plymouth|REF 2021 Researchers by UoA
plymouth.organisational-group|Plymouth|Users by role
plymouth.organisational-group|Plymouth|Users by role|Academics
plymouth.organisational-group|Plymouth|REF 2021 Researchers by UoA|UoA14 Geography and Environmental Studies
plymouth.organisational-group|Plymouth|Admin Group - REF
plymouth.organisational-group|Plymouth|Admin Group - REF|REF Admin Group - FoSE
dc.publisher.placeSwitzerland
dcterms.dateAccepted2023-10-05
dc.date.updated2023-11-07T10:44:01Z
dc.rights.embargodate2023-11-8
dc.identifier.eissn1664-462X
rioxxterms.versionofrecord10.3389/fpls.2023.1240485


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV