Data-driven Communicative Behaviour Generation: A Survey
Date
2024-03Author
Subject
Metadata
Show full item recordAbstract
<jats:p>The development of data-driven behaviour generating systems has recently become the focus of considerable attention in the fields of human–agent interaction and human–robot interaction. Although rule-based approaches were dominant for years, these proved inflexible and expensive to develop. The difficulty of developing production rules, as well as the need for manual configuration to generate artificial behaviours, places a limit on how complex and diverse rule-based behaviours can be. In contrast, actual human–human interaction data collected using tracking and recording devices makes humanlike multimodal co-speech behaviour generation possible using machine learning and specifically, in recent years, deep learning. This survey provides an overview of the state of the art of deep learning-based co-speech behaviour generation models and offers an outlook for future research in this area.</jats:p>
Collections
Publisher
Journal
Volume
Issue
Pagination
Publisher URL
Number
Recommended, similar items
The following license files are associated with this item: