The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi
Date
2020Author
Subject
Metadata
Show full item recordAbstract
The utilization of different carbon sources in filamentous fungi underlies a complex regulatory network governed by signaling events of different protein kinase pathways, including the high osmolarity glycerol (HOG) and protein kinase A (PKA) pathways. This work unraveled cross-talk events between these pathways in governing the utilization of preferred (glucose) and non-preferred (xylan, xylose) carbon sources in the reference fungus Aspergillus nidulans. An initial screening of a library of 103 non-essential protein kinase (NPK) deletion strains identified several mitogen-activated protein kinases (MAPKs) to be important for carbon catabolite repression (CCR). We selected the MAPKs Ste7, MpkB, and PbsA for further characterization and show that they are pivotal for HOG pathway activation, PKA activity, CCR via regulation of CreA cellular localization and protein accumulation, as well as for hydrolytic enzyme secretion. Protein-protein interaction studies show that Ste7, MpkB, and PbsA are part of the same protein complex that regulates CreA cellular localization in the presence of xylan and that this complex dissociates upon the addition of glucose, thus allowing CCR to proceed. Glycogen synthase kinase (GSK) A was also identified as part of this protein complex and shown to potentially phosphorylate two serine residues of the HOG MAPKK PbsA. This work shows that carbon source utilization is subject to cross-talk regulation by protein kinases of different signaling pathways. Furthermore, this study provides a model where the correct integration of PKA, HOG, and GSK signaling events are required for the utilization of different carbon sources.
Collections
Publisher
Place of Publication
Editor
Journal
Volume
Issue
Pagination
Author URL
Publisher URL
Number
Recommended, similar items
The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Molecular Basis for Jagged-1/Serrate Ligand Recognition by the Notch Receptor
Whiteman, P; de Madrid, BH; Taylor, P; Li, D; Heslop, R; Viticheep, N; Tan, JZ; Shimizu, H; Callaghan, J; Masiero, M; Li, JL; Banham, AH; Harris, AL; Lea, SM; Redfield, C; Baron, M; Handford, PA (Elsevier BVUnited States, 2013-03)We have mapped a Jagged/Serrate-binding site to specific residues within the 12th EGF domain of human and Drosophila Notch. Two critical residues, involved in a hydrophobic interaction, provide a ligand-binding platform ... -
Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response
Yang, Y; Willis, TL; Button, RW; Strang, CJ; Fu, Y; Wen, X; Grayson, PRC; Evans, T; Sipthorpe, RJ; Roberts, SL; Hu, B; Zhang, J; Lu, B; Luo, S (Springer Science and Business Media LLCEngland, 2019-08-21)<jats:title>Abstract</jats:title><jats:p>Autophagy cargo recognition and clearance are essential for intracellular protein quality control. SQSTM1/p62 sequesters intracellular aberrant proteins and mediates cargo delivery ... -
Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function
Williams, CK; Li, J-L; Murga, M; Harris, AL; Tosato, G (American Society of HematologyUnited States, 2006-02-01)<jats:title>Abstract</jats:title><jats:p>Delta-like 4 (Dll4), a membrane-bound ligand for Notch1 and Notch4, is selectively expressed in the developing endothelium and in some tumor endothelium, and it is induced by ...